
Biometrika (2020), 107, 2, pp. 277–280 doi: 10.1093/biomet/asaa017
Printed in Great Britain

Discussion of ‘Network cross-validation by edge sampling’

By JINYUAN CHANG

School of Statistics, Southwestern University of Finance and Economics, 555 Liutai Avenue, Chengdu,
Sichuan 611130, China

changjinyuan@swufe.edu.cn

ERIC D. KOLACZYK

Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston,
Massachusetts 02215, U.S.A.

kolaczyk@bu.edu

AND QIWEI YAO

Department of Statistics, London School of Economics, Houghton Street,
London WC2A 2AE, U.K.

q.yao@lse.ac.uk

1. Edge cross-validation for network model selection

We thank the authors for their new contribution to network modelling. Data reuse, encompassing methods
such as bootstrapping and cross-validation, is an area that to date has largely resisted obvious and rapid
development in the network context. One of the major reasons is that mimicking the original sampling
mechanisms is challenging if not impossible. To avoid deleting edges and destroying some of the network
structure, the resampling strategy proposed in Li et al. (2020) based on splitting node pairs rather than
nodes is therefore insightful and effective. Matrix completion is the key technique involved, with its use
here providing a new perspective for network analysis.

The proposed edge cross-validation procedure operates effectively on an adjacency matrix A = (Aij)n×n

instead of on the original network, as described in the following algorithm.

Algorithm 1. The general edge cross-validation procedure.

Step 1. Give a loss function L and select the rank K̂ for matrix completion.
Step 2. For m = 1 to m = N :

(a) Assign to each (i, j) in the learning set � a prespecified probability p.
(b) Obtain Â from (A, �) by a low-rank matrix completion algorithm with rank K̂ .
(c) For each candidate model q = 1, . . . , Q, fit the model on data Â and evaluate

its loss L(m)
q by comparing the resulting estimated parameters over the held-out

set {Aij : (i, j) �∈ �}.
Step 3. Let Lq = N −1

∑N
m=1 L(m)

q and select the candidate model q̂ = arg min1�q�Q Lq.

The authors proposed using p = 0.9 and replicated the validation N = 3 times. Therefore only about
30% of the edges are used for cross-validation. Borrowing from the noisy network setting of Chang et al.
(2018), the proposal below will use all of the edges for validation. It is in the spirit of jittered bootstrapping
or resampling via jittering. Here jittering means that a small amount of noise is added to every single data
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point; see, for example, Henning (2007, § 3.3). Interestingly, the low-rank assumption does not appear to
be necessary in this approach.

2. Jittering algorithm for network model selection

Let εij, for i |= j, be independent and such that

pr(εij = 1) = α, pr(εij = 0) = 1 − α − β, pr(εij = −1) = β, (1)

where α and β are two small positive constants. Recall that M = (Mij)n×n with Mij = pr(Aij = 1). The
jittering algorithm is summarized as follows.

Algorithm 2. The general jittering algorithm.

Step 1. Give a loss function L.
Step 2. For m = 1 to m = N :

(a) Draw a jittered sample Y = (Yij)n×n with Yij = AijI (εij = 0) + I (εij = 1).
(b) For each candidate model q = 1, . . . , Q, estimate the parameters in M based on

noisy data Y , and evaluate its loss L(m)
q by comparing the resulting estimated

parameters with A.
Step 3. Let Lq = N −1

∑N
m=1 L(m)

q and select the candidate model q̂ = arg min1�q�Q Lq.

The estimation of parameters in M in Step 2 of Algorithm 2 requires different treatments for different
network models. Chang et al. (2018) illustrate how to conduct statistical inference for subgraph densities
based on noisy data. A fundamental difference here is that both α and β are known in the present context.
Therefore we can use, at least partially, the debiased data

A� = Y − α

1 − α − β
(2)

to fit a network model. It follows from Yij = AijI (εij = 0) + I (εij = 1) that E(Y ) = E{E(Y | A)} =
E{A(1 − α − β) + α} = M (1 − α − β) + α.

