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a b s t r a c t

We consider high-dimensional measurement errors with high-frequency data. Our
objective is on recovering the high-dimensional cross-sectional covariance matrix of the
random errors with optimality. In this problem, not all components of the random vector
are observed at the same time and the measurement errors are latent variables, leading
to major challenges besides high data dimensionality. We propose a new covariance
matrix estimator in this context with appropriate localization and thresholding, and then
conduct a series of comprehensive theoretical investigations of the proposed estimator.
By developing a new technical device integrating the high-frequency data feature
with the conventional notion of α-mixing, our analysis successfully accommodates
the challenging serial dependence in the measurement errors. Our theoretical analysis
establishes the minimax optimal convergence rates associated with two commonly
used loss functions; and we demonstrate with concrete cases when the proposed
localized estimator with thresholding achieves the minimax optimal convergence rates.
Considering that the variances and covariances can be small in reality, we conduct a
second-order theoretical analysis that further disentangles the dominating bias in the
estimator. A bias-corrected estimator is then proposed to ensure its practical finite
sample performance. We also extensively analyze our estimator in the setting with
jumps, and show that its performance is reasonably robust. We illustrate the promising
empirical performance of the proposed estimator with extensive simulation studies and
a real data analysis.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

High-frequency data broadly refer to those collected at time points with very small time intervals between consecutive
bservations. Exemplary scenarios with high-frequency data include longitudinal observations with intensive repeated
easurements (Bolger and Laurenceau, 2013), the tick-by-tick trading data in finance (Zhang et al., 2005), and functional
ata with dense observations (Zhang and Wang, 2016). High-frequency data are commonly contaminated by some noise,
roadly termed as the measurement errors. For measurement errors in the context of functional data analysis, we refer
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o the review article Wang et al. (2016) and reference therein. In high-frequency financial data, as another example, the
icrostructure noise is well known; see the monograph Aït-Sahalia and Jacod (2014) for an overview.
Despite the central interests on recovering the signals contaminated by the noise, the properties of the noise themselves

re of their own great interests. Recently, Jacod et al. (2017) highlighted the importance of statistical properties of the
icrostructure noise and studied the estimation of its moments; see the recent study of Li and Linton (2022) on the

imiting distributions in a broad setting. Chang et al. (2018) investigated recovering the distribution of the noise with some
requency-domain analysis. In a simultaneous and independent work of ours, Da and Xiu (2021) investigated the auto-
ovariance of the measurement errors with a semiparametric approach that utilizing a working moving-average model.
hese aforementioned studies aimed on univariate cases. Ubukata and Oya (2009) considered the covariance estimation
nd testing for measurement errors in a bivariate case. Christensen et al. (2013) proposed an estimator for the covariance
atrix of the noise vector in high-frequency finance data. Both Ubukata and Oya (2009) and Christensen et al. (2013)
andled fixed dimensional cases with m-dependent or independent measurement errors.
We are motivated to concentrate on high-dimensional cases in this study that shed light on influential practical

pplications where covariances between different components of the noise could bring us useful information in solving
arious problems. For example, for functional-type observations, the covariations between the measurement errors may
elp identifying the common source or reasons of contaminations so that improvement can be developed in designing
uture investigations. For financial data, such covariations in the high-dimensional microstructure noise may help in better
nderstanding the trading behaviors that may show substantial different pattern between equities. Indeed, Li et al. (2016)
ound that a parametric function incorporating the market information may account for a substantial contribution to
he variations in the microstructure noise. Nevertheless, studying the covariance between different components of the
igh-dimensional noise in high-frequency data remains little explored.
Our primary interests in this study are on the validity and optimality of the covariance matrix estimation procedure for

he high-dimensional noise in high-frequency data. This problem has unique challenges from multiple aspects. First, since
he noise of interest are not directly observable, the targeted random vectors are latent. Second, the latency arises together
ith high data dimensionality and high sampling frequency, two challenging features that interrelates to each other in
his investigation. The high-dimensional noise sequence is expected to contain some serial dependence, posing a major
ethodological and theoretical challenge. The properties of high-dimensional covariance matrix estimation have not yet
een explored in this important scenario. Third, the high-dimensional observations may not be synchronous, i.e. different
omponents of the contaminated observation for the high-dimensional noise may be observed at different time points.
ow these data features affect the statistical properties on the validity and optimality of the covariance matrix estimation
emains unclear.

High-dimensional covariance matrix estimation is an important problem in the current state of knowledge, and
as received intensive attentions in the past decade; see, among others, Bickel and Levina (2008a,b), Lam and Fan
2009), Rothman et al. (2009), Cai et al. (2010), Cai and Liu (2011), Cai and Zhou (2012a,b). For high-dimensional sparse
ovariance matrices, the minimax optimality of the estimations were investigated in-depth in Cai and Zhou (2012a,b).
e note that the existing estimation methods for high-dimensional sparse covariance matrices are developed when

he underlying data of interest are fully observed; hence they are not applicable for the covariance matrix estimation
f the noise in high-frequency data with latency and asynchronous observations. In the literature on multivariate and
igh-dimensional high-frequency data analysis, existing studies mainly concern the estimations of the so-called realized
ovariance matrix. Specifically, the major objective is on the signal part, attempting to eliminate the impact from the
oise; see, for example, Aït-Sahalia et al. (2010), Fan et al. (2012), Tao et al. (2013), Liu and Tang (2014), Lam et al. (2017),
nd Xia and Zheng (2018). However, it remains little explored on the high-dimensional covariance matrix of the noises
n high-frequency data, accommodating all aforementioned challenging features.

Our study makes several contributions to the area. To our best knowledge, our method is the first handling covariance
atrix estimation of the serially dependent high-dimensional noises in high-frequency data. Methodologically, to over-
ome the difficulties due to the latency, asynchronicity, and serially dependent observations, we propose a new approach
ith appropriate localization and thresholding. Theoretically, to our best knowledge, our technical device integrating
igh-frequency serial dependence with the α-mixing is a new development of the current state of knowledge; and it can
e more broadly applied for solving this class of problems. Meanwhile, our theoretical analysis establishes the minimax
ptimal convergence rates associated with two commonly used loss functions for the covariance matrix estimations of
he high-dimensional noise in high-frequency data. The minimax optimal rates in this setting are our new theoretical
iscoveries, and we establish cases when the proposed estimator achieves such rates. Our result also reveals that the
ptimal convergence rates reflect the impact due to the asynchronous data, which are slower than those with synchronous
ata. The higher the level of the data asynchronicity is, the slower the convergence rates are expected. We show that the
roposed localized estimator has the same accuracy as if the high-dimensional noises are directly observed in the sense
f the same convergence rates. Furthermore, our theory includes a second-order analysis revealing the dominating bias of
he estimator. We then propose a bias-corrected estimator and show that removing such a bias leads to more promising
erformance, especially when components in the covariance matrix are small. Our analysis also indicates that the proposed
ocalized estimator is robust to the setting with jumps.

The rest of this paper is organized as follows. The methodology is outlined in Section 2, followed by theoretical
evelopment in Section 3. Section 4 presents the theory and method handling the situation when the level of the noises is
mall. Section 5 investigates the robustness of our method in the setting with jumps. Numerical studies with simulation
nd a real data analysis are presented in Section 6. Section 7 includes some discussions. All technical proofs are given in

ection 8. Some additional numerical results are presented in the supplementary material.
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. Methodology

.1. Model and data

We introduce some notations first. For any positive integer q, we write [q] := {1, . . . , q}. For a matrix B = (bi,j)s1×s2 ,
et B⊗2

= BB⊤, |B|∞ = maxi∈[s1],j∈[s2] |bi,j|, ∥B∥1 = maxj∈[s2]

∑s1
i=1 |bi,j|, ∥B∥∞ = maxi∈[s1]

∑s2
j=1 |bi,j| and ∥B∥2 = λ

1/2
max(B⊗2),

where λmax(B⊗2) denotes the largest eigenvalue of B⊗2. Denote by I(·) the indicator function. For a countable set G, we
use |G| to denote its cardinality. For two sequences of positive numbers {an} and {bn}, we write an ≲ bn or bn ≳ an if there
exist a positive constant c and a large enough integer n0 such that an/bn ≤ c for all n ≥ n0. We write an ≍ bn if and only
if an ≲ bn and bn ≲ an hold simultaneously.

The setting of our study contains the signal part — a p-dimensional continuous-time process (Xt )t∈[0,T ], where, without
loss of generality, [0, T ] is the time frame in which the high-frequency data are observed. We begin with a setting that
Xt = (X1,t , . . . , Xp,t )⊤ satisfies:

dXi,t = µi,t dt + σi,t dBi,t and E(dBi,t · dBj,t ) = ρi,j,t dt , (1)

where µi,t and σi,t are progressively measurable processes, and B1,t , . . . , Bp,t are univariate standard Brownian motions.
Here σi,t and ρi,j,t are, respectively, governing the volatilities and correlations, where both of them may be dynamic over
time. A theoretical study of our method in the setting with jumps will be considered in Section 5.

For each i ∈ [p], we use Gi = {ti,1, . . . , ti,ni} to denote the grid of time points at which we observe the noisy data of the
ith component process Xi,t , where 0 ≤ ti,1 < · · · < ti,ni ≤ T . The subject-specific set Gi reflects the asynchronous nature
of the problem. For the special case with synchronous data, all Gi’s are the same. However, Gi’s are typically different in
many practical high-frequency data. Let n be the number of different time points in ∪

p
i=1Gi, and we denote the different

time points in ∪
p
i=1Gi by 0 ≤ t1 < · · · < tn ≤ T . For any i, j ∈ [p], we define

ni,j = |Gi ∩ Gj|,

where ni,j evaluates how many time points tk’s at which we observe the noisy data of the ith and jth component processes
Xi,t and Xj,t simultaneously. Clearly, ni,i = ni for any i ∈ [p].

We consider that the actual observed data are contaminated by additive measurement errors in the sense that

Yi,ti,k = Xi,ti,k + Ui,ti,k

with E(Ui,ti,k ) = 0 for each i ∈ [p] and k ∈ [ni]. The additive noise assumption is common in the literature; see Aït-Sahalia
and Jacod (2014). Formally, we can write

Ytk = Xtk + Utk , k ∈ [n] , (2)

and assume the measurement errors {Utk}
n
k=1 are independent of the process (Xt )t∈[0,T ]. At each time point tk, we only

observe
∑p

i=1 I(tk ∈ Gi) components of Ytk .
Besides the cross-sectional dependence, serial dependence is expected to be the case for {Utk}

n
k=1; our study accommo-

dates such a feature with an innovative device. Denote by F s
−∞

and F∞
s the σ -fields generated by {Utk}k≤s and {Utk}k≥s,

espectively, the α-mixing coefficients are defined as

αn(m) = sup
s

sup
A∈Fs

−∞
,B∈F∞

s+m

|P(AB) − P(A)P(B)| , m ≥ 1 . (3)

hen {Utk}
n
k=1 is an α-mixing sequence if αn(m) → 0 as m → ∞. The notion of α-mixing is a conventional foundation

or broadly characterizing the serial dependence. Among others, causal ARMA processes with continuous innovation
istributions are α-mixing with exponentially decaying α-mixing coefficients, so are stationary Markov chains satisfying
ertain conditions; see Section 2.6.1 of Fan and Yao (2003). Stationary GARCH models with finite second moments
nd continuous innovation distributions are also α-mixing with exponentially decaying α-mixing coefficients; see
roposition 12 of Carrasco and Chen (2002). Under certain conditions, vector auto-regressive (VAR) processes, multivariate
RCH processes, and multivariate GARCH processes are all α-mixing with exponentially decaying α-mixing coefficients;
ee Hafner and Preminger (2009), Boussama et al. (2011) and Wong et al. (2020).
In (3), we highlight the necessary inclusion of n, the frequency related sample size, in the α-mixing coefficient. The

eason is that in a high-dimensional data setting, p is commonly specified as a function of the sample size n. Such an
ntrinsic dependence makes characterizing the serial dependence substantially more challenging. To handle it in our study,
e impose the following assumption on αn(m) defined in (3).

ssumption 1. There exist some universal constants C1 > 1, C2 > 0 and ϕ > 0 such that αn(m) ≤ C1 exp{−C2(L−1
n m)ϕ}

or any m ≥ 1, where Ln > 0 may diverge with n.

