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Abstract
Meta-learning accelerates the learning process on
unseen learning tasks by acquiring prior knowledge
through previous related tasks. The PAC-Bayesian
theory provides a theoretical framework to analyze
the generalization of meta-learning to unseen tasks.
However, previous works still encounter two notable
limitations: (1) they merely focus on the data-free
priors, which often result in inappropriate regular-
ization and loose generalization bounds; (2) more
importantly, their optimization process usually in-
volves nested optimization problems, incurring sig-
nificant computational costs. To address these is-
sues, we derive new generalization bounds and in-
troduce a novel PAC-Bayesian framework for meta-
learning that integrates data-dependent priors. This
framework enables the extraction of optimal poste-
riors for each task in closed form, thereby allow-
ing us to minimize generalization bounds incorpo-
rated data-dependent priors with only a simple local
entropy. The resulting algorithm, which employs
SGLD for sampling from the optimal posteriors, is
stable, efficient, and computationally lightweight,
eliminating the need for nested optimization. Ex-
tensive experimental results demonstrate that our
proposed method outperforms the other baselines.

1 Introduction
Meta-learning [Thrun and Pratt, 1998; Baxter, 2000], or
learning-to-learn, extracts prior knowledge from past train-
ing tasks to accelerate future learning. This process en-
ables knowledge transfer across tasks, leveraging previous
experience to eliminate the need for training models from
scratch. Recent advances in meta-learning have achieved im-
pressive success across various fields, including computer
vision [Hospedales et al., 2021], natural language processing
[Lee et al., 2022], and reinforcement learning [Zhao et al.,
2022]. Most current meta-learning methods [Finn et al., 2017;
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Figure 1: Existing methods typically learn posterior for each task and
hyper-posterior simultaneously using a complex nested procedure.
In contrast, our method directly optimizes for priors best satisfying
the generalization needs with a simple local entropy objective, whose
corresponding optimal posteriors can be extracted in closed form.

Zhu et al., 2023] presume access to a large pool of tasks, but
this contrasts with the limited tasks typically available in real-
world settings. This gap raises the risk of overfitting to the
few tasks used during meta-training, potentially impairing per-
formance on unseen target tasks. Hence, a critical challenge
is how to effectively regularize the meta-learner to generalize
well to unseen tasks.

Fortunately, the PAC-Bayesian theory [McAllester, 1999]
provides a rigorous framework for understanding the gener-
alization performance of learners, which incorporates prior
knowledge and implicitly regularizes the learners. Recently,
there has been a surge in studying meta-learning with PAC-
Bayesian theory [Amit and Meir, 2018; Guan et al., 2022;
Rezazadeh, 2022]. However, these approaches still face sev-
eral limitations: (1) They primarily focus on data-free priors,
which tends to restrict achieving tighter bounds. Typically,
generalization bounds balance empirical risk against model
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complexity, dominated by the gap between the prior and poste-
rior. Priors that closely match the underlying task distribution
can lead to tighter bounds. (2) Their optimization process is a
complex and usually unstable procedure, fine-tuning posteriors
that reflect task preferences without drifting too far from repet-
itive priors, and fitting the hyper-posterior to minimize the
corresponding bound. Hence, the resulting algorithms rely on
a complex nested optimization problem, incurring expensive
computational costs. Here a question arises: are there priors
to regularize meta-learning, achieving a tighter generalization
guarantee and simplifying the optimization process?

To this end, we study the generalization property of meta-
learning through the PAC-Bayesian perspective with data-
dependent priors. First, we derive the relationship between
the local entropy and the results in PAC-Bayesian learning
theory, which helps us directly optimize the priors to adhere
to a tighter upper bound without explicit posteriors. Although
it is possible to acquire data-dependent priors by optimizing
local entropy [Chaudhari et al., 2017; Chaudhari et al., 2019],
such an approach is usually ineffective due to the restriction
in PAC-Bayesian theory, which states that the prior cannot
depend on the training samples. An intuitive solution to relax
this restriction is the differential privacy (DP) mechanism
[Dziugaite and Roy, 2018b]. DP enables the data-dependent
priors to weakly depend on the data while ensuring they suffice
for the valid generalized bounds. To this end, we extend the
PAC-Bayesian analysis framework for meta-learning to the
data-dependent priors under privacy constraints. We further
refine our PAC-Bayesian bounds to directly relate to the local
entropy of Bayesian learners, rather than explicit posteriors,
thus getting around the need for complex nested optimization.
Besides, we develop a novel meta-learning algorithm utilizing
Stochastic Gradient Langevin Dynamics (SGLD) [Welling
and Teh, 2011], which is straightforward to implement and
simple to train. Experiments show that our approach yields
competitive results compared to previous PAC-Bayesian meta-
learning methods.