As an illustration, we consider the stochastic block model M = ZBZT, using the notation of Li et al.
(2020), where B is a K × K probability matrix. The goal is to determine the number of communities
K using the proposed jittering algorithm. Following the lead of Li et al. (2020), we apply the spectral
clustering method, but with the jittered data Y = (Yij)n×n, i.e., performing the eigenanalysis on the Laplacian
L = D−1/2YD−1/2, where D is the diagonal matrix with the node degrees of Y as its main diagonal elements.
Let Km > K be a prespecified integer. For each k = 2, . . . , Km, the k-means algorithm is applied to the n
rows of the n × k matrix consisting of the k orthonormal eigenvectors of L associated with its k largest
eigenvalues, leading to the estimated memberships for the n nodes. A k × k estimated probability matrix
B̂k = (B̂k

ij)k×k is then obtained using the debiased data A� in (2). The loss is measured by the mean squared
error

W (k) =
{ ∑

1�i<j�n

(Aij − B̂k
ĉi ĉj

)2

}1/2

,

where ĉi is the estimated membership for node i. Repeating the jittered sampling N times yields
W1(k), . . . , WN (k). The estimated number of communities is then defined as

K̂ = arg min
1<k�Km

1

N

N∑
j=1

Wj(k).
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Table 1. Relative frequencies for events (K̂ = k) with k = K − 1, K and K + 1 in a simulation
with 200 replications

n K πin πbg EVD (K̂ = K − 1) (K̂ = K) (K̂ = K + 1)

60 3 0.6 0.06 13.8 0 1 0
0.12 16.2 0 1 0
0.30 23.4 0.760 0.240 0

5 0.06 9.48 0 0.995 0.005
0.12 12.36 0 0.750 0.155
0.30 21 0.010 0.005 0.005

300 3 0.6 0.06 71.4 0 1 0
0.12 83.4 0 1 0
0.30 119.4 0.795 0.205 0

5 0.06 49.8 0 1 0
0.12 64.2 0 1 0
0.30 107.4 0 0 0

600 3 0.6 0.06 143.4 0 1 0
0.12 167.4 0 1 0
0.30 239.4 0.805 0.195 0

5 0.06 100.2 0 1 0
0.12 129 0 1 0
0.30 215.4 0 0 0

300 3 0.1 0.02 13.9 0 1 0
5 10.7 0 0 0

600 3 27.9 0 1 0
5 21.6 0 1 0

EVD, average expected node degree.

3. A numerical study

Although we are still working on a formal theoretical justification for this procedure, results from
simulations are positive. We report some illustrative results in Table 1. We take all the main diagonal
elements of B to equal πin and all the off-diagonal elements to equal πbg, where 0 < πbg < πin < 1. We
set α = β = 0.05 in (1) and repeat the jittered sampling N = 200 times. For each setting we repeat the
estimation 200 times. The relative frequencies of the events K̂ = K , K̂ = K − 1 and K̂ = K + 1 in the
200 replications are reported in Table 1. Also included are the average expected node degrees, EVD, which
reflect the sparseness of the models. Li et al. (2020) used β to denote EVD in their paper, which differs
from the usage here.

With a within-block probability of πin = 0.6 and a between-block probability of πbg = 0.06 or 0.12, the
community number K can be determined correctly with little error. Minor inefficiency only occurs when
n = 10, πbg = 0.12 and K = 5. The results hardly change when α and β are increased from 0.05 to 0.1.
However, when πbg = 0.3, K̂ almost always underestimates K . When the out-in ratio πbg/πin is 0.5, the
spectral clustering algorithm has difficulties identifying different communities.

We now consider sparse models with πin = 0.1 and πbg = 0.02, for which the out-in ratio is πbg/πin =
0.2. The results are reported in the last section of Table 1. The networks are very sparse now. For example,
with n = 300 and K = 3 the EVD is merely 13.9. Still, the proposed method leads to 100% correctness in
determining K , which is also the case for n = 600 and K = 3 or 5. However, the method fails completely
when n = 300 and K = 5; the EVD is now 10.7, and it seems that the signal for communities is too weak
to be picked up for reasonable clustering. Using smaller values for α and β, such as 0.025 or 0.01, does
not help either.
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