Assumption 1 is our new dedicated device for characterizing the serial dependence of {Utk}
n
k=1 in the context of high-

requency high-dimensional data. Here Ln is introduced as a parameter to handle the aforementioned challenge due to
he high data dimensionality, together with the conventional m as in the α-mixing settings for analyzing time series. As a
3
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evelopment of its own interests, the synthetic device in Assumption 1 successfully integrates the considerations of high-
requency and high-dimensional data, where the usual interpretation of the α-mixing remains: the between-observation
ependence is still getting weaker when they are further away in the serial data, as characterized by both Ln and m.
ntuitively, the rationale is that Ln, as a standalone parameter, may diverge together with the sampling frequency and
ata dimensionality in a synthetic manner. Such a divergence reflects the nature of this more challenging problem due
o relatively limited data information, in the sense that the serial dependence in the measurement errors will become
tronger as Ln increases.
More specifically, Assumption 1 does not require {Utk} to be strictly stationary, and it includes several commonly

sed models for {Utk} as special cases. For an independent sequence {Utk}, we can select Ln = 1/2 and ϕ = ∞

n Assumption 1. For an Ln-dependent sequence {Utk}, we can select ϕ = ∞ in Assumption 1. If {Utk} follows VAR
odel, multivariate ARCH model or multivariate GARCH model with certain conditions, we can select Ln = ϕ = 1 in
ssumption 1. We provide a concrete example here with a diverging Ln. For each i ∈ [r], let Zi,t satisfy the diffusion

process dZi,t = µ̃i(Zi,t; θi) dt + σ̃i(Zi,t; γ i) dWi,t , where Wi,t is a univariate standard Brownian motion, µ̃i(·; ·) and σ̃i(·; ·)
are two functions of Zi,t with some parameters θi and γ i, respectively. Write Zt = (Z1,t , . . . , Zr,t )⊤ with r independent
processes Z1,t , . . . , Zr,t . Letting Utk = AZkδ for some known loading matrix A ∈ Rp×r and some δ > 0, we can select
Ln = δ−1 and ϕ = 1 when µ̃i(·; ·) and σ̃i(·; ·) satisfy certain conditions,1 where Ln will diverge with n if δ → 0 as
n → ∞. Here Ln is also allowed to depend directly on p, the dimension of Utk . As an example, if each univariate sequence
{Ui,tk}

n
k=1 is α-mixing with exponentially decaying α-mixing coefficients, with the independence assumption imposed

on the p sequences {U1,tk}
n
k=1, . . . , {Up,tk}

n
k=1, Theorem 5.1 of Bradley (2005) indicates that αn(m) defined in (3) satisfies

n(m) ≤ p exp(−cm) for some universal constant c > 0, which implies Assumption 1 holds for ϕ = 1 and Ln ≍ log p.
To our best knowledge, there is no alternative assumption in the literature that is capable of handling the setting

of our study. In existing studies, some serial dependence assumptions have been imposed on the measurement errors,
with a primary objective recovering its auto-covariance. When p = 1, Jacod et al. (2017) assume U1,tk = γtkχk for some
nonnegative semimartingale γt and a ρ-mixing stationary sequence {χk}k≥1, where {χk}k≥1 is independent of the process
γt ; see also the setting of Li and Linton (2022) that covers serially dependent, endogenous, and nonstationary noises. If γt
is the solution of some stochastic differential equations, {γtk}k≥1 is also ρ-mixing. See, for example, Lemma 4 of Aït-Sahalia
and Mykland (2004). Based on the independence between {χk}k≥1 and {γtk}k≥1, Theorem 5.2 of Bradley (2005) implies the
equence {U1,tk}k≥1 is also ρ-mixing. Since ρ-mixing implies α-mixing, we know {U1,tk}k≥1 is also α-mixing. Varneskov
2017) relaxes the ρ-mixing assumption on {χk}k≥1 to the weaker α-mixing condition. In a recent study, Da and Xiu (2021)
ssume instead a working moving average structure for the measurement errors.
For (2), we assume Cov(Utk ) ≡ Σ u for each k ∈ [n]. Our main goal in this study is to estimate Σ u, the covariance

atrix that contains information on the between-component relationship of the unobserved noise Utk . Clearly, Utk is a
atent vector. To estimate its covariance matrix, eliminating the impact due to the process Xt is required, which means
hat now Utk performs like ‘signal’ and Xtk is ‘noise’. Our strategy is to perform a dedicated localization: focusing on
bservations that are in a specific neighborhood mentioned later. For any i, j ∈ [p], we write Gi ∩ Gj = {ti,j,1, . . . , ti,j,ni,j}
ith ti,j,1 < · · · < ti,j,ni,j . Let ∆ti,j,k = ti,j,k+1 − ti,j,k for any k ∈ [ni,j − 1]. In this paper, we consider the scenario with T
eing fixed but maxi,j∈[p] maxk∈[ni,j−1]∆ti,j,k → 0 as n → ∞. Formally, we make the following assumption:

Assumption 2. (i) As n → ∞, mini,j∈[p] mink∈[ni,j−1]∆ti,j,k/maxi,j∈[p] maxk∈[ni,j−1]∆ti,j,k is uniformly bounded away from
zero. (ii) As n → ∞, we have each ni,j → ∞, and mini,j∈[p] ni,j/maxi,j∈[p] ni,j is uniformly bounded away from zero. (iii)
mini,j∈[p](ti,j,ni,j − ti,j,1) ≍ T .

The setting with Assumption 2 is broad and general. The first part is a standard setting for studying high-frequency
data. The second part requires enough number of pairwise synchronous observations. This is a reasonable practical setting;
see also Aït-Sahalia et al. (2010) for a pairwise approach for estimating the realized covariance matrix for (Xt )t∈[0,T ]. Based
on part (ii) of Assumption 2, we write

min
i,j∈[p]

ni,j ≍ max
i,j∈[p]

ni,j ≍ n∗ , (4)

where n∗ → ∞ as n → ∞. As we will show in Theorems 1–4, the convergence rates for the estimates of the
covariance matrix Σ u = Cov(Utk ) will depend on n∗ instead of n. In the special case with synchronous observations,
we have ni,j = n for any i, j ∈ [n] and we can set n∗ = n. Then all our results also apply to the setting with
synchronous data. Assumption 2 is not necessary for our theoretical analysis which is just imposed for simplicity
and can be removed at the expenses of lengthier proofs. Our theoretical analysis essentially only requires the as-
sumption that mini,j∈[p] ni,j → ∞ and maxi,j∈[p] maxk∈[ni,j−1]∆ti,j,k → 0 as n → ∞. With such assumption, both
mini,j∈[p] mink∈[ni,j−1]∆ti,j,k/maxi,j∈[p] maxk∈[ni,j−1]∆ti,j,k and mini,j∈[p] ni,j/maxi,j∈[p] ni,j can decay to zero as n → ∞. We

1 For each i ∈ [r], Lemma 4 of Aït-Sahalia and Mykland (2004) indicates that {Zi,kδ}k≥1 is a ρ-mixing process with ρ-mixing coefficient
ρi(m) ≤ exp(−cimδ) for any integer m ≥ 0, where ci > 0 is a constant depending on the properties of µ̃i(·; ·) and σ̃i(·; ·) (see Assumption
1 of Aït-Sahalia and Mykland (2004)). Theorem 5.1 of Bradley (2005) implies {Zkδ}k≥1 is also a ρ-mixing process with ρ-mixing coefficient
ρ(m) ≤ exp(−cminmδ) for any integer m ≥ 0, where cmin = mini∈[r] ci . Since ρ-mixing implies α-mixing, then αn(m) defined in (3) satisfies
α (m) ≤ 4−1ρ(m) ≤ 4−1 exp(−c mδ) for any integer m ≥ 0.
n min

4



J. Chang, Q. Hu, C. Liu et al. Journal of Econometrics 239 (2024) 105329

w
Σ

2

w

w
S
f

E
s
a
C
t
w
d

L

f
c

T
t
o
o
s
M
m
i
l

c
s
s
s
a
o

ill discuss in Section 7 how this assumption affects the convergence rates for the estimates of the covariance matrix
u.

.2. Covariance matrix estimation of Utk

WriteΣ u = (σu,i,j)p×p and Utk = (U1,tk , . . . ,Up,tk )
⊤. Here the subscript u in σu,i,j indicates that it is a quantity associated

ith the noise so as to differentiate it from the volatility process σi,t in (1). We know 2Σ u = Cov(Utk −Utℓ )+E(UtℓU
⊤
tk )+

E(UtkU
⊤
tℓ ) for any ℓ ̸= k. By Assumption 1 and Davydov’s inequality (Davydov, 1968), |E(UtℓU

⊤
tk )|∞ + |E(UtkU

⊤
tℓ )|∞ ≲

exp(−C∗L
−ϕ
n |k − ℓ|ϕ) for some constant C∗ > 0, provided that maxj∈[p] E(|Uj,tk |

γ ) and maxj∈[p] E(|Uj,tℓ |
γ ) are uniformly

bounded away from infinity for some universal constant γ > 2. Notice that Utk −Utℓ = (Ytk − Ytℓ )− (Xtk −Xtℓ ) and each
component process Xi,t is a continuous-time and continuous-path stochastic process. We have considerations from two
ends. First, due to |Xi,t+h − Xi,t | → 0 almost surely as h → 0, in a small neighborhood N of tk, the difference between the
high-frequency observations Ytk and Ytℓ , for tℓ ∈ N , can be approximately viewed as Utk −Utℓ . Second, to avoid excessive
impact from aggregating E(UtℓU

⊤
tk ) + E(UtkU

⊤
tℓ ), we cannot choose tℓ and tk too close. Putting these two considerations

together, we propose to estimate σu,i,j by

σ̂u,i,j =
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Yi,ti,j,ℓ − Yi,ti,j,k )(Yj,ti,j,ℓ − Yj,ti,j,k ) , (5)

here Si,j,k = {ti,j,ℓ ∈ Gi ∩Gj : K ≤ |ℓ− k| ≤ K +∆K } for some integers K ≥ 1 and ∆K ≥ 0, and Ni,j,k = |Si,j,k|. Here the set
i,j,k is designed to meet the aforementioned two considerations — ensuring data in an appropriate range are incorporated
or estimating Σ u.

Our estimator (5) with Si,j,k is generally applicable. For an independent sequence {Utk}, we can select K = 1 and then
(Ui,ti,j,ℓUj,ti,j,k ) = E(Ui,ti,j,kUj,ti,j,ℓ ) = 0 for any ti,j,ℓ ∈ Si,j,k due to (Ln, ϕ) = (1/2,∞) in Assumption 1. For an Ln-dependent
equence {Utk}, we can select K > Ln due to ϕ = ∞ in Assumption 1 and then E(Ui,ti,j,ℓUj,ti,j,k ) = E(Ui,ti,j,kUj,ti,j,ℓ ) = 0 for
ny ti,j,ℓ ∈ Si,j,k. For general case with ϕ < ∞, with selecting K ≥ Ln(C∗∗ log n∗)1/ϕ for some sufficiently large constant
∗∗ > 0, maxi,j∈[p] maxk∈[ni,j] maxti,j,ℓ∈Si,j,k |E(Ui,ti,j,ℓUj,ti,j,k ) + E(Ui,ti,j,kUj,ti,j,ℓ )| ≲ n−C∗C∗∗

∗
, which is negligible in comparison to

he bias from approximating (Ui,ti,j,ℓ−Ui,ti,j,k ,Uj,ti,j,ℓ−Uj,ti,j,k ) by (Yi,ti,j,ℓ−Yi,ti,j,k , Yj,ti,j,ℓ−Yj,ti,j,k ). To simplify our presentation,
e assume ∆K ≥ 0 is a fixed integer in this paper. Our theoretical results can be parallel extended to the scenario with
iverging ∆K .
For a fixed T , (4) and Assumption 2 imply that

min
i,j∈[p]

min
k∈[ni,j−1]

∆ti,j,k ≍ max
i,j∈[p]

max
k∈[ni,j−1]

∆ti,j,k ≍ n−1
∗
.

et

Σ̂ u = (σ̂u,i,j)p×p (6)

or σ̂u,i,j defined as (5). Theorem 1 in Section 3 shows that the elements of Σ̂ u are uniformly consistent to the
orresponding elements of Σ u with a suitable selection of K , i.e.

E
(
|Σ̂ u − Σ u|∞

)
≲ (Kn−1

∗
log p)1/2.

heorem 2 in Section 3 shows that (n−1
∗

log p)1/2 is the minimax optimal rate in the maximum element-wise loss for
he covariance matrix estimations of the high-dimensional noise Utk in high-frequency data. If {Utk} is an independent
r Ln-dependent sequence with fixed Ln, we can select K as a fixed integer and then the associated convergence rate
f |Σ̂ u − Σ u|∞ is minimax optimal. For general cases with ϕ < ∞ and fixed Ln, with selecting K ≍ (log n∗)1/ϕ+ϵ for
ome ϵ > 0, the convergence rate of |Σ̂ u − Σ u|∞ is nearly optimal with an additional logarithm factor (log n∗)1/(2ϕ)+ϵ/2.
ore importantly, as we will discuss below Remark 3 in Section 3, (n−1

∗
log p)1/2 is also the minimax optimal rate in the

aximum element-wise loss for the covariance matrix estimations of Utk if we have observations of the noise, which
ndicates that our estimator shares some oracle property and the proposed localization actually makes the impact of the
atent process Xt be negligible.

However, the aforementioned element-wise consistency and optimality do not imply their counterparts for the
ovariance matrix estimation with high-dimensional data. That is, the estimator Σ̂ u may not be consistent toΣ u under the
pectral norm ∥ · ∥2 when p ≫ n. This is a well-known phenomenon in high-dimensional covariance matrix estimation;
ee, among other, Bickel and Levina (2008a). For high-dimensional covariance matrix estimations, one often resorts to
ome classes of the target with extra information. With the extra information, the consistency under the spectral norm
nd other properties associated with the covariance matrix estimations can be well established. In this paper, we focus
n the following class — the sparse covariance matrices considered in Bickel and Levina (2008b):

H(q, cp,M) =

{
Σ u = (σu,i,j)p×p : σu,i,i ≤ M and

p∑
|σu,i,j|

q
≤ cp for all i

}
, (7)
j=1

5
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w

ˆ

here q ∈ [0, 1) andM > 0 are two prescribed constants, and cp may diverge with p. Here cp can be viewed as a parameter
that characterizes the sparsity of Σ u, i.e., if cp is smaller, then Σ u is more sparse. If q = 0, we have

H(0, cp,M) =

{
Σ u = (σu,i,j)p×p : σu,i,i ≤ M and

p∑
j=1

I(σu,i,j ̸= 0) ≤ cp for all i
}
,

where cp evaluates the number of nonzero components in each row of Σ u.
For Σ u ∈ H(q, cp,M), we propose the following thresholding estimator based on the element-wise estimation Σ̂ u

given in (6):

Σ̂
thre
u =

[
σ̂u,i,jI

{
|σ̂u,i,j| ≥ β(Kn−1

∗
log p)1/2

}]
p×p , (8)

where β > 0 is a fixed constant for the thresholding level. Theorem 3 in Section 3 shows that such defined thresholding
estimator Σ̂

thre
u is consistent to Σ u under the spectral norm with suitable selections of K and β , i.e.