Contributions. The main contributions of this paper can be
summarized as follows:

• We study the generalization of meta-learning through the
PAC-Bayesian perspective incorporating data-dependent
priors (Section 3).

• We provide a new framework for PAC-Bayesian meta-
learning incorporating data-dependent priors. Our PAC-
Bayesian generalization bound is defined as a function of
the local entropy, without the reliance on explicit posteri-
ors for each task, which ultimately attains fast convergence
ability (Section 3.2).

• With our bounds, we develop an efficient meta-learning
algorithm grounded on SGLD, namely PAC-MLE. This
algorithm eliminates the necessity of nested optimization, by
effectively and implicitly sampling from the Gibbs optimal
poster (Section 4).

• Numerical experiments on both classification and regression
tasks demonstrate that our method outperforms previous the-
oretical work in terms of fast adaptation and generalization
guarantee, and effectively impedes over-fitting (Section 5).

1.1 Related Work
In this subsection, we briefly overview the main related work.
We provide a more detailed literature review in Appendix B.

Meta-learning [Thrun and Pratt, 1998] enables knowl-
edge transfer across tasks, leveraging prior experience to
eliminate the need for training models from scratch. Vari-
ous methods include developing a shared embedding space
across tasks [Vinyals et al., 2016; Xu et al., 2020], learn-
ing the initialization for quick adaptation [Finn et al., 2017;
Rothfuss et al., 2019], or incorporating probabilistic modeling
for uncertainty quantification [Finn et al., 2018; Chen and
Chen, 2022]. Despite their ability to learn complex patterns,
these methods often require many meta-training tasks and lack
performance guarantees. To address this issue, we study the
generalization of meta-learning through the PAC-Bayesian
perspective and introduce a novel meta-learning method with
generalization guarantees.

The PAC-Bayesian learning theory [McAllester, 1999] pro-
vides upper bounds on the generalization error that holds
with an arbitrarily high probability. Further works [Pentina
and Lampert, 2014; Amit and Meir, 2018; Liu et al., 2021;
Guan et al., 2022; Rezazadeh, 2022] extend previous bounds
to the scenario where priors are meta-learned. Liu et al. [2021]
propose to use held-out data to construct data-dependent pri-
ors. However, these methods are considerably complex as they
leave both the hyper-posterior and posterior unspecified. Roth-
fuss et al. [2021; 2023] derive the PAC-optimal hyper-posterior
but overlook data-dependent priors, limiting the potential for
achieving tighter bounds. In contrast, we directly optimize
data-dependent priors to best meet generalization preferences
using a simple local entropy, which greatly simplifies the learn-
ing process.

2 Preliminaries: PAC-Bayesian Framework
Background. In the common setting, a learning task τ is
characterized by an unknown distribution D over space Z .
We are given a set of m observations, S = {zj}mj=1, with
each zj ∼ D. In supervised learning, the observations zj =
(xj , yj) comprise input features xj ∈ X and target labels
yj ∈ Y . Given S, our goal is to find a hypothesis h ∈ H,
which can minimize the expected error over D, L(h,D) =
Ez∼D[ℓ(h, z)], where ℓ : H × Z → R+ is a loss function.
Since D is unknown in general, we typically evaluates the
empirical error instead, L̂(h, S) = 1

m

∑m
j=1ℓ(h, zj).

In the PAC-Bayesian framework, we are concerned with
randomized predictors i.e., probability measures on the hypoth-
esis space H. This allows us to reason about the uncertainty
of h, resulting from the fact that only a finite number of data
points are available for training. Our goal is to output a poste-
rior Q := Q(S, P ) ∈ M(H), where P ∈ M(H) represents
the prior knowledge andM(H) denotes the set of probability
measures overH. Then, we can define the expected error of
posterior Q as L(Q,D) = Eh∼QL(h,D) and its empirical
counterpart as L̂(Q,S) = Eh∼QL̂(h, S).
PAC-Bayesian bounds. In practice, L(Q,D) is typically
unknown as well. Thus, it is common to minimize L̂(Q,S)
instead. If there are no structural assumptions with additional

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4579



constraints, this often results in overfitting and limited gener-
alization performance. Hence, it is important to analyze the
difference between the empirical estimate and its expected
one. PAC-Bayesian theory helps us do so by bounding the
unknown generalization error based on its empirical estimate:
Theorem 1 (McAllester’s single-task PAC-Bayesian bound
[McAllester, 1999]). Given a data distribution D, prior P ∈
M(H), for any confidence level δ ∈ (0, 1], the following
inequality holds uniformly for all posteriors Q ∈ M over
samples S ∼ Dm, with probability at least 1− δ,

L(Q,D) ≤ L̂(Q,S) +

√
KL(Q∥P ) + log(m/δ)

2(m− 1)
. (1)

Generally, PAC-Bayesian bounds attempt to balance the
trade-off between empirical error (fitting error) and the com-
plexity term (deviation from prior), which promotes the choice
of a simple hypothesis. The choice of prior distribution P not
only impacts the tightness of PAC-Bayesian bounds, but also
notably affects its performance. Priors that closely match the
true data-generating process can lead to better bounds.