E
(
∥Σ̂

thre
u − Σ u∥

2
2

)
≲ c2p (Kn

−1
∗

log p)1−q . (9)

Furthermore, Theorem 4 in Section 3 indicates that cp(n−1
∗

log p)(1−q)/2 is the minimax optimal convergence rate with the
spectral norm loss function for the covariance matrix estimations of the high-dimensional noise Utk in high-frequency
data, which is also the minimax optimal convergence rate in the spectral norm loss if we have observations of the noise
directly. If {Utk} is an independent or Ln-dependent sequence with fixed Ln, we can select K as a fixed integer and then
the associated convergence rate of ∥Σ̂

thre
u − Σ u∥2 is minimax optimal. For general cases with ϕ < ∞ and fixed Ln, with

selecting K ≍ (log n∗)1/ϕ+ϵ for some ϵ > 0, the convergence rate of ∥Σ̂
thre
u − Σ u∥2 is nearly optimal with an additional

logarithm factor (log n∗)(1/ϕ+ϵ)(1−q)/2.

Remark 1. In finite samples, the thresholding estimator Σ̂
thre
u given in (8) may not be positive definite in general.

We can first apply the singular value decomposition to Σ̂
thre
u : Σ̂

thre
u = P̂⊤diag(τ̂1, . . . , τ̂p )̂P, where τ̂1 ≥ · · · ≥ τ̂p

are the eigenvalues of Σ̂
thre
u , and P̂ is an orthogonal matrix. If there are s negative eigenvalues, we can use Σ̃

thre
u =

P⊤diag(τ̂1, . . . , τ̂p−s, τ̂p−s+1 +ϵ, . . . , τ̂p +ϵ )̂P as the estimate of Σ u for some ϵ > 0. Write δn = cp(Kn−1
∗

log p)(1−q)/2 and let
τ1 ≥ · · · ≥ τp > 0 be the eigenvalues of Σ u. Since maxj∈[p] |τ̂j − τj| ≤ ∥Σ̂

thre
u −Σ u∥2 = Op(δn), if τp is uniformly bounded

away from zero and we select ϵ = −τ̂p + (Kn−1
∗

log p)1/2 when τ̂p < 0, such defined Σ̃
thre
u is positive definite and also

satisfies (9).

3. Theoretical analysis

In this section, we establish the theoretical properties of the proposed estimators. To mimic the high-dimensional
scenario, we always assume p ≥ nκ

∗
for some universal constant κ > 0 in this paper. We also require the following

assumptions.

Assumption 3. Write Utk = (U1,tk , . . . ,Up,tk )
⊤. There exist some universal constants C3 > 1 and C4 > 0 such that

P(|Ui,tk | > u) ≤ C3 exp(−C4u2) for any i ∈ [p], k ∈ [n] and u > 0.

Assumption 4. There exist some universal constants C5 > 0, C6 > 0 and C7 > 0 such that (i) E(exp[θ{µ2
i,t −E(µ2

i,t )}]) ≤

exp(C6θ
2) and E(exp[θ{σ 2

i,t −E(σ 2
i,t )}]) ≤ exp(C6θ

2) for any i ∈ [p], t ∈ [0, T ] and |θ | ≤ C5; (ii) E(µ2
i,t ) ≤ C7 and E(σ 2

i,t ) ≤ C7
for any i ∈ [p] and t ∈ [0, T ].

Assumption 5. There exist some universal constants γ > 0, C8 > 1 and C9 > 0 such that P(sup0≤t≤T σi,t > u) ≤

C8 exp(−C9uγ ) for any i ∈ [p] and u > 0.

All assumptions are mild for studying high-dimensional covariance matrix estimations with high-frequency data.
Assumption 3 requires that each component of Utk is sub-Gaussian. Following Lemma 2.2 of Petrov (1995), we know
that part (i) of Assumption 4 holds if there exist two positive constants C∗ and C∗∗ such that P{|µ2

i,t − E(µ2
i,t )| ≥ u} ≤

C∗ exp(−C∗∗u) and P{|σ 2
i,t − E(σ 2

i,t )| ≥ u} ≤ C∗ exp(−C∗∗u) for any i ∈ [p], t ∈ [0, T ] and u > 0. Assumption 5 describes the
behavior of the tail probability of sup0≤t≤T σi,t . If the spot volatility process σi,t is uniformly bounded away from infinity
over i ∈ [p] and t ∈ [0, T ], we can select γ = ∞ in Assumption 5. Then we have the following result.

Theorem 1. Let P1 denote the collections of models for {Ytk}
n
k=1 such that Ytk = Xtk + Utk , where the noises {Utk}

n
k=1 satisfy

Assumption 3, Xt = (X1,t , . . . , Xp,t )⊤ follows model (1) with each µi,t and σi,t satisfying Assumptions 4 and 5, and the grids
of time points {Gi}

p
i=1 satisfy Assumption 2. Let K > CLn for some constant C ≥ 1. Under Assumption 1, it holds that

supE
(
|Σ̂ u − Σ u|∞

)
≲ (Kn−1

∗
log p)1/2
P1

6
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rovided that log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ }] and K−ϕLϕn log{n∗(K log p)−1

} = o(1), where n∗ is specified in (4)
nd χ = min{γ /(γ + 4), 1/3}.

emark 2. Theorem 1 gives the convergence rate of maxi,j∈[p] |σ̂u,i,j − σu,i,j|.
(i) For an independent sequence {Utk}, due to (Ln, ϕ) = (1/2,∞) and K ≥ 1, E(|Σ̂ u − Σ u|∞) ≲ (Kn−1

∗
log p)1/2 provided

that log p = o{(n∗K−1)χ }. For fixed K , maxi,j∈[p] |σ̂u,i,j − σu,i,j| = Op{(n−1
∗

log p)1/2}.
(ii) For an Ln-dependent sequence {Utk}, due to ϕ = ∞ and K > Ln, E(|Σ̂ u − Σ u|∞) ≲ (Kn−1

∗
log p)1/2 provided that

log p = o{(n∗K−1)χ }. For fixed Ln, maxi,j∈[p] |σ̂u,i,j − σu,i,j| = Op{(n−1
∗

log p)1/2} with selecting a fixed K > Ln. For diverging
Ln, maxi,j∈[p] |σ̂u,i,j − σu,i,j| = Op{(Lnn−1

∗
log p)1/2} with selecting K ≍ Ln and K > Ln.

(iii) For the general cases with ϕ < ∞ and fixed Ln, to make K−ϕLϕn log{n∗(K log p)−1
} = o(1), we need to select

≫ (log n∗)1/ϕ . If we select K ≍ (log n∗)1/ϕ+ϵ for some ϵ > 0, maxi,j∈[p] |σ̂u,i,j − σu,i,j| = Op{(n−1
∗

log p)1/2(log n∗)1/(2ϕ)+ϵ/2}.

Furthermore, Theorem 2 shows that the convergence rate (n−1
∗

log p)1/2 is minimax optimal in the maximum element-
ise loss for the covariance matrix estimations of the high-dimensional noise Utk in high-frequency data.

heorem 2. Let n/n∗ ≲ p. Denote by F̌ the class of all measurable functionals of the data. Then

inf
Σ̂∈F̌

sup
P1

E
(
|Σ̂ − Σ u|∞

)
≳ (n−1

∗
log p)1/2,

here P1 is defined in Theorem 1.

emark 3. (i) If {Utk} is an independent sequence or Ln-dependent sequence with fixed Ln, Remarks 2(i) and 2(ii) indicate
hat our proposed estimate Σ̂ u is minimax optimal under the maximum element-wise loss.

(ii) For the general cases with ϕ < ∞ and fixed Ln, Remark 2(iii) indicates our proposed estimate Σ̂ u is nearly minimax
ptimal under the maximum element-wise loss with an additional logarithm factor (log n∗)1/(2ϕ)+ϵ/2.

To establish the lower bound stated in Theorem 2, we essentially focus on a model belonging to P1 with µi,t = 0 and
i,t = 0 for any t ∈ [0, T ] and i ∈ [p]. Let Ck = {i ∈ [p] : tk ∈ Gi} for any k ∈ [n]. In this specific model, the latent
rocess Xt = 0 for any t ∈ [0, T ] and thus the data we observed are Z = {Ut1,C1 , . . . ,Utn,Cn}. Here Utk,Ck denotes the
ubvector of Utk with components indexed by Ck. Hence, (n−1

∗
log p)1/2 is also the minimax optimal rate in the maximum

lement-wise loss for the covariance matrix estimations of Utk with data Z = {Ut1,C1 , . . . ,Utn,Cn}, which indicates that the
stimator Σ̂ u shares some oracle property and the proposed localization actually makes the impact of the latent process
t be negligible.
Regarding the loss function under the spectral norm ∥ · ∥2 for the whole covariance matrix estimation, Theorem 3

stablishes the convergence rate of the thresholding estimator Σ̂
thre
u defined as (8).

heorem 3. Let P2 denote the collections of models for {Ytk}
n
k=1 such that Ytk = Xtk + Utk , where the noises {Utk}

n
k=1 satisfy

ssumption 3 with the covariance matrix Σ u ∈ H(q, cp,M), Xt = (X1,t , . . . , Xp,t )⊤ follows model (1) with each µi,t and σi,t
atisfying Assumptions 4 and 5, and the grids of time points {Gi}

p
i=1 satisfy Assumption 2. Let K > CLn for some constant C ≥ 1.

nder Assumption 1, with sufficiently large constant β > 0 in (8), it holds that

sup
P2

E
(
∥Σ̂

thre
u − Σ u∥

2
2

)
≲ c2p (Kn

−1
∗

log p)1−q

rovided that log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ }] and K−ϕLϕn log{n∗(K log p)−1

} = o(1), where n∗ is specified in (4)
nd χ = min{γ /(γ + 4), 1/3}.

Our result in the following Theorem 4 justifies that the convergence rate cp(n−1
∗

log p)(1−q)/2 is minimax optimal under
he spectral norm loss function for the covariance matrix estimations of Utk with the sparsity structure (7). Again, this
ate is also the minimax optimal rate in the spectral norm loss for the covariance matrix estimations of Utk with data
= {Ut1,C1 , . . . ,Utn,Cn}.

heorem 4. Let n/n∗ ≲ p. Denote by F̌ the class of all measurable functionals of the data. Then

inf
Σ̂∈F̌

sup
P2

E
(
∥Σ̂ − Σ u∥

2
2

)
≳ c2p (n

−1
∗

log p)1−q

rovided that cp ≲ n(1−q)/2
∗ (log p)−(3−q)/2, where P2 is defined in Theorem 3.

emark 4. (i) If {Utk} is an independent sequence or Ln-dependent sequence with fixed Ln, Theorems 3 and 4 indicate
hat Σ̂

thre
u defined as (8) is minimax optimal under the spectral norm loss when we select K as a fixed integer.

(ii) For the general cases with ϕ < ∞ and fixed Ln, if we select K ≍ (log n∗)1/ϕ+ϵ for some ϵ > 0, Theorems 3 and 4
ndicate that Σ̂

thre
u defined as (8) is nearly minimax optimal under the spectral norm with an additional logarithm factor

log n )(1/ϕ+ϵ)(1−q)/2.
∗

7
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In summary, we conclude that it is n∗ – the effective sample size of the pairwise synchronous observations –
determining the convergence rate of the covariance matrix estimation of the noise Utk . Practically, n∗ is expected to
e smaller than n — the total number of observation times. Hence, the accuracy of the covariance matrix estimation
s affected by the level of data asynchronicity — the more asynchronous the data are, the more difficult it is to estimate

u. Another finding from our theoretical analysis is that although the noise {Ut1,C1 , . . . ,Utn,Cn} are not directly observable,
the localized estimator in some scenarios has the (nearly) same accuracy as the one when the noise {Ut1,C1 , . . . ,Utn,Cn}

re observed in the sense of the (nearly) same convergence rates for estimating Σ u with high-frequency data. From the
ractical perspective, it can be viewed as a bless from the high-frequency data with adequate amount of data information
ocally, so that the statistical properties of the noise can be accurately revealed.

. The effect of the smallness of the noise

Our results in Section 3 assume that ni,j → ∞ with T fixed. Empirically, as pointed out in Hansen and Lund (2006),
he magnitude of σu,i,j may be small; see also Christensen et al. (2014). To address this issue, we study the second-order
roperty of our estimator concerning its bias. For σ̂u,i,j defined as (5), since {Utk}

n
k=1 is independent of (Xt )0≤t≤T , we have

hat

E{σ̂u,i,j | (Xt )0≤t≤T } − σu,i,j

= −
1

2ni,j

ni,j∑
k=1

E
(Ui,ti,j,k

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

Uj,ti,j,ℓ

)
  

I′2(i,j)

−
1

2ni,j

ni,j∑
k=1

E
(Uj,ti,j,k

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

Ui,ti,j,ℓ

)
  

I′3(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Xi,ti,j,ℓ − Xi,ti,j,k )(Xj,ti,j,ℓ − Xj,ti,j,k )  
II(i,j)

, (10)

hich indicates that the bias in σ̂u,i,j includes three parts: I′2(i, j), I
′

3(i, j) and II(i, j). Proposition 2 in Section 8 shows
hat maxi,j∈[p] |II(i, j)| = Op{(Kn−1

∗
log p)1/2}, but E{II(i, j)} ̸= 0, causing a bias of order O(Kn−1

i,j ) that summarized in
heorem 5. Under Assumptions 1 and 3, it follows from Davydov’s inequality that maxi,j∈[p] |I′2(i, j)| + maxi,j∈[p] |I′3(i, j)| ≲
xp(−C∗L

−ϕ
n Kϕ) for some universal constant C∗ > 0. If {Utk}

n
k=1 is an independent sequence or Ln-dependent sequence,

e know ϕ = ∞ and then maxi,j∈[p] |I′2(i, j)| + maxi,j∈[p] |I′3(i, j)| ≲ exp(−∞) = 0 with K > Ln. If ϕ < ∞, with selecting
= Ln(C∗∗ log n∗)1/ϕ for some sufficiently large constant C∗∗ > 0, maxi,j∈[p] |I′2(i, j)| + maxi,j∈[p] |I′3(i, j)| ≲ n−C∗C∗∗

∗
will be

egligible in comparison to II(i, j).

heorem 5. Under Assumptions 2 and 4, if K = o(n∗), it holds that

max
i,j∈[p]

⏐⏐⏐⏐E{
II(i, j) −

2K +∆K

4ni,j

∫ ti,j,ni,j

ti,j,1

σi,sσj,sρi,j,s ds
}⏐⏐⏐⏐ ≲ (Kn−1

∗
)3/2.

From (10) and Theorem 5, we have

E(σ̂u,i,j) = σu,i,j + E
(
2K +∆K

4ni,j

∫ ti,j,ni,j

ti,j,1

σi,sσj,sρi,j,s ds
)

  
O(Kn−1

∗ )

+O(K 3/2n−3/2
∗

) (11)

rovided that K = Ln(C∗∗ log n∗)1/ϕ for some sufficiently large constant C∗∗ > 0. Since K = o(n∗), the second term on the
ight-hand side of (11) is asymptotically negligible if σu,i,j is not vanishing; our Theorem 5 implies that it is the leading
erm in the bias. Impact from the bias on σ̂u,i,j could be empirically substantial, especially when σu,i,j is relatively small.

For any i, j ∈ [p], let ψi,j =
∫ ti,j,ni,j
ti,j,1 σi,sσj,sρi,j,s ds. As a remedy, we propose a bias-correction for σ̂u,i,j as follows:

σ̂ bc
u,i,j = σ̂u,i,j −

2K +∆K

4ni,j
ψ̂i,j , (12)

here σ̂u,i,j is given in (5), and ψ̂i,j is an estimate of ψi,j. Since ψi,j is an integrated covariance, it can be estimated by
xisting approaches, for example, the polarization method (Aït-Sahalia et al., 2010), the two time scales approach (Zhang,
011), the pre-averaging method (Jacod et al., 2009; Christensen et al., 2010), and the quasi-maximum likelihood
pproach (Liu and Tang, 2014). Section 6.1.2 gives details for calculating ψ̂i,j by the two time scales approach. Based

on σ̂ bc
u,i,j given in (12), we can obtain Σ̂

bc
u and Σ̂

bc,thre
u , the bias-corrected version of Σ̂ u defined as (6) and Σ̂

thre
u defined

as (8), respectively, by replacing σ̂u,i,j by σ̂ bc
u,i,j. Theorem 6 indicates that Σ̂

bc
u and Σ̂

bc,thre
u share the same convergence

rates of Σ̂ and Σ̂
thre

, respectively.
u u

8
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heorem 6. Assume maxi,j∈[p] |ψ̂i,j| = Op(log p). The following two assertions are satisfied:
(i) Under the conditions of Theorem 1, |Σ̂

bc
u − Σ u|∞ = Op{(Kn−1

∗
log p)1/2}.

(ii) Under the conditions of Theorem 3, ∥Σ̂
bc,thre
u − Σ u∥2 = Op{cp(Kn−1

∗
log p)(1−q)/2

} for any covariance matrix Σ u ∈

(q, cp,M).

. Impact from jumps and the robustness of our methods

We now consider the setting with jumps in the underlying process Xt . Assume Xt = (X1,t , . . . , Xp,t )⊤ satisfies the
ollowing model:

dXi,t = µi,t dt + σi,t dBi,t + Ji,t dMi,t and E(dBi,t · dBj,t ) = ρi,j,t dt , (13)

where µi,t ’s, σi,t ’s, Bi,t ’s and ρi,j,t ’s are same as those in (1), Ji,t ’s are the jump sizes, and Mi,t ’s are counting processes. Our
analysis reveals that our estimators proposed in Section 2.2 for Σ u are reasonably robust against jumps. In our theoretical
analysis, we impose Assumptions 6 and 7 on the counting process Mi,t and the jump size Ji,t , respectively.

Assumption 6. Let (∆Mi,·)i,j = Mi,ti,j,ni,j
−Mi,ti,j,1 for any i, j ∈ [p]. There exist λ1, . . . , λp > 0 and some universal constants

C10 > 0, C11 > 0 such that (i) E{exp(θ [(∆Mi,·)i,j − E{(∆Mi,·)i,j}])} ≤ exp{λi(ti,j,ni,j − ti,j,1)θ2} for any |θ | ≤ C−1
10 and i ∈ [p];

(ii) E{(∆Mi,·)i,j} ≤ C11λi(ti,j,ni,j − ti,j,1) for any i ∈ [p].

Assumption 7. There exist some universal constants ι > 0, C12 > 1 and C13 > 0 such that P(sup0≤t≤T |Ji,t | > u) ≤

C12 exp(−C13uι) for any i ∈ [p] and u > 0.

If Mi,t is a Poisson process with intensity λi > 0, then (∆Mi,·)i,j follows Poisson distribution with parameter
λi(ti,j,ni,j − ti,j,1) and Assumption 6 holds for C10 = C11 = 1. Assumption 7 controls the tail behavior of the random
jump size sup0≤t≤T Ji,t . If the jump size Ji,t is bounded from above uniformly for i ∈ [p] and t ∈ [0, T ], we can select
ι = ∞ in Assumption 7.

Recall Si,j,k = {ti,j,ℓ ∈ Gi ∩ Gj : K ≤ |ℓ− k| ≤ K +∆K } for some integers K ≥ 1 and ∆K ≥ 0, and Ni,j,k = |Si,j,k|. For any
i, j ∈ [p], define

ϖi,j =
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

Ji,s dMi,s

)(∫ ti,j,ℓ

ti,j,k

Jj,s dMj,s

)
. (14)

Let Ω = (ϖi,j)p×p and

Σ̂
jump
u = (σ̂ jump

u,i,j )p×p = Σ̂ u − Ω,

where Σ̂ u is defined as (6). Analogous to (8), we define the thresholding version of Σ̂
jump
u as

Σ̂
jump,thre
u =

[
σ̂

jump
u,i,j I

{
|σ̂

jump
u,i,j | ≥ β(Kn−1

∗
log p)1/2

}]
p×p , (15)

here β > 0 is a fixed constant for the thresholding level.
Our theory has two parts. As the first part, parallel to Theorems 1 and 3, we have the next theorem for the convergence

ates of Σ̂
jump
u and Σ̂

jump,thre
u .

heorem 7. Assume Assumptions 1–7 hold. Let λ∗ = maxi∈[p] λi and K > CLn for some constant C ≥ 1. If
λ2

∗
(n−1

∗
K )ι/(2ι+2)(log p)−1

= o(1), log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ̃ }] and K−ϕLϕn log{n∗(K log p)−1

} = o(1), where
n∗ is specified in (4) and χ̃ = min{ιγ /(2ι + 2γ + ιγ ), ι/(2ι + 2), γ /(γ + 4), 1/3}, then the following two assertions are
satisfied:

(i) Let P3 denote the collections of models for {Ytk}
n
k=1 such that Ytk = Xtk + Utk , where the noises {Utk}

n
k=1 satisfy

Assumption 3, Xt = (X1,t , . . . , Xp,t )⊤ follows model (13) with each µi,t , σi,t , Mi,t and Ji,t satisfying Assumptions 4–7, and
the grids of time points {Gi}

p
i=1 satisfy Assumption 2. It holds that

sup
P3

E
(
|Σ̂

jump
u − Σ u|∞

)
≲ (Kn−1

∗
log p)1/2.

(ii) Let P4 denote the collections of models for {Ytk}
n
k=1 such that Ytk = Xtk + Utk , where the noises {Utk}

n
k=1 satisfy

Assumption 3 with the covariance matrix Σ u ∈ H(q, cp,M), Xt = (X1,t , . . . , Xp,t )⊤ follows model (13) with each µi,t , σi,t , Mi,t
and Ji,t satisfying Assumptions 4–7, and the grids of time points {Gi}

p
i=1 satisfy Assumption 2. With sufficiently large constant

β > 0 in (15), it holds that

supE
(
∥Σ̂

jump,thre
u − Σ u∥

2
2

)
≲ c2p (Kn

−1
∗

log p)1−q.

P4

9
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Theorems 7(i) and 7(ii) can be viewed as the generalization of Theorems 1 and 3, respectively. If there are no jumps in
Xt , we have Ji,t ≡ 0 for any i ∈ [p] and t ∈ [0, T ], and then Σ̂

jump
u = Σ̂ u and Σ̂

jump,thre
u = Σ̂

thre
u . In this scenario, we can set

λi = 0 for any i ∈ [p] and ι = ∞ in Assumptions 6 and 7, respectively, which implies λ2
∗
(n−1

∗
K )ι/(2ι+2)(log p)−1

= o(1) holds
automatically and χ̃ = min{γ /(γ + 4), 1/3}. Hence, the results of Theorems 7(i) and 7(ii) in this scenario are identical to
Theorems 1 and 3, respectively.

In the second part of our theory, we establish the properties of Σ̂ u itself. Since Σ̂
jump
u = Σ̂ u −Ω where Ω = (ϖi,j)p×p

with ϖi,j defined as (14), the gap between Σ̂ u and Σ̂
jump
u is seen determined by an extra ‘bias’. We assume the following

condition for controlling the tail probability of ϖi,j.

Assumption 8. Each Mi,t has independent increments. Let (∆Mi,·)
(k)
i,j = Mi,ti,j,k+1 − Mi,ti,j,k for any i, j ∈ [p] and

k ∈ [ni,j − 1]. There exist λ1, . . . , λp > 0 and some universal constants C10 > 0, C11 > 0 such that (i) E{exp(θ [(∆Mi,·)
(k)
i,j −

E{(∆Mi,·)
(k)
i,j }])} ≤ exp{λi(ti,j,k+1 − ti,j,k)θ2} for any |θ | ≤ C−1

10 and i ∈ [p]; (ii) E{(∆Mi,·)
(k)
i,j } ≤ C11λi(ti,j,k+1 − ti,j,k) for any

i ∈ [p].

Assumption 6 holds automatically under Assumption 8. If Mi,t is a Poisson process with intensity λi > 0, then (∆Mi,·)
(k)
i,j

follows the Poisson distribution with parameter λi(ti,j,k+1 − ti,j,k) and Assumption 8 holds for C10 = C11 = 1. Given
Assumptions 7 and 8, we have the following theorem for the tail probability of ϖi,j.

Theorem 8. Let λ∗ = maxi∈[p] λi. Under Assumptions 7 and 8, if K (log n∗)(3ι+4)/ι
= o(n∗) and n−1

∗
Kλ∗ = o(1), it holds that

max
i,j∈[p]

P(|ϖi,j| ≥ v) ≲ exp{−C(n∗K−1)(2ι+2)/(3ι+4)v} + exp{−C(n∗K−1)ι/(3ι+4)
}

for any v ≫ (n−1
∗

K )(2ι+2)/(3ι+4)λ∗, where ι is specified in Assumption 7. Furthermore, it holds that maxi,j∈[p] E(|ϖi,j|
m) ≲ 1 for

any fixed positive integer m.

Theorem 8 implies |Ω |∞ = Op{(Kn−1
∗

)(2ι+2)/(3ι+4) log p} = op{(Kn−1
∗

log p)1/2} if log p = o{(n∗K−1)ι/(3ι+4)
}, which leads

to the robustness of our proposed estimators against possible jumps in the underlying process Xt , as established in the
following theorem.

Theorem 9. Let λ∗ = maxi∈[p] λi and K > CLn for some constant C ≥ 1. Under Assumptions 1–5 and 7–8, if
λ2

∗
(n−1

∗
K )ι/(3ι+4)(log p)−1

= o(1), log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ

∗

}] and K−ϕLϕn log{n∗(K log p)−1
} = o(1), where

n∗ is specified in (4) and χ∗
= min{ιγ /(2ι+ 2γ + ιγ ), ι/(3ι+ 4), γ /(γ + 4)}, then the following two assertions are satisfied:

(i) |Σ̂ u − Σ u|∞ = Op{(Kn−1
∗

log p)1/2}.
(ii) With sufficiently large constant β > 0 in (8), ∥Σ̂

thre
u − Σ u∥2 = Op{cp(Kn−1

∗
log p)(1−q)/2

} for any covariance matrix
Σ u ∈ H(q, cp,M).

Specifically, Theorem 9 implies that if the intensity parameter λ∗ of the counting processes diverges no faster than
(n∗K−1)ι/(6ι+8)(log p)1/2, the convergence rates of Σ̂ u and Σ̂

thre
u are the same as those in Theorems 1 and 3, even there are

jumps in the processes.

6. Numerical studies

6.1. Simulations

6.1.1. Data generating procedure
We set (ρi,j)p×p = {diag(A⊗2)}−1/2A⊗2

{diag(A⊗2)}−1/2, where A = (ai,j)p×p with ai,j = (−0.8)|i−j|I(i ≥ j). For
Xt = (X1,t , . . . , Xp,t )⊤, we generated each Xi,t from the following stochastic volatility model:

dXi,t = σi,t dBi,t + Ji,t dMi,t , dσ 2
i,t = κ(σ̄ 2

− σ 2
i,t ) dt + sσi,t dWi,t , (16)

where M1,t , . . . ,Mp,t are independent Poisson processes with intensity λJ, and B1,t , . . . , Bp,t ,W1,t , . . . ,Wp,t are univariate
standard Brownian motions such that (i) W1,t , . . . ,Wp,t are p independent Brownian motions, and (ii) E(dBi,t · dWj,t ) =

−0.3I(i = j) dt and E(dBi,t · dBj,t ) = ρi,j dt . We considered two settings — with or without jumps: (i) J1,t , . . . , Jp,t
i.i.d.
∼

N(0, σ 2
J ) which are independent of M1,t , . . . ,Mp,t , and (ii) Ji,t ≡ 0 for i ∈ [p] and t . We set (κ, s, σ̄ 2, σ 2

J , λJ) =

(5, 0.5, 0.1, 0.0152, 5), the same as that in the numerical studies of Aït-Sahalia et al. (2013) that mimics the empirical
features of financial data (Aït-Sahalia and Kimmel, 2007). This setting is reasonable; comparable settings are found in
existing studies (Aït-Sahalia and Yu, 2009; Aït-Sahalia et al., 2010; Liu and Tang, 2014; Aït-Sahalia and Xiu, 2017). The
initial observations of σ 2

i,t (i ∈ [p]) were generated from a Gamma distribution Γ (2κσ̄ 2/s2, s2/(2κ)). In our simulation, we
set p ∈ {50, 100, 200}.