3 PAC-Bayesian Bounds for Meta-Learning
In this section, we present our main theoretical results. We be-
gin with a general PAC-Bayesian bound for meta-learning and
discuss its implications. We then introduce the local entropy
and show its connection with the PAC-Bayesian framework.
Based on this, we extend the general PAC-Bayesian meta-
learning bound to incorporate data-dependent priors. The
overview of our proposed framework is illustrated in Fig. 2.
The corresponding proofs can be found in Appendix F.

3.1 General PAC-Bayesian Meta-Learning Bounds
In meta-learning settings, we aim to acquire such a prior P
in a data-driven manner through a set of related learning task
{τi}ni=1, which can speed up the learning process on new
target tasks τ ∼ T . All of these tasks τi := (Di, Si) share
the same sample space Z = X × Y , hypothesis space H
and employ the same loss function ℓ(h, z). However, they
may differ regarding the (unknown) data distributions Di. For
simplicity, we can assume that mi is constant across tasks,
m = mi, ∀i. Moreover, every task τi ∼ T is considered to be
drawn i.i.d. from an environment T .

To extract knowledge from the observed datasets, the goal
of learning focus shifts from a singular hypothesis h ∈ H to
the prior P ∈ M(H). Here, we assumes a hyper-prior P ∈
M(M(H)), i.e., a distribution over priors P . We combine
the hyper-prior P with the datasets {Si}ni=1 from multiple
tasks, and consequently output a hyper-posteriorQ over priors
which can then be used for new tasks. Accordingly, the quality
of the hyper-posterior can be measured by the expected loss of
learning new tasks using priors P drawn fromQ, the so-called
transfer error:

L(Q, T ) := EP∼Q
[
E(D,m)∼T [ES∼Dm [L(Q(S, P ),D)]]

]
.

While the environment τ is unknown in practice, we can
estimate it using the empirical multi-task error,

L̂(Q, S1:n) := EP∼Q
[
1/n

∑n

i=1
L̂(Q(Si, P ), Si)

]
.

Task 

Meta-training Target training Target testing

Meta-
learner

optimaldata-dependent

Base
learner

Figure 2: Overview of our framework for PAC-Bayesian meta-
learning with data-dependent prior.

Building upon existing bounds, which affine-transformation
steps at both the meta and task levels, we present a fast-rate
bound for meta-learning,
Theorem 2 (Fast-rate PAC-Bayesian meta-learning bound).
Let Q : Zm ×M → M(H) be a base learner, P be some
fixed hyper-prior. Given any confidence level δ ∈ (0, 1], and
λt, λe ∈ (0, 2), the following inequality holds uniformly for
all hyper-posteriors Q, with probability 1− δ,

L(Q, T ) ≤ L̂(Q, S1:n)

(1− λe/2)(1− λt/2)
+

KL(Q∥P) + ln(2/δ)

nλe(1− λe/2)

+
1

n

n∑
i=1

KL(Q∥P) + EQ[KL(Qi∥P )] + ln(2n/δ)

mλt(1− λt/2)(1− λe/2)
, (2)

where Qi := Q(Si, P ).

Remark. Theorem 2 indicates that the transfer error is
bounded by the empirical multi-task error under Q, plus the
KL-divergence terms which serve as regularizers on the meta-
level and task-level. This implies that regularization should
be strong with limited data, but can vanish asymptotically as
n,m→∞. Our fast-rate bound exhibits a convergence rate
O(1/m+ 1/n).

The PAC-Bayesian theory provides a framework for under-
standing meta-learning generalization, leading to algorithms
with generalization guarantees through corresponding upper
bounds. However, previous methods [Amit and Meir, 2018;
Rezazadeh, 2022] often struggle with data-free priors. In prac-
tice, the mismatch between prior and posteriors often results
in inefficiency estimates and slow convergence.