We took t ∈ [0, T ] with T = 1/252; here 1 unit of t means one year, so T = 1/252 is corresponding to a
trading day. We first generated high-frequency data available at each second in a 6.5-hour period; this setting results
10
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n 60 × 60 × 6.5 = 23400 observations. By letting t̃k = k/(252 × 23400), we generated Yt̃k = Xt̃k + Ut̃k with (Xt )t∈[0,T ]

rom (16), and each element of Ut̃k = (U1,t̃k , . . . ,Up,t̃k )
⊤ from a stationary GARCH(1,1) model:

Ui,t̃k = σ̃i,t̃kηi,t̃k , σ̃ 2
i,t̃k

= 0.1σ 2
e + 0.1σ̃ 2

i,t̃k−1
η2i,t̃k−1

+ 0.8σ̃ 2
i,t̃k−1

,

here ηt̃k = (η1,t̃k , . . . , ηp,t̃k )
⊤ is independently generated from N(0,R); the settings of R will be described later. In this

odel, upon observing E(σ̃ 2
i,t̃k

) = σ 2
e for each i ∈ [p], we considered different settings for the signal-to-noise ratio

2
e /(T

−1
∫ T
0 σ

2
i,t dt) by varying σ 2

e . Since the signal-to-noise ratio can be approximated by 252σ 2
e /σ̄

2 with σ̄ 2 in (16),
e specified two selections of σ 2

e : (i) σ 2
e = 0.0052 such that 252σ 2

e /σ̄
2

= 0.063, and (ii) σ 2
e = 0.0012 such that

52σ 2
e /σ̄

2
= 0.00252. In Part S1 of the supplementary material, we have also investigated the finite-sample performance

f the proposed estimators when Ut̃1 , . . . ,Ut̃23400
i.i.d.
∼ N(0, σ 2

e R) with σ 2
e = 0.0052 and 0.0012.

We studied the following three models for R = (ri,j)p×p that controls the correlations:

odel 1: R is a banded matrix, where ri,i = 1, ri+1,i = ri,i+1 = 0.6, ri+2,i = ri,i+2 = 0.3, and ri,j = 0 for |i − j| ≥ 3.

Model 2: R = {diag(R∗)}−1/2R∗
{diag(R∗)}−1/2, where R∗

= R̃ + {|λmin (̃R)| + 0.05}Ip, Ip is the identity matrix of order p,
λmin (̃R) is the smallest eigenvalue of R̃, and R̃ = (r̃i,j)p×p satisfies that r̃i,j = wi,jbi,j,wi,j’s are independently generated
from the uniform distribution U(0.4, 0.8), bi,j’s are independently generated from the Bernoulli distribution with
successful probability 0.04.

Model 3: R is a bandable matrix with ri,j = 0.6|i−j|.

We considered both synchronous and asynchronous high-frequency data in our simulation. To model the synchronous
data setting, we took {Yt̃k∆}

⌊23400/∆⌋

k=1 as the observed data where ⌊x⌋ is the floor function; by varying ∆, we simulated
data sets of different sizes: larger ∆ means fewer observations. Then the time points where we observed the noisy data
are tk = t̃k∆ with k = 1, . . . , ⌊23400/∆⌋. In our numerical studies, we set ∆ ∈ {1, 2, 3}. To model the asynchronous
data setting, for each i ∈ [p], we applied the Poisson process sampling scheme with intensity λ to {t̃k}23400k=1 for generating
Gi = {ti,1, . . . , ti,ni}, the grid of time points at which we actually observed Yi,t . The Poisson process sampling schemes for
different i’s are independent. Based on this setting for asynchronous data, on average there were ⌊23400/λ⌋ observations
for each Yi,t . We selected λ ∈ {1, 2, 3} in our simulation.

6.1.2. Implementation of bias-correction
To obtain the bias-corrected estimator σ̂ bc

u,i,j in (12), we need to calculate ψ̂i,j, the estimate of the integrated covariance
ψi,j. In the simulation, we applied the two time scales approach (Zhang, 2011) to estimate ψi,j. Recall Gi = {ti,1, . . . , ti,ni}
is the grid of time points we observed Yi,t . For given i, j ∈ [p], we first used the refresh time procedure (Barndorff-Nielsen
et al., 2011) to synchronize the data if Gi ̸= Gj. More specifically, let the first refresh time point be v1 = max(ti,1, tj,1),
and then define the other refresh time points vl+1 with l ≥ 1 as vl+1 = max[min{t ∈ Gi : t > vl},min{t ∈ Gj : t > vl}]

iteratively. Denoted by n∗

i,j the resulting refresh time points for Gi and Gj, and write t∗i,l = max{t ∈ Gi : t ≤ vl} and
t∗j,l = max{t ∈ Gj : t ≤ vl} for each l ∈ [n∗

i,j]. If Gi = Gj, the refresh time points based on above procedure are identical to
ti,1, . . . , ti,ni , and thus the associated t∗i,l = t∗j,l = ti,l. For given positive integers δ1 and δ2, the two time scales estimator
for ψi,j is given by

ψ̂i,j = [Yi, Yj]
(δ1) −

δ2(n∗

i,j − δ1 + 1)

δ1(n∗

i,j − δ2 + 1)
[Yi , Yj]

(δ2) , (17)

here [Yi, Yj]
(δ)

= δ−1 ∑n∗
i,j

l=δ+1(Yi,t∗i,l
−Yi,t∗i,l−δ

)(Yj,t∗j,l
−Yj,t∗j,l−δ

) for any positive integer δ. Following Aït-Sahalia and Yu (2009),
e set (δ1, δ2) = (25, 1) in our simulation.

.1.3. Selections of (K ,∆K ) and the thresholding level
To obtain σ̂u,i,j defined as (5) in practice, we need to select the tuning parameters K and ∆K . If each univariate

equence {Ui,tk}
n
k=1 is α-mixing with exponentially decaying α-mixing coefficients,2 with the independence assumption

mposed on the p sequences {U1,tk}
n
k=1, . . . , {Up,tk}

n
k=1, Theorem 5.1 of Bradley (2005) indicates that αn(m) defined in (3)

atisfies αn(m) ≤ p exp(−cm) for some universal constant c > 0, which provides a rough upper bound for αn(m). Hence,
ssumption 1 holds for ϕ = 1 and Ln = c̃ log p for some sufficiently small constant c̃ > 0. Our theoretical results
equire K−ϕLϕn log{n∗(K log p)−1

} = o(1) and K > CLn for some constant C ≥ 1. To match these requirements, when
e estimate σu,i,j, we can select K = c̄(log p)(log ni,j)(log log ni,j) for some small constant c̄ > 0. In our simulation, we
ave tried c̄ ∈ [0.03, 0.07] and the associated results are similar. We suggest to select c̄ = 0.05 in practice. Since we
se (Yi,ti,j,ℓ − Yi,ti,j,k , Yj,ti,j,ℓ − Yj,ti,j,k ) to approximate (Ui,ti,j,ℓ − Ui,ti,j,k ,Uj,ti,j,ℓ − Uj,ti,j,k ) for K ≤ |ℓ− k| ≤ K + ∆K , the bias

2 Such requirement can be easily satisfied in most commonly used univariate time series models. See our discussion below (3).
11
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ssue caused by Xi,ti,j,ℓ − Xi,ti,j,k and Xj,ti,j,ℓ − Xj,ti,j,k will impact the performance of our estimators. Notice that a smaller ∆K
esults in a smaller bias. We need to select ∆K as some small positive integers. Table 1 shows that (i) the estimators with
K ∈ {1, 2, 3} perform quite well, and (ii) the estimators with ∆K = 1 work best in most cases and perform quite close

o the best ones in other cases. This verifies our claim that ∆K should be selected as some small integers. We suggest to
elect ∆K ∈ {1, 2, 3} in practice.
Based on Σ̂ u = (σ̂u,i,j)p×p and Σ̂

bc
u = (σ̂ bc

u,i,j)p×p, to derive their thresholding version Σ̂
thre
u and Σ̂

bc,thre
u , we need

to determine the thresholding level. Our theoretical analysis shows that the thresholding level should have the order
(Kn−1

∗
log p)1/2. Notice that σ̂u,i,j = n−1

i,j
∑ni,j

k=1 ζi,j,k with ζi,j,k = (2Ni,j,k)−1 ∑
ti,j,ℓ∈Si,j,k

(Yi,ti,j,ℓ − Yi,ti,j,k )(Yj,ti,j,ℓ − Yj,ti,j,k ). Since

ar(σ̂u,i,j) has the order Kn−1
∗

, the long-run variance of the sequence {ζi,j,k}
ni,j
k=1 has the order K . To incorporate the

heterogeneity of the estimators σ̂u,i,j, we implemented the thresholding estimators in practice as

Σ̂
thre
u = (σ̂ thre

u,i,j )p×p =
[
σ̂u,i,jI

{
|σ̂u,i,j| ≥ β∗(θ̂i,jn−1

i,j log p)1/2
}]

p×p ,

Σ̂
bc,thre
u = (σ̂ bc,thre

u,i,j )p×p =
[
σ̂ bc
u,i,jI

{
|σ̂ bc

u,i,j| ≥ β∗(θ̂i,jn−1
i,j log p)1/2

}]
p×p ,

(18)

here β∗ > 0 is a constant, and θ̂i,j is an estimate for the long-run variance of the sequence {ζi,j,k}
ni,j
k=1. Write ζ̄i,j =

n−1
i,j

∑ni,j
k=1 ζi,j,k. We chose θ̂i,j in (18) as

θ̂i,j =

ni,j−1∑
ℓ=−ni,j+1

K
(
ℓ

h

)
Ĥi,j(ℓ),

here K(·) is a symmetric kernel function, h is the bandwidth, Ĥi,j(ℓ) = n−1
i,j

∑ni,j
k=ℓ+1(ζi,j,k − ζ̄i,j)(ζi,j,k−ℓ − ζ̄i,j) for ℓ ≥ 0

and Ĥi,j(ℓ) = n−1
i,j

∑ni,j
k=−ℓ+1(ζi,j,k+ℓ − ζ̄i,j)(ζi,j,k − ζ̄i,j) otherwise. Andrews (1991) suggested the quadratic spectral kernel

K(x) =
25

12π2x2

{
sin(6πx/5)

6πx/5
− cos(6πx/5)

}
with optimal bandwidth h = 1.3221{4ni,jϑ̂

2
i,j(1 − ϑ̂i,j)−4

}
1/5, where ϑ̂i,j is the estimated autoregressive coefficient in the

itted AR(1) model for the sequence {ζi,j,k}
ni,j
k=1. In our simulation, we have tried β∗ ∈ [1.75, 2.25] and the associated results

are similar. We suggest to select β∗ = 2 in practice.

6.1.4. Simulation results
For given estimator Σ̃ , we evaluated its relative estimation error ∥Σ̃ − Σ u∥2/∥Σ u∥2 in different settings. Table 1

summarizes the averages of the relative estimation errors based on 1000 repetitions. We have several observations.
First, we find that in general, Σ̂

bc,thre
u performs quite well for all cases with satisfactorily small relative estimation errors

compared with Σ̂
thre
u . Further, Σ̂

thre
u performs quite well when 252σ 2

e /σ̄
2

= 0.063 but poorly when 252σ 2
e /σ̄

2
= 0.00252.

This suggests that when the noise is quite small, the bias-correction is necessary. Second, as the dimension p increases,
the relative estimation errors worsen a bit, but at a very slow pace growing with p. This demonstrates the promising
performance of the thresholding method for handling high-dimensional covariance estimations. Third, as the sampling
frequency becomes higher (smaller ∆ or λ), the performance is improved by observing smaller relative estimation errors,
reflecting the blessing to the covariance estimations with more high-frequency data. This is actually the reason why the
performance of the estimator with synchronous data is better than that with asynchronous data when ∆ and λ are the
same. Fourth, we find that the differences are small among the performances with different ∆K , especially when the data
are synchronous. Fifth, we find that the empirical performance of the proposed estimators is robust to jumps, confirming
our finding in Theorem 9.

In addition, for given estimator Σ̃ = (σ̃i,j)p×p, we also calculated in Tables 2 and 3 the true positive rate (TPR) and the
false positive rate (FPR) defined as

TPR =
|{(i, j) : σ̃i,j ̸= 0 and σu,i,j ̸= 0}|

|{(i, j) : σu,i,j ̸= 0}|
,

FPR =
|{(i, j) : σ̃i,j ̸= 0 and σu,i,j = 0}|

|{(i, j) : σu,i,j = 0}|
.

Since the covariance matrix considered in Model 3 has no exact zero element, we omit reporting the TPR and FPR in
this case. Results in Tables 2 and 3 show that the TPRs of our proposed estimators for all cases are equal to 1 or quite
close to 1, and the FPRs for all cases are almost 0. This indicates that our proposed thresholding method can recover the
non-zero elements of the covariance matrix very accurately. From the results in Table 3 when the data are asynchronous
with λ = 2 and 3, we find that Σ̂

bc,thre
u performs a bit better than Σ̂

thre
u , and both Σ̂

bc,thre
u and Σ̂

thre
u have lower TPRs

when 252σ 2
e /σ̄

2
= 0.00252, which is reasonable as the signal-to-noise ratio in terms of estimating the covariance matrix

of noises is lower in this case. For the FPRs, we find that there is no big difference between the FPRs of Σ̂
bc,thre

with
u

12
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Table 1
Averages of the relative estimation errors (×100) for the proposed estimators when jumps exist and do not exist (in parentheses) based on 1000
epetitions.
Synchronous data Model 1 Model 2 Model 3

252σ 2
e /σ̄

2 p Estimators ∆K ∆ = 3 ∆ = 2 ∆ = 1 ∆ = 3 ∆ = 2 ∆ = 1 ∆ = 3 ∆ = 2 ∆ = 1

0.063 50 Σ̂thre
u 1 4.5(4.5) 4.0(4.0) 3.2(3.2) 5.2(5.5) 4.6(4.9) 3.3(3.4) 6.3(6.3) 5.3(5.3) 4.3(4.3)

2 4.5(4.5) 4.0(4.0) 3.2(3.2) 5.3(5.6) 4.7(4.9) 3.3(3.5) 6.1(6.0) 5.2(5.1) 4.2(4.2)
3 4.6(4.6) 4.1(4.1) 3.2(3.3) 5.6(5.9) 4.8(5.1) 3.4(3.6) 5.9(5.9) 5.0(5.0) 4.1(4.1)

Σ̂bc,thre
u 1 4.6(4.6) 4.1(4.2) 3.3(3.3) 5.3(5.5) 4.7(4.9) 3.4(3.5) 6.4(6.4) 5.4(5.4) 4.4(4.3)

2 4.6(4.6) 4.2(4.2) 3.3(3.3) 5.3(5.6) 4.7(5.0) 3.4(3.6) 6.1(6.1) 5.2(5.2) 4.2(4.2)
3 4.7(4.7) 4.2(4.3) 3.3(3.4) 5.6(5.9) 4.9(5.2) 3.5(3.7) 6.0(6.0) 5.1(5.1) 4.1(4.1)

100 Σ̂thre
u 1 5.2(5.2) 4.4(4.4) 3.6(3.6) 5.7(5.9) 4.6(4.7) 3.5(3.5) 7.0(6.9) 6.0(6.0) 4.8(4.7)

2 5.2(5.2) 4.4(4.4) 3.6(3.6) 5.8(5.9) 4.6(4.7) 3.5(3.6) 6.7(6.7) 5.8(5.8) 4.6(4.6)
3 5.3(5.3) 4.5(4.5) 3.6(3.7) 6.0(6.1) 4.8(4.9) 3.6(3.7) 6.6(6.5) 5.7(5.7) 4.6(4.5)

Σ̂bc,thre
u 1 5.3(5.4) 4.5(4.5) 3.7(3.7) 5.8(6.0) 4.7(4.8) 3.6(3.7) 7.1(7.0) 6.1(6.1) 4.8(4.8)

2 5.4(5.4) 4.5(4.6) 3.7(3.7) 5.9(6.1) 4.8(4.9) 3.7(3.7) 6.9(6.8) 5.9(5.9) 4.7(4.6)
3 5.5(5.5) 4.6(4.7) 3.8(3.8) 6.1(6.3) 5.0(5.1) 3.8(3.9) 6.8(6.7) 5.8(5.8) 4.6(4.6)

200 Σ̂thre
u 1 6.0(6.0) 5.0(5.0) 4.0(4.0) 5.5(5.5) 4.4(4.5) 3.3(3.4) 7.5(7.6) 6.5(6.5) 5.2(5.1)

2 5.9(5.9) 5.0(5.0) 4.0(4.0) 5.4(5.5) 4.4(4.5) 3.3(3.3) 7.3(7.3) 6.3(6.3) 5.0(5.0)
3 5.9(5.9) 5.0(5.0) 4.0(4.0) 5.4(5.5) 4.5(4.5) 3.3(3.3) 7.2(7.2) 6.3(6.2) 5.0(4.9)

Σ̂bc,thre
u 1 6.2(6.2) 5.2(5.2) 4.2(4.2) 5.7(5.7) 4.6(4.7) 3.6(3.6) 7.7(7.8) 6.6(6.6) 5.3(5.2)

2 6.3(6.3) 5.3(5.3) 4.2(4.2) 5.7(5.7) 4.7(4.7) 3.6(3.6) 7.5(7.6) 6.5(6.5) 5.1(5.1)
3 6.3(6.3) 5.4(5.4) 4.3(4.3) 5.8(5.8) 4.8(4.8) 3.6(3.7) 7.5(7.5) 6.4(6.4) 5.1(5.1)

0.00252 50 Σ̂thre
u 1 23.5(18.6) 21.0(16.6) 9.9(8.0) 40.6(34.8) 36.4(30.9) 16.5(14.2) 19.9(16.3) 17.1(14.1) 9.0(7.5)

2 28.2(22.1) 24.3(19.0) 11.5(9.1) 49.0(41.6) 42.1(35.7) 19.4(16.6) 22.7(18.6) 19.0(15.7) 10.0(8.3)
3 33.0(25.9) 27.5(21.6) 13.1(10.4) 57.4(49.0) 47.6(40.7) 22.4(19.0) 25.5(20.9) 20.9(17.3) 10.9(9.1)

Σ̂bc,thre
u 1 4.6(4.6) 4.1(4.1) 3.3(3.3) 5.7(5.8) 4.9(5.1) 3.4(3.5) 6.7(6.7) 5.6(5.5) 4.4(4.4)

2 4.7(4.6) 4.1(4.1) 3.3(3.3) 5.9(6.1) 5.0(5.2) 3.4(3.6) 6.5(6.4) 5.4(5.4) 4.3(4.3)
3 4.8(4.7) 4.2(4.2) 3.3(3.3) 6.3(6.5) 5.2(5.4) 3.6(3.7) 6.3(6.3) 5.3(5.3) 4.2(4.2)

100 Σ̂thre
u 1 31.9(32.1) 20.5(20.8) 12.6(12.8) 46.7(48.9) 29.8(31.4) 18.0(19.0) 25.5(25.3) 17.1(17.2) 11.0(10.9)

2 36.7(36.6) 23.8(23.9) 14.2(14.3) 53.7(56.0) 34.7(36.2) 20.5(21.5) 28.2(28.0) 19.0(19.1) 11.9(11.9)
3 41.5(41.3) 27.1(27.0) 15.9(16.0) 60.7(63.0) 39.5(41.0) 23.0(24.0) 31.1(30.7) 21.0(21.0) 12.9(12.8)

Σ̂bc,thre
u 1 5.4(5.4) 4.5(4.5) 3.7(3.7) 6.4(6.5) 4.9(4.9) 3.7(3.7) 7.5(7.4) 6.3(6.3) 4.9(4.8)

2 5.4(5.4) 4.5(4.5) 3.7(3.7) 6.6(6.7) 5.0(5.1) 3.7(3.8) 7.3(7.2) 6.1(6.1) 4.8(4.7)
3 5.6(5.6) 4.6(4.7) 3.7(3.8) 6.9(7.0) 5.2(5.3) 3.8(3.9) 7.2(7.1) 6.0(6.0) 4.7(4.6)

200 Σ̂thre
u 1 40.8(40.9) 26.5(26.6) 15.5(15.6) 44.7(45.4) 29.0(29.4) 16.8(17.1) 31.0(30.9) 21.0(21.1) 12.8(12.9)

2 45.4(45.5) 29.7(29.7) 17.2(17.2) 49.8(50.5) 32.5(32.9) 18.6(18.9) 33.8(33.6) 22.9(22.9) 13.8(13.8)
3 50.1(50.1) 32.9(32.8) 18.8(18.8) 55.0(55.6) 35.9(36.3) 20.4(20.6) 36.7(36.5) 24.8(24.8) 14.7(14.8)

Σ̂bc,thre
u 1 7.5(6.2) 5.4(5.1) 4.2(4.1) 8.3(6.4) 5.7(4.8) 3.8(3.6) 8.2(8.2) 6.9(6.9) 5.3(5.3)

2 8.1(6.3) 5.7(5.2) 4.2(4.1) 8.9(6.5) 6.1(4.9) 3.9(3.6) 8.1(8.1) 6.7(6.7) 5.2(5.2)
3 8.8(6.5) 6.0(5.3) 4.3(4.2) 9.6(6.7) 6.6(5.0) 4.1(3.7) 8.0(8.0) 6.7(6.6) 5.2(5.1)

Asynchronous data Model 1 Model 2 Model 3

252σ 2
e /σ̄

2 p Estimators ∆K λ = 3 λ = 2 λ = 1 λ = 3 λ = 2 λ = 1 λ = 3 λ = 2 λ = 1

0.063 50 Σ̂thre
u 1 6.3(6.3) 5.1(5.1) 3.7(3.7) 9.8(10.1) 7.3(7.6) 4.4(4.7) 9.8(9.7) 7.3(7.2) 5.5(5.5)

2 6.5(6.4) 5.2(5.2) 3.7(3.7) 9.8(10.3) 7.5(7.8) 4.6(4.8) 9.2(9.2) 7.0(6.9) 5.2(5.2)
3 6.7(6.7) 5.4(5.3) 3.8(3.8) 10.3(10.7) 7.8(8.2) 4.8(5.1) 8.9(8.8) 6.8(6.7) 5.1(5.1)

Σ̂bc,thre
u 1 6.2(6.3) 5.2(5.2) 3.8(3.8) 9.8(10.2) 7.4(7.8) 4.5(4.7) 9.7(9.6) 7.2(7.2) 5.5(5.5)

2 6.4(6.4) 5.3(5.3) 3.8(3.8) 9.9(10.4) 7.6(8.0) 4.6(4.9) 9.1(9.1) 6.9(6.9) 5.3(5.3)
3 6.7(6.8) 5.4(5.5) 3.9(3.9) 10.4(11.0) 8.0(8.4) 4.9(5.2) 8.7(8.7) 6.7(6.7) 5.1(5.1)

100 Σ̂thre
u 1 7.6(7.6) 5.6(5.6) 4.2(4.2) 11.0(11.3) 7.3(7.4) 4.9(5.0) 10.5(10.4) 8.3(8.2) 5.9(5.9)

2 7.8(7.8) 5.7(5.7) 4.3(4.3) 11.0(11.3) 7.5(7.7) 5.0(5.1) 10.1(10.0) 7.9(7.8) 5.7(5.7)
3 8.1(8.1) 5.9(5.9) 4.4(4.4) 11.3(11.6) 7.8(8.0) 5.2(5.3) 9.9(9.8) 7.7(7.6) 5.6(5.6)

Σ̂bc,thre
u 1 7.7(7.7) 5.7(5.7) 4.3(4.3) 11.2(11.6) 7.5(7.6) 5.1(5.2) 10.4(10.3) 8.2(8.1) 5.9(5.9)

2 8.0(8.0) 5.8(5.9) 4.4(4.4) 11.3(11.7) 7.7(7.9) 5.2(5.3) 10.0(9.9) 7.9(7.8) 5.8(5.8)
3 8.3(8.3) 6.1(6.1) 4.6(4.6) 11.8(12.1) 8.1(8.3) 5.4(5.5) 9.8(9.7) 7.7(7.6) 5.7(5.7)

200 Σ̂thre
u 1 9.1(9.1) 6.6(6.6) 4.8(4.8) 10.6(11.0) 7.2(7.4) 4.7(4.8) 11.3(11.2) 8.8(8.7) 6.3(6.3)

2 9.2(9.2) 6.7(6.7) 4.8(4.9) 10.4(10.8) 7.3(7.4) 4.7(4.8) 11.0(11.0) 8.5(8.5) 6.2(6.2)
3 9.4(9.4) 6.8(6.8) 4.9(4.9) 10.6(10.9) 7.4(7.5) 4.7(4.8) 10.9(10.8) 8.4(8.3) 6.1(6.1)

Σ̂bc,thre
u 1 9.4(9.4) 6.9(6.9) 5.0(5.0) 11.1(11.6) 7.6(7.7) 5.0(5.1) 11.2(11.2) 8.7(8.7) 6.4(6.4)

2 9.7(9.6) 7.0(7.1) 5.1(5.1) 11.1(11.5) 7.7(7.8) 5.0(5.1) 11.0(11.0) 8.5(8.5) 6.3(6.3)
3 10.0(10.0) 7.3(7.3) 5.2(5.2) 11.4(11.7) 7.9(8.1) 5.1(5.2) 10.9(10.9) 8.4(8.4) 6.2(6.2)

(continued on next page)
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Table 1 (continued).
0.00252 50 Σ̂thre

u 1 61.8(49.2) 46.7(36.8) 18.4(14.7) 109(93.2) 81.8(69.6) 31.5(27.0) 48.2(40.4) 36.7(30.3) 16.1(13.3)
2 78.9(62.3) 55.5(43.9) 22.1(17.4) 137(118) 97.2(83.5) 38.2(32.4) 57.5(47.8) 41.5(34.5) 18.3(15.1)
3 95.8(75.9) 64.3(51.3) 26.0(20.3) 165(143) 113(97.7) 45.0(38.1) 67.4(55.5) 46.4(38.8) 20.5(16.9)

Σ̂bc,thre
u 1 6.9(6.7) 5.4(5.3) 3.8(3.8) 15.1(14.8) 8.1(8.1) 4.7(4.8) 12.7(12.2) 8.5(8.3) 5.8(5.7)

2 7.2(6.9) 5.4(5.4) 3.8(3.8) 15.8(15.5) 8.3(8.2) 4.8(5.0) 12.9(12.2) 8.4(8.2) 5.6(5.5)
3 7.6(7.0) 5.5(5.5) 3.9(3.9) 16.6(16.6) 8.6(8.5) 5.0(5.3) 13.2(12.3) 8.3(8.1) 5.4(5.4)

100 Σ̂thre
u 1 91.9(89.5) 46.8(46.9) 24.7(24.8) 133(136) 68.9(72.1) 35.9(37.6) 65.3(64.0) 37.4(37.1) 20.4(20.3)

2 107(104) 55.7(55.6) 28.5(28.5) 156(160) 82.1(85.4) 41.6(43.3) 73.9(72.1) 42.1(42.3) 22.6(22.4)
3 121(119) 64.8(64.8) 32.4(32.2) 179(183) 95.3(98.7) 47.3(49.0) 82.8(81.1) 47.0(47.7) 24.9(24.6)