3.2 PAC-Bayesian Meta-Learning Bounds with
Data-dependent Priors

To overcome the drawbacks of data-free priors, a straightfor-
ward approach is to derive data-dependent priors P (Si) by
reserving part of the training data specifically for this purpose
[Thiemann et al., 2017; Liu et al., 2021; Dziugaite et al., 2021].
Although it is possible to apply priors that are data-dependent
but independent from the training set, such approaches are
ineffective due to the intrinsic slow convergence and potential
risks of overfitting. An alternative is to employ differentially
private (DP), [Dwork et al., 2015] mechanisms, which offer
a compromise by ensuring priors are only weakly dependent
on the data, thereby sufficient to the PAC-Bayesian bounds
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under the relaxed restrictions [Dziugaite and Roy, 2018a;
Dziugaite and Roy, 2018b; Rivasplata et al., 2020].

In this way, the prior captures the underlying data distribu-
tion instead of being limited to the specific dataset it is trained
on, maintaining resilience against data perturbations. This
facilitates the somewhat loose but reliable bounds. Hence,
we establish the PAC-Bayesian analysis framework for meta-
learning, wherein a data-dependent prior is incorporated.
Theorem 3 (PAC-Bayesian meta-learning bound with ϵ-DP
data-dependent priors). Under the same settings of Theorem 2,
the following inequality holds with probability at least 1− δ,

L(Q, T ) ≤ L̂(Q, S1:n)

(1− λe/2)(1− λt/2)
+

KL(Q∥P) + ln(2/δ)

nλe(1− λe/2)

+
1

n

n∑
i=1

KL(Q∥P) + EQ[KL(Qi∥P (Si))] + C(m, ϵ, δ)

mλt(1− λt/2)(1− λe/2)
,

(3)

where C(m, ϵ, δ) = ln 2
√
m+ 2max{ln(3/δ),mϵ2).

Remark. Compared with the result in Theorem 2, the third
term incurs an additional loss regarding private mechanisms.
The bound Eq. (3) could significantly outperform the previous
ones when ϵ ∈ O(m−1/2) are relatively mild and matches the
rate at which the KL term decays [Dziugaite and Roy, 2018b].

3.3 PAC-Bayesian Meta-Learning Bounds with
Data-dependent Priors from Local Entropy

We will show that the priors that achieve a tighter general-
ization bound can be optimized exactly with a simple local
entropy objective, greatly simplifying the learning pipeline.
Before we look into the specific solution to data-dependent
priors, let us first explore the posterior Q which can help us to
minimize the generalization bound in Eq. (3).

Intuitively, Catoni [2007] indicates the closed-form so-
lutions for such a minimization problem βL̂(Q,Si) +
KL(Q||P ),

Q⋆
i (h) : = argminQ∈M(H) βL̂(Q,Si) + KL(Q||P )

= P (h) exp
(
− βL̂(h, Si)

)
/Zβ(Si, P ),

(4)

where Zβ(Si, P ) =
∫
H P (h) exp(−βL̂(h, Si))dh is the par-

tition function, and P, Si,m, δ are defined same in Eq. (3).
The corresponding distribution Q⋆

i , denoted as Q⋆
i =

Pexp(−βL̂(h,Si))
1, is also known as the optimal Gibbs pos-

terior [Catoni, 2007; Lever et al., 2013].
Then, plugging Q⋆

i back to Eq. (4), we have

min
Q

βL̂(Q,Si) + KL(Q∥P ) = −ln
∫
H
P (h)e−βL̂(h,Si)dh.

(5)

Note that Eq. (5) establishes the connections between the
PAC-Bayesian framework and the partition function w.r.t. the
prior P . This suggests that the minimum of upper bounds
essentially relies on the extent to which the prior can reflect the

1Formally, a distribution like Pexp(−βg) is called a Gibbs distri-
bution with energy function g and inverse temperature β.

data. Recall that the hypothesis h is parameterized by w such
that L̂(h, Si) := L̂(w, Si). Like previous works [Amit and
Meir, 2018], assume that w has prior P (w) = N (w|v, σ2)
and rewrite the right hand side (RHS) of Eq. (5),

Fβ(P, Si) = ln

∫
N (w|v, σ2)e−βL̂(w,Si) dw (6)

= ln

∫
e−βL̂(w,Si)−∥w−v∥2/2σ2

dw. (7)

It is worth noting that Eq. (7), known as local entropy
[Chaudhari et al., 2017], is frequently used to measure flatness
since it can measure the amount of “good” parameters w
around given v. The resulting algorithm [Chaudhari et al.,
2019; Pittorino et al., 2021] prioritizes exploring flat regions,
minimizing negative local entropy rather than the original loss
function L̂(w, Si), to enhance generalization performance.
Thus, the connection between the generalization bound and
local entropy can be reformulated as,

Lemma 4 ([Dziugaite and Roy, 2018a]). Assume some con-
stant σ2 > 0. Then, the weights v that maximize the local
entropy Fβ(P, Si) in Eq. (7), also minimize βL̂(Q⋆

i , Si) +
KL(Q⋆

i ∥P ), where Q⋆
i = Pexp(−βL̂(w,Si))

and P =

N
(
v, σ2

)
.