Σ̂bc,thre
u 1 9.0(8.8) 5.8(5.8) 4.3(4.3) 19.8(21.4) 8.4(8.4) 5.2(5.3) 15.5(15.0) 9.7(9.6) 6.3(6.3)

2 9.9(9.9) 5.9(5.9) 4.4(4.4) 20.8(22.8) 8.5(8.5) 5.3(5.4) 16.1(15.5) 9.5(9.4) 6.2(6.1)
3 11.3(11.3) 6.1(6.1) 4.5(4.5) 22.0(24.2) 8.8(8.9) 5.5(5.6) 16.9(16.1) 9.5(9.3) 6.1(6.0)

200 Σ̂thre
u 1 119(121) 63.5(64.5) 31.2(31.4) 132(135) 69.8(71.6) 34.0(34.7) 81.1(82.0) 46.7(47.8) 24.5(24.5)

2 132(135) 72.6(73.2) 34.9(35.1) 149(152) 79.5(81.3) 38.1(38.8) 89.9(91.1) 51.7(52.7) 26.6(26.7)
3 147(150) 81.8(82.0) 38.7(38.8) 167(170) 89.3(91.1) 42.2(42.9) 99.5(101) 57.1(57.7) 28.9(28.9)

Σ̂bc,thre
u 1 14.3(14.3) 7.2(6.7) 5.1(4.9) 25.5(27.1) 9.7(9.7) 5.3(5.1) 18.9(18.9) 10.8(10.7) 6.9(6.8)

2 15.6(15.7) 7.4(6.8) 5.2(5.0) 27.2(28.9) 10.0(9.9) 5.5(5.2) 20.1(20.2) 10.8(10.7) 6.7(6.7)
3 17.1(17.1) 7.8(6.9) 5.4(5.1) 28.8(30.5) 10.4(10.2) 5.8(5.3) 21.4(21.7) 10.9(10.8) 6.7(6.7)

different values for 252σ 2
e /σ̄

2. However, the FPRs of Σ̂
thre
u when 252σ 2

e /σ̄
2

= 0.00252 are much higher than those when
252σ 2

e /σ̄
2

= 0.063, showing the impact from weaker signal. This again suggests that the bias-correction is very helpful,
especially for handling relatively weaker signals.

6.2. Real data analysis

We analyzed a real high-dimensional data set, studying the statistical properties of microstructure noises that
contaminate the trading prices (log-prices) of the constituent stocks of S&P 500. Intra-day tick-by-tick trading data on
two days, November 4 and 22, 2016, were downloaded from the TAQ database.

Besides the prices themselves, the Global Industry Classification Standard (GICS) codes are available to classify the
companies in S&P 500.3 Based on the GICS codes, there are 36, 27, 71, 84, 36, 58, 64, 65, 5, 28, and 26 companies
respectively belonging to the 11 different sectors — Energy (E), Materials (M), Industrials (I), Consumer Discretionary
(D), Consumer Staples (S), Health Care (H), Financial (F), Information Technology (T), Telecommunication Services (C),
Utilities (U), and Real Estate (R). Since there are only 5 companies belonging to Telecommunication Services, we therefore
combined the companies belonging to the Information Technology and Telecommunication Services together and denoted
them as ‘T’. Our analysis does not assume any information from the GICS classifications; we use it for validating and
interpreting the outcomes from applying the proposed method.

Upon applying the proposed methods, we report in Fig. 1 the magnitudes of the elements in the correlation matrices
of the microstructure noises estimated from Σ̂

bc,thre
u in (18), respectively, for November 4 and 22, 2016 with tuning

parameters suggested in Section 6.1.3. Here the companies are sorted by the categories defined by the GICS codes. The
red blocks along the diagonal in Fig. 1 represent the industrial classifications according to the digits 1–2 of GICS codes.
Hence, we can examine both the within- and between-block correlations as revealed by our estimator.

We remark with some interesting findings from Fig. 1. Overall, we can see that the estimated correlation matrices
are sparse with many components estimated as zero, indicating that our approach achieved the goal of parsimonious
covariance estimations that can (i) effectively identify nonzero components, and (ii) support providing meaningful
interpretations. More specifically, we see that the correlations differ substantially on these two days; and such difference
is related to the level of the Chicago Board Options Exchange Volatility Index (VIX), a popular measure of the stock
market’s expectation of volatility implied by S&P 500 index options. On November 4 when the VIX level was higher,
and the overall correlation level between different components of the microstructure noise is also found to be higher
than that on November 22. Upon examining the within- and between-category correlations with categories defined by
the GICS codes, we see that the correlations within each industrial sector are clear, especially for the Energy and Financial
sectors. In contrast, the correlations between different industrial sector are much weaker. Meanwhile, we observe that
the correlation estimations have no substantial difference between the cases with ∆K = 1 and 3, an indication that our
ethod is not sensitive for the choice of ∆K .
These findings suggest us that it is practically meaningful by studying the high-dimensional statistical properties of

he noises. For example, the between-day difference in correlations is helpful to understand the changes in the market
entiment under different market conditions. Furthermore, an interesting feature is the pattern found in the within- and

3 The code is 8-digits and each company has its unique code. Digits 1–2 of the code describe the company’s sector; digits 3–4 describe the
industry group; digits 5–6 describe the industry; digits 7–8 describe the sub-industry.
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heses) based on 1000 repetitions.

FPR

∆ = 1 ∆ = 3 ∆ = 2 ∆ = 1

) 100(100) 0.5(0.5) 0.9(0.9) 0.5(0.5)
) 100(100) 0.8(0.8) 1.2(1.2) 0.8(0.8)
) 100(100) 1.2(1.2) 1.6(1.7) 1.2(1.2)

) 100(100) 0.5(0.6) 1.0(1.0) 0.6(0.6)
) 100(100) 0.8(0.9) 1.3(1.4) 0.9(0.9)
) 100(100) 1.3(1.4) 1.8(1.9) 1.4(1.4)

) 100(100) 0.6(0.6) 0.5(0.5) 0.6(0.6)
) 100(100) 0.8(0.8) 0.7(0.6) 0.7(0.7)
) 100(100) 1.0(1.0) 0.9(0.9) 1.0(1.0)

) 100(100) 0.7(0.7) 0.5(0.5) 0.7(0.7)
) 100(100) 0.9(0.9) 0.7(0.7) 0.9(0.9)
) 100(100) 1.2(1.2) 1.1(1.1) 1.2(1.2)

) 100(100) 0.5(0.5) 0.5(0.5) 0.5(0.5)
) 100(100) 0.6(0.6) 0.6(0.6) 0.6(0.6)
) 100(100) 0.7(0.7) 0.7(0.7) 0.7(0.7)

) 100(100) 0.6(0.6) 0.6(0.5) 0.6(0.6)
) 100(100) 0.8(0.8) 0.7(0.7) 0.8(0.8)
) 100(100) 0.9(0.9) 0.9(0.8) 0.9(0.9)

) 100(100) 11.0(9.8) 13.4(12.1) 8.3(7.0)
) 100(100) 14.2(13.1) 16.1(15.0) 10.9(9.5)
) 100(100) 17.2(16.4) 18.7(17.8) 13.6(12.4)

) 100(100) 0.5(0.5) 0.8(0.8) 0.5(0.5)
) 100(100) 0.7(0.7) 1.0(1.1) 0.7(0.8)
) 100(100) 1.1(1.1) 1.5(1.5) 1.1(1.2)

) 100(100) 7.5(7.3) 6.0(5.8) 5.6(5.3)
) 100(100) 8.9(8.8) 7.5(7.2) 6.9(6.6)
) 100(100) 10.3(10.2) 9.0(8.7) 8.2(8.0)

) 100(100) 0.5(0.5) 0.4(0.4) 0.5(0.5)
) 100(100) 0.7(0.7) 0.6(0.6) 0.7(0.7)
) 100(100) 0.9(0.9) 0.8(0.8) 1.0(1.0)

) 100(100) 4.6(4.7) 3.9(4.0) 3.6(3.6)
) 100(100) 5.2(5.3) 4.6(4.6) 4.1(4.2)
) 100(100) 5.8(5.8) 5.2(5.2) 4.7(4.7)

) 100(100) 0.5(0.5) 0.4(0.4) 0.5(0.5)
) 100(100) 0.6(0.6) 0.5(0.5) 0.6(0.6)
) 100(100) 0.7(0.7) 0.7(0.7) 0.8(0.8)

15
Table 2
The empirical true positive rates (×100) and false positive rates (×100) with synchronous data when jumps exist and do not exist (in parent

Model 1 Model 2

TPR FPR TPR

252σ 2
e /σ̄

2 p Estimators ∆K ∆ = 3 ∆ = 2 ∆ = 1 ∆ = 3 ∆ = 2 ∆ = 1 ∆ = 3 ∆ = 2

0.063 50 Σ̂thre
u 1 100(100) 100(100) 100(100) 0.5(0.5) 0.9(0.9) 0.6(0.5) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.8(0.8) 1.2(1.2) 0.8(0.8) 100(100) 100(100
3 100(100) 100(100) 100(100) 1.2(1.2) 1.6(1.6) 1.2(1.2) 100(100) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.5(0.6) 1.0(1.0) 0.6(0.6) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.8(0.9) 1.4(1.3) 0.9(0.9) 100(100) 100(100
3 100(100) 100(100) 100(100) 1.3(1.3) 1.8(1.8) 1.4(1.4) 100(100) 100(100

100 Σ̂thre
u 1 100(100) 100(100) 100(100) 0.6(0.6) 0.5(0.4) 0.6(0.5) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.8(0.8) 0.6(0.6) 0.7(0.7) 100(100) 100(100
3 100(100) 100(100) 100(100) 1.0(1.0) 0.9(0.9) 1.0(1.0) 100(100) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.7(0.7) 0.5(0.5) 0.7(0.6) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.9(0.9) 0.7(0.7) 0.9(0.9) 100(100) 100(100
3 100(100) 100(100) 100(100) 1.2(1.2) 1.1(1.1) 1.2(1.2) 100(100) 100(100

200 Σ̂thre
u 1 100(100) 100(100) 100(100) 0.5(0.5) 0.5(0.5) 0.5(0.5) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.6(0.6) 0.6(0.6) 0.6(0.6) 100(100) 100(100
3 100(100) 100(100) 100(100) 0.7(0.7) 0.7(0.7) 0.7(0.7) 100(100) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.6(0.6) 0.5(0.5) 0.6(0.6) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.7(0.8) 0.7(0.7) 0.8(0.8) 100(100) 100(100
3 100(100) 100(100) 100(100) 0.9(0.9) 0.8(0.8) 0.9(0.9) 100(100) 100(100

0.00252 50 Σ̂thre
u 1 100(100) 100(100) 100(100) 5.6(4.4) 7.6(6.2) 4.0(3.0) 100(100) 100(100

2 100(100) 100(100) 100(100) 8.2(6.8) 10.0(8.6) 5.8(4.5) 100(100) 100(100
3 100(100) 100(100) 100(100) 10.9(9.7) 12.5(11.1) 8.0(6.6) 100(100) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.5(0.5) 0.8(0.8) 0.5(0.5) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.7(0.7) 1.1(1.1) 0.8(0.8) 100(100) 100(100
3 100(100) 100(100) 100(100) 1.1(1.1) 1.5(1.5) 1.2(1.2) 100(100) 100(100

100 Σ̂thre
u 1 100(100) 100(100) 100(100) 4.1(4.0) 3.0(2.8) 2.8(2.7) 100(100) 100(100

2 100(100) 100(100) 100(100) 5.4(5.2) 4.2(4.0) 3.8(3.6) 100(99.9) 100(100
3 100(100) 100(100) 100(100) 6.7(6.6) 5.5(5.3) 4.9(4.7) 99.9(99.8) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.5(0.5) 0.4(0.4) 0.5(0.5) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.7(0.7) 0.6(0.6) 0.7(0.7) 100(100) 100(100
3 100(100) 100(100) 100(100) 0.9(0.9) 0.8(0.8) 1.0(1.0) 100(100) 100(100

200 Σ̂thre
u 1 100(100) 100(100) 100(100) 2.8(2.8) 2.2(2.2) 2.0(2.0) 99.8(99.8) 100(100

2 100(100) 100(100) 100(100) 3.3(3.4) 2.7(2.8) 2.4(2.5) 99.8(99.7) 100(100
3 100(100) 100(100) 100(100) 3.9(3.9) 3.3(3.4) 2.9(3.0) 99.6(99.6) 100(99.9

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.5(0.5) 0.4(0.4) 0.5(0.5) 100(100) 100(100

2 100(100) 100(100) 100(100) 0.6(0.6) 0.5(0.5) 0.6(0.6) 100(100) 100(100
3 100(100) 100(100) 100(100) 0.7(0.7) 0.7(0.7) 0.8(0.8) 100(100) 100(100
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o not exist (in parentheses) based on 1000 repetitions.