Lemma 4 indicates that maximizing local entropy allows
us to optimize the prior within the PAC-Bayesian bound. In
other words, the acquired v can serve as the mean of the data-
dependent prior P (Si). Recall that Theorem 3 holds for any
base learner Q(Si, P ) with data-dependent priors for optimal
performance. By Eq. (5), we can reformulate Theorem 3 in
terms of local entropy, which yields

Corollary 5. Under the same settings of Theorem 3, assume
an optimal Gibbs posterior Q⋆

i as the base learner, the follow-
ing inequality holds with probability at least 1− δ,

L(Q, T ) ≤ 1

n

∑n

i=1

1

λβ
EP∼Q

[
− Fβ(P, Si)

]
+
( 1

nα
+

1

λβ

)
KL(Q∥P) + C(δ, λ, α, β, ϵ),

(8)

where λ = (1−λt/2)(1−λe/2), α = λe(1−λe/2), β = mλt,
constant C(δ, λ, α, β, ϵ) is deferred to proofs in Appendix.

Remark. Corollary 5 provides a tighter bound than previous
works, where bounds hold for any Q ∈ M(H). It is worth
mentioning that Eq. (8) eliminates the explicit dependence on
Q(Si, P ), and turns the nested optimization problem into a
standard stochastic optimization problem. This bound consists
of the expected local entropy under the hyper-posterior Q and
the KL-divergence term, serving as meta-level regularization.
As the number of training tasks n increases, the emphasis
on the KL term diminishes, aligning with the general under-
standing that more data reduces the need for regularization,
eventually becoming negligible as n,m→∞.

In practice, achieving strong DP can be computationally
intractable. However, Dziugaite and Roy [2018b] relax the
privacy requirement and show that convergence in distribution
to a DP mechanism is adequate for ensuring generalization.
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This insight permits the use of SGLD [Welling and Teh, 2011]),
which under certain conditions, is known to weakly converge
to its target distribution. Consequently, we can formulate an
optimization method for Meta-learning with PAC-Bayesian
guarantee that incorporates data-dependent priors derived from
local entropy.

4 PAC-Bayesian Meta-Learning Algorithm
In this section, we discuss how to translate our theoretical
findings into a practical algorithm. We begin with the objective
function from the upper bound in Corollary 5 and proceed to
detail the derivation of low-variance gradient estimators.

For simplicity, we focus on priors Pvi
(w) = N (w|vi, σ

2
i ),

where σ2
i is a predefined constant. Then, we limit the space

of hyper-prior and hyper-posteriors as a family of isotropic
Gaussian distributions: P(v) := N (0, σ2

P) and Qν(v) =
N (v|ν, σ2

Q), where σ2
P , σ

2
Q > 0 are some predefined con-

stants.
The objective function for the RHS of Eq. (8) reads as

J(ν) =
1

n

∑n

i=1

1

λβ
Evi∼Qν

[
− Fβ(Pvi , Si)

]
+
( 1

nα
+

1

λβ

)
KL(Qν∥P).

(9)

To reduce variance, we use the reparameterization trick
[Kingma and Welling, 2013], and rewrite vi := f(ν, ε) =
ν+σiε with ε ∼ N (0, 1). Hence, the corresponding gradients
follow:

∇J(ν) ≈ 1

n

n∑
i=1

1

λβ

[
−∇Fβ(Pvi , Si)

]
+
( 1

nα
+

1

λβ

) 1

σ2
P
ν.

(10)

Gradient Estimation. Then we can compute the derivative
of Fβ(Pvi

, Si) w.r.t. vi by using methods such as REIN-
FORCE [Williams, 1992]:

∇Fβ(Pvi , Si) = EQ(Si,Pvi
)

[
(vi −w)/σ2

i

]
, (11)

where Q(Si, Pvi) ∝ N (w|vi, σ
2
i ) exp(−βL̂(w, Si)) is the

optimal Gibbs posterior.
Eq. (11) does not have closed-form solutions when L̂(w, Si)

is not a squared loss, due to the high-dimensional integra-
tions for the neural network. In practice, we draw samples
wi ∼ Q(Si, Pvi

) through Monte Carlo sampling methods,
i.e., SGLD, which gives

∇̂Fβ(Pvi
, Si) ≈

(
vi − µK

)
/σ2

i , (12)

where µk
i = αwk

i +(1−α)µi
k−1, µ1

i = w1
i , and {wk

i }Kk=1 are
the (approximately) i.i.d. samples from Q(Si, Pvi), α ∈ (0, 1)
denotes the average weight. With the help of injected noise
in each update step, SGLD can explore regions beyond local
optima and converge asymptotically to the global minimum
for non-convex objectives [Raginsky et al., 2017]. It is also
worth noting that the sequence of {wk

i }k>K converges to
Gibbs distribution Q(SiPvi

) with sufficiently large K, under
the conditions that

∑∞
k η′k →∞ and

∑∞
k η′k

2 → 0.

Algorithm 1 PAC-MLE algorithm: meta-training phase

1: Require: hyper-prior P , datasets {Si}ni=1, learning rate
η, η′, weight average α, initialize ν0 ∼ P

2: for t = 1, . . . , T do
3: sample |It| tasks uniformly at random, It ⊆ [n]
4: ηt ← φη(ηt−1) ▷ learning rate decay
5: for i = 1, . . . , |It| do
6: vi ∼ Qνt , w0

i , µ
0
i ← vi

7: for k = 1, . . . ,K do
8: Sample a mini-batch S′

i ⊂ Si

9: η′k ← φη′(η′k−1) ▷ learning rate decay
10: ∇F (wk−1

i )← −β 1
|Si|

∑
∇L̂(wk−1

i )−(wk−1
i −

vi)/σ
2
i

11: wk
i ← wk−1

i + η′k∇F (wk−1
i ) +

√
2η′kζ

k,i

12: µk
i ← αµk−1

i + (1− α)wk
i ▷ moving average

13: end for
14: end for
15: νt ← νt−1+ηt

1
|It|λβ

∑
i(v

t−1
i −µK

i )/σ2
i−ηt 1

σ2
P
( 1
nα+

1
λβ )ν

t−1 +
√
2ηtξ

t

16: end for

It is computationally expensive to learn meta-information
from all the tasks when the number n of tasks is large. Thus,
we can even use mini-batching on the task level. For each
iteration t, we can sample a mini-batch of tasks, which are
indexed by It ⊆ [n]. Subsequently, the update rule w.r.t. ν is
expressed as follows:

νt = νt−1 − ηt

( 1

λβ|It|
∑|It|

i

[
− ∇̂Fβ(Pvi , Si)

]
+

( 1

nα
+

1

λβ

) 1

σ2
P
νt−1

)
+
√

2ηtξ
t.

(13)

where ηt is learning rate at t, and ξt ∼ N (0, 1) is isotropic
Gaussian noise injected during the update.

Algorithm. The Pseudocode of the proposed meta-learning
algorithm is summarized in Algorithm 1. At the beginning
of each round t, we sample a subset of tasks It from the task
sets. During the task update phase, each sampled task runs
SGLD for K steps using its data, followed by updating its
state concerning priors with learning rate η′t. In the subsequent
meta-parameter update phase, we aggregate the updates of
the sampled tasks and then update the meta-information by
Eq. (13) with learning rate ηt. Here, φη(·) and φη′(·) denote
the learning rate decay function ( e.g., cosine decay).

It is worth mentioning that previous works [Amit and
Meir, 2018; Liu et al., 2021; Rezazadeh, 2022] adopt a sim-
ilar variational form of our theoretical bound, in which they
set factorized Gaussian distribution Qθ = N (θ, I2d) and
Qϕi = N (µi, σ

2
i ) as the hyper-posterior and the posterior of

task τi, respectively. In addition, they utilize P = N (0, I2d)
for the hyper-prior distribution and Pθ = N (µP , σ

2
P ) for the

prior distribution, where (µP , σ
2
P ) ∼ Qθ. They then optimize

the empirical multi-task error in addition to the regulariza-
tion terms (e.g., Theorem 2) w.r.t. parameters θ ∈ R2d and
ϕi ∈ R2d using SGD. In contrast, our algorithm avoids such
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Figure 3: Results on few-shot adaptation for the simple regression task in the Sinusoids environment after 300 (top). vs 3000 (bottom) rounds
of training.

a complex optimization process, reducing the required opti-
mization parameters by a quarter. Instead, we employ SGLD
to simulate the distribution.

Hence, one key advantage of our approach, compared to pre-
vious works, is its ability to simplify the nested optimization
problem into a simpler stochastic optimization problem. This
simplification not only enhances the stability of meta-learning,
but also improves its scalability. Specifically, explicit compu-
tation of the task posteriors Q(Si, P ) is unnecessary; instead,
mini-batching over tasks can be employed. On the other hand,
our approach incorporates principled meta-level regulariza-
tion in the form of the hyper-prior P . This regularization
effectively addresses overfitting to the meta-training tasks.
Consequently, our approach enables successful meta-learning
with a limited number of tasks, contrasting with the majority
of popular meta-learners [Finn et al., 2017; Finn et al., 2018;
Nichol et al., 2018] that heavily rely on numerous tasks to
achieve generalization at the meta-level.