FPR

λ = 1 λ = 3 λ = 2 λ = 1

) 100(100) 0.6(0.6) 0.9(0.9) 0.5(0.4)
) 100(100) 0.9(0.9) 1.3(1.2) 0.7(0.7)
) 100(100) 1.4(1.3) 1.7(1.7) 1.1(1.1)

) 100(100) 0.6(0.6) 1.0(1.0) 0.5(0.5)
) 100(100) 1.0(1.0) 1.4(1.4) 0.8(0.8)
) 100(100) 1.5(1.5) 1.9(1.9) 1.3(1.3)

) 100(100) 0.6(0.6) 0.4(0.4) 0.5(0.5)
) 100(100) 0.9(0.9) 0.7(0.7) 0.7(0.7)
) 100(100) 1.1(1.1) 0.9(0.9) 1.0(1.0)

) 100(100) 0.7(0.7) 0.5(0.5) 0.6(0.6)
) 100(100) 1.0(1.0) 0.8(0.8) 0.9(0.8)
) 100(100) 1.3(1.3) 1.1(1.1) 1.2(1.2)

) 100(100) 0.5(0.5) 0.5(0.5) 0.5(0.5)
) 100(100) 0.6(0.6) 0.6(0.6) 0.6(0.6)
) 100(100) 0.7(0.7) 0.7(0.7) 0.7(0.7)

) 100(100) 0.6(0.6) 0.6(0.6) 0.6(0.6)
) 100(100) 0.8(0.8) 0.7(0.7) 0.8(0.8)
) 100(100) 1.0(1.0) 0.9(0.9) 0.9(0.9)

) 100(100) 12.7(12.0) 15.3(14.6) 9.8(8.5)
) 100(100) 15.8(15.4) 18.1(17.6) 12.9(11.7)
) 100(100) 18.4(18.3) 20.5(20.4) 15.9(14.9)

) 100(100) 0.2(0.2) 0.4(0.5) 0.4(0.4)
) 100(100) 0.3(0.3) 0.6(0.6) 0.6(0.6)
) 100(100) 0.3(0.4) 0.7(0.8) 0.9(0.9)

) 100(100) 8.2(8.1) 7.0(6.9) 6.8(6.6)
) 100(100) 9.3(9.3) 8.6(8.4) 8.2(8.1)
) 100(100) 10.3(10.3) 10.0(9.9) 9.7(9.5)

) 100(100) 0.2(0.2) 0.2(0.2) 0.4(0.4)
) 100(100) 0.2(0.2) 0.3(0.3) 0.6(0.6)
) 100(100) 0.2(0.2) 0.4(0.4) 0.8(0.8)

) 100(99.9) 4.7(4.7) 4.4(4.5) 4.3(4.4)
) 100(99.9) 5.0(5.1) 5.0(5.1) 4.9(5.0)
) 99.9(99.8) 5.4(5.5) 5.6(5.6) 5.5(5.6)

) 100(100) 0.1(0.1) 0.2(0.2) 0.4(0.4)
) 100(100) 0.1(0.1) 0.2(0.2) 0.5(0.5)
) 100(100) 0.1(0.1) 0.3(0.3) 0.6(0.6)

16
Table 3
The empirical true positive rates (×100) and false positive rates (×100) in different settings with asynchronous data when jumps exist and d

Model 1 Model 2

TPR FPR TPR

252σ 2
e /σ̄

2 p Estimators ∆K λ = 3 λ = 2 λ = 1 λ = 3 λ = 2 λ = 1 λ = 3 λ = 2

0.063 50 Σ̂thre
u 1 100(100) 100(100) 100(100) 0.6(0.6) 0.9(0.9) 0.4(0.4) 99.3(98.9) 100(100

2 100(100) 100(100) 100(100) 0.9(0.9) 1.2(1.2) 0.7(0.7) 99.7(99.5) 100(100
3 100(100) 100(100) 100(100) 1.3(1.3) 1.6(1.6) 1.1(1.1) 99.8(99.7) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.6(0.6) 1.0(1.0) 0.5(0.5) 99.3(98.9) 100(100

2 100(100) 100(100) 100(100) 1.0(1.0) 1.4(1.4) 0.8(0.8) 99.7(99.4) 100(100
3 100(100) 100(100) 100(100) 1.5(1.5) 1.9(1.9) 1.3(1.3) 99.8(99.7) 100(100

100 Σ̂thre
u 1 100(100) 100(100) 100(100) 0.6(0.6) 0.4(0.4) 0.5(0.5) 99.4(99.1) 100(100

2 100(100) 100(100) 100(100) 0.8(0.8) 0.6(0.6) 0.7(0.7) 99.7(99.5) 100(100
3 100(100) 100(100) 100(100) 1.1(1.1) 0.9(0.9) 1.0(1.0) 99.8(99.7) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.7(0.7) 0.5(0.5) 0.6(0.6) 99.4(99.0) 100(100

2 100(100) 100(100) 100(100) 1.0(1.0) 0.8(0.8) 0.9(0.9) 99.7(99.4) 100(100
3 100(100) 100(100) 100(100) 1.3(1.3) 1.1(1.1) 1.2(1.2) 99.8(99.6) 100(100

200 Σ̂thre
u 1 100(100) 100(100) 100(100) 0.5(0.5) 0.5(0.5) 0.5(0.5) 99.4(98.8) 100(100

2 100(100) 100(100) 100(100) 0.6(0.6) 0.6(0.6) 0.6(0.6) 99.6(99.2) 100(100
3 100(100) 100(100) 100(100) 0.7(0.7) 0.7(0.7) 0.7(0.7) 99.7(99.4) 100(100

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.6(0.6) 0.6(0.6) 0.6(0.6) 99.3(98.6) 100(100

2 100(100) 100(100) 100(100) 0.8(0.8) 0.7(0.7) 0.8(0.8) 99.6(99.1) 100(100
3 100(100) 100(100) 100(100) 1.0(1.0) 0.9(0.9) 0.9(0.9) 99.7(99.3) 100(100

0.00252 50 Σ̂thre
u 1 99.8(100) 100(100) 100(100) 6.6(5.6) 8.9(7.9) 4.7(3.6) 88.4(89.8) 97.0(97.9

2 98.4(99.6) 100(100) 100(100) 9.3(8.4) 11.6(10.7) 7.1(5.7) 87.8(89.9) 96.6(97.4
3 95.5(98.7) 100(100) 100(100) 11.8(11.2) 14.1(13.4) 9.8(8.4) 87.1(89.7) 96.3(97.0

Σ̂bc,thre
u 1 100(100) 100(100) 100(100) 0.2(0.2) 0.5(0.5) 0.4(0.4) 91.8(92.9) 99.8(99.8

2 100(100) 100(100) 100(100) 0.3(0.3) 0.6(0.6) 0.6(0.6) 91.2(92.7) 99.8(99.8
3 99.9(100) 100(100) 100(100) 0.3(0.4) 0.7(0.8) 0.9(0.9) 90.0(92.3) 99.7(99.8

100 Σ̂thre
u 1 96.2(97.4) 100(100) 100(100) 4.5(4.4) 3.6(3.5) 3.6(3.4) 86.1(80.9) 98.1(97.4

2 93.4(94.8) 100(100) 100(100) 5.6(5.6) 5.0(4.9) 4.8(4.6) 85.4(80.2) 97.9(97.0
3 89.9(91.8) 100(99.8) 100(100) 6.6(6.6) 6.3(6.2) 6.1(6.0) 84.3(79.3) 97.7(96.6

Σ̂bc,thre
u 1 99.9(99.9) 100(100) 100(100) 0.2(0.2) 0.2(0.2) 0.4(0.4) 87.5(84.5) 99.8(99.6

2 99.8(99.8) 100(100) 100(100) 0.2(0.2) 0.3(0.3) 0.6(0.6) 86.5(83.4) 99.8(99.7
3 99.5(99.5) 100(100) 100(100) 0.2(0.2) 0.4(0.4) 0.8(0.8) 85.1(82.0) 99.8(99.7

200 Σ̂thre
u 1 89.3(89.6) 100(99.9) 100(100) 2.7(2.8) 2.6(2.6) 2.5(2.6) 76.1(70.5) 98.0(97.0

2 85.6(86.0) 99.9(99.8) 100(100) 3.1(3.2) 3.1(3.2) 3.0(3.1) 73.9(68.4) 97.9(96.9
3 82.4(82.7) 99.5(99.7) 100(100) 3.5(3.5) 3.6(3.7) 3.6(3.7) 71.9(66.6) 97.7(96.7

Σ̂bc,thre
u 1 99.1(99.1) 100(100) 100(100) 0.1(0.1) 0.2(0.2) 0.4(0.4) 76.1(70.9) 99.2(98.6

2 98.4(98.3) 100(100) 100(100) 0.1(0.1) 0.2(0.2) 0.5(0.5) 73.7(68.5) 99.2(98.5
3 97.4(97.3) 100(100) 100(100) 0.1(0.1) 0.3(0.3) 0.6(0.6) 71.4(66.3) 99.1(98.4
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Fig. 1. Magnitudes of the elements in the estimated correlation matrix of the microstructure noises on November 4 and 22, 2016.
Note: The graph describes the magnitudes of the elements in the estimated correlation matrices of the microstructure noises. Different colors
denote different values of the pairwise correlations. The red squares along the diagonal denote the sectors—Energy (E), Materials (M), Industrials
(I), Consumer Discretionary (D), Consumer Staples (S), Health Care (H), Financial (F), Information Technology and Telecommunication Services (T),
Utilities (U), and Real Estate (R).

between-industrial sector correlations, which is seen interrelated to the market conditions. Broad questions include how
the correlations between noises vary associated with the prices and/or the volatility of different assets, how the sparse
covariance matrix of the noises can help in solving practical problems, and so on. Supported by our new methods, we
expect more future investigations along this line.

7. Discussion

In this paper, we consider estimating the covariance matrix of the high-dimensional noise in high-frequency data. We
ropose an estimator with appropriate localization and thresholding to achieve the minimax optimal convergence rates
nder two kinds of loss. Although all theoretical properties of the proposed estimator are derived under the continuous-
ime model (1), the method developed in this paper could be applied to other types of process Xt , such as the smooth ones
ypically encountered in the functional data literature. The key property that makes our method work is the continuity
f the underlying process Xt , but the convergence rate of the proposed estimator depends on more specific assumptions,
uch as those implied by the model (1). On the other hand, Assumption 2 can be replaced by a weaker assumption
hat mini,j∈[p] ni,j → ∞ and maxi,j∈[p] maxk∈[ni,j−1]∆ti,j,k → 0 as n → ∞. If we write nmin = mini,j∈[p] ni,j and assume
maxi,j∈[p] maxk∈[ni,j−1]∆ti,j,k ≍ n−ϵ

min for some ϵ ∈ (0, 1], with suitable selection of K , Theorems 1 and 3 in Section 3 still
old with replacing n∗ by ng(ϵ)

min , where g(ϵ) ∈ (0, 1] is a function of ϵ. More specifically, if ϵ = 1, then g(1) = 1. However,
whether such rates are minimax optimal under the associated losses or not is unclear.
17
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In the analysis of this study, we focus on noises with homoscedastic covariance matrix, so that our target is Cov(Utk ) ≡

Σ u for each k ∈ [n]. As an interesting problem, our framework can be extensively developed to handle time-varying
heteroscedastic noise where the target covariance is time-dependent Cov(Uts ) at a given time point ts instead. Denote
by ◦ the Hadamard product. Assume Utk = γ tk ◦ χtk with γ tk = (γ1,tk , . . . , γp,tk )

⊤ and χtk = (χ1,tk , . . . , χp,tk )
⊤, where

1,t , . . . , γp,t are p nonnegative continuous-time processes, and each sequence {χj,tk}k≥1 is α-mixing. Without loss of
generality, we assume E(χj,tk ) ≡ 0 and E(χ2

j,tk
) = 1 for each j ∈ [p] and k ∈ [n]. Recall Gi ∩ Gj = {ti,j,1, . . . , ti,j,ni,j}

with ti,j,1 < · · · < ti,j,ni,j for any i, j ∈ [p]. We outline a framework as follows.
Step 1. Given some ξ̃ = o(1), define G(s)

i = {ti,ℓ ∈ Gi : |ti,ℓ − ts| ≤ ξ̃} and n(s)
i,j = |G(s)

i ∩ G(s)
j |. For each ti,j,k ∈ G(s)

i ∩ G(s)
j ,

write S(s)i,j,k = {ti,j,ℓ ∈ G(s)
i ∩ G(s)

j : K ≤ |ℓ− k| ≤ K + ∆K } and N (s)
i,j,k = |S(s)i,j,k|. We then define σ̂ (s)

u,i,j in the same manner
as σ̂u,i,j in (5) with replacing (ni,j,Ni,j,k, Si,j,k) by (n(s)

i,j ,N
(s)
i,j,k, S

(s)
i,j,k). Under the independence between the process γ t and

the sequence {χtk}k≥1, following our current technical arguments, we have σ̂ (s)
u,i,j → γi,tsγj,tsE(χi,tsχj,ts ) in probability with

suitable selection of ξ̃ .
Step 2. Given some integers K̃ ≥ 1 and h ≥ 1, if E(γi,tkγj,tk ) and E(χi,tkχj,tk ) are both slowly varying with k, we know

{Ñ (s)
i,j }

−1 ∑K̃
b=−K̃ σ̂

(s+bh)
u,i,j with Ñ (s)

i,j = |{s + bh ∈ [n] : |b| ≤ K̃ }| will provide a consistent estimator for Cov(Ui,ts ,Uj,ts ) under
some regularity conditions with suitable selections of K̃ and h.

Clearly, this problem differs substantially from our current investigation. The technical analysis of such estimator would
require an extensive framework including additional assumptions on {γ tk}k≥1 and {χtk}k≥1 which are beyond the scope
of this study. We plan to carefully investigate this problem in a future project.

8. Proofs

In the sequel, we use C to denote a generic positive finite universal constant that may be different in different uses.

8.1. Proof of Theorem 1

For any k ∈ [ni,j], let Si,j,k = {ti,j,ℓ : K ≤ |ℓ− k| ≤ K +∆K }. For any i, j ∈ [p], we have that

σ̂u,i,j − σu,i,j =
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Ui,ti,j,ℓ − Ui,ti,j,k )(Uj,ti,j,ℓ − Uj,ti,j,k ) − σu,i,j  
I(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Xi,ti,j,ℓ − Xi,ti,j,k )(Xj,ti,j,ℓ − Xj,ti,j,k )  
II(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Xi,ti,j,ℓ − Xi,ti,j,k )(Uj,ti,j,ℓ − Uj,ti,j,k )  
III(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Ui,ti,j,ℓ − Ui,ti,j,k )(Xj,ti,j,ℓ − Xj,ti,j,k )  
IV(i,j)

.

Define ξ = maxi,j∈[p] maxk∈[ni,j] maxti,j,ℓ