5 Numerical Experiments
In this section, we validate our theoretical results and demon-
strate the efficiency of the algorithm through numerical ex-
periments, including tasks related to few-shot regression and
image classification. We defer complete setup details and
further experiments to Appendix C.

5.1 Toy Example
Setup. This subsection considers a simple regression prob-
lem on a synthetic dataset. Each task involves regressing from
the input to the output of a sine wave, with varying amplitude
and phase [Finn et al., 2017; Finn et al., 2018]. To solve each
regression task, we employ a fully connected network with
2 hidden layers, each with 64 hidden units. The goal is to
recover the underlying periodic structure of unseen sine waves
from a few observations and previous tasks. We set the same
experiment setup as that in [Finn et al., 2017]. We can evaluate

the quality of the structure recovered by measuring the root
mean squared errors (RMSE) over the novel tasks.

Results. The Fig. 3 illustrates the qualitative performance of
some baselines. MAML nearly recovers the underlying func-
tion but needs more rounds r and is slower than our method.
MLAP, hindered by a small m, fails to capture underlying
patterns, highlighting a gap between theory and practice The
meta-knowledge extracted by our method captures more com-
prehensive task environment information and can be easily
adapted to new tasks.

5.2 Few-shot Regression
Setup. In this subsection, we consider regression experi-
ments in one synthetic and four real-world meta-learning en-
vironments. The synthetic environment involves regression
on 2-dimensional mixture of Cauchy distributions plus a ran-
dom Gaussian Processes function. We utilize datasets cor-
responding to various calibration sessions of the Swiss Free
Electron Laser (SwissFEL) [Milne et al., 2017]. Additionally,
we employ data from the PhysioNet 2012 challenge [Silva
et al., 2012], consisting of time series of electronic health
measurements from patients in intensive care. Specifically,
this includes the Glasgow Coma Scale (GCS) and the hemat-
ocrit value (HCT). In this context, each task corresponds to a
different patient. Finally, we make use of the Intel Berkeley
Research Lab temperature sensor dataset (Berkeley-Sensor)
[Madden, 2004], where the tasks involve auto-regressive pre-
diction of temperature measurements from sensors placed in
various locations throughout the building.

Results. Table 1 shows that our method achieves compara-
ble results across five regression environments. Specifically, it
can obtain the best test errors in two regression environments
and competitive errors in the remaining three. This demon-
strates that the introduced meta-learning framework is not
only theoretical sound, but also yields competitive empirical
performance in practice.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4583



Method Cauchy SwissFel Physionet-GCS Physionet-HCT Berkeley-Sensor
BNN [Liu and Wang, 2016] 0.327(0.008) 0.529(0.022) 2.664(0.274) 3.938(0.869) 0.109(0.004)
MAML [Finn et al., 2017] 0.219(0.004) 0.730(0.057) 1.895(0.141) 2.413(0.113) 0.045(0.003)
BMAML [Yoon et al., 2018] 0.225(0.004) 0.577(0.044) 1.894(0.062) 2.500(0.002) 0.073(0.014)

MLAP [Amit and Meir, 2018] 0.219(0.004) 0.486(0.026) 2.009(0.248) 2.470(0.039) 0.050(0.005)
PACOH [Rothfuss et al., 2021] 0.195(0.001) 0.372(0.002) 1.561(0.061) 2.405(0.017) 0.043(0.001)

λ-bound [Liu et al., 2021] 0.227(0.002) 0.490(0.036) 1.575(0.203) 2.435(0.043) 0.057(0.003)
classic bound [Rezazadeh, 2022] 0.230(0.002) 0.593(0.036) 1.629(0.136) 2.487(0.098) 0.069(0.011)

PAC-MLE (ours) 0.203(0.014) 0.365(0.017) 1.513(0.073) 2.429(0.006) 0.044(0.003)

Table 1: Comparison of meta-learning algorithms in terms of test RMSE in 5 regression environments. Reported are mean and standard
deviation across 5 seeds.

100 Pixels Swaps 200 Pixels Swaps Permuted labels
Method Test Bound Test Error (%) Test Bound Test Error (%) Test Bound Test Error (%)
MAML [Finn et al., 2017] N/A 1.876(0.001) N/A 2.241(0.002) N/A 26.50(0.018)
[Pentina and Lampert, 2014] 0.190(0.022) 1.939(0.001) 0.240(0.030) 2.631(0.002) 6.026(0.436) 15.660(0.063)
MLAP [Amit and Meir, 2018] 0.126(0.012) 1.587(0.001) 0.197(0.019) 1.948(0.001) 2.834(0.075) 8.571(0.004)
PACOH [Rothfuss et al., 2021] 0.174(0.023) 1.921(0.001) 0.224(0.030) 2.634(0.001) 5.434(0.416) 12.520(0.061)

λ-bound [Liu et al., 2021] 0.067(0.015) 1.630(0.001) 0.151(0.015) 2.097(0.001) 3.830(0.181) 11.340(0.017)
quadratic bound [Liu et al., 2021] 0.085(0.033) 1.590(0.001) 0.150(0.030) 1.944(0.001) 5.280(0.778) 12.580(0.013)

λ bound [Guan et al., 2022] 0.055(0.006) 1.643(0.001) 0.114(0.029) 1.937(0.001) 3.502(0.237) 12.930(0.022)
quadratic bound [Guan et al., 2022] 0.081(0.018) 1.624(0.001) 0.163(0.020) 2.000(0.001) 5.306(0.338) 12.750(0.023)

kl-bound [Guan and Lu, 2022] 0.075(0.013) 1.610(0.001) 0.1341(0.022) 1.977(0.001) 4.363(0.262) 6.205(0.011)
Catoni-bound [Guan and Lu, 2022] 0.107(0.018) 1.880(0.001) 0.244(0.033) 2.375(0.001) 1.849(0.138) 8.014(0.001)

classic bound [Rezazadeh, 2022] 0.260(0.026) 2.088(0.001) 0.267(0.028) 2.832(0.001) 5.362(0.374) 10.950(0.015)

PAC-MLE (ours) 0.053(0.011) 1.570(0.001) 0.091(0.017) 1.925(0.001) 2.662(0.134) 6.806(0.003)

Table 2: Comparisons of different PAC-Bayesian meta-learning methods. The average test bounds and test errors are reported over 20 test tasks
in three pixel-shuffled environments.

5.3 Image Classification

Setup. In this subsection, we conduct classification experi-
ments on augmented MNIST dataset, and compare our bounds
with previous works. Each task from the same environment
is constructed by a limited number of pixel swaps or a ran-
dom permutation of the labels to ensure task-relatedness. We
followed previous works [Amit and Meir, 2018; Liu et al.,
2021] on all experimental details During the meta-training
phase, we choose 10 training tasks, each consisting of 60,000
training examples; while in the meta-test phase, each task is
constructed with reduced training samples, specifically 2,000.
We utilize a four-layer fully-connected network for shuffled
pixels experiments, and a four-layer convolutional network for
permuted labels experiments.

Results. Table 2 shows the comparison of various bounds
for both shuffled pixels and permuted labels experiments. The
performance of our classic bounds is significantly better than
the existing bounds, in terms of test bounds and test errors over
the novel tasks. This demonstrates that our framework is not
only theoretically sound, but also achieves a competitive gen-
eralization performance guarantee over all tasks from different
environments. Meanwhile, the prediction performance of dif-
ferent methods gets worse with the increase in the number of
pixel swaps. This also indicates the success of meta-learning
is significantly influenced by the task-relatedness of the envi-
ronment.

Next, we investigate the impact of different numbers of
training tasks n and sample sizes per task m on the quality
of the learned prior. The Fig. 5 (see Appendix C.3) plots the
average test error of learning new tasks based on the number
of training tasks and sample sizes per task in two distinct envi-
ronments: the permuted labels environment and the permuted
pixels environment where 100, 200, and 300 pixel swaps. The
results demonstrate that the increased number of tasks (n) and
sample sizes (m) used for learning the prior leads to improved
performance on novel tasks. As anticipated, this effect is par-
ticularly discernible when the number of meta-training tasks
is limited and diminishes as the value of n increases.

6 Conclusion
In this paper, we have introduced a simple framework for
meta-learning with generalization guarantees, grounded on a
PAC-Bayesian bound that incorporates data-dependent priors.
Rather than coercing the data-dependent priors into standard
meta-learning settings, we identify a connection between local
entropy and PAC-Bayesian theory that allows us to optimize
priors for tighter bounds, with a simple local entropy, without
the explicit reliance on posteriors. The resulting algorithm
is stable, performant, and computationally lightweight, elimi-
nating the need for complex nest optimization. Experimental
results demonstrate that our method outperforms previous
approaches in terms of fast adaptation, generalization perfor-
mance, and combating meta-overfitting.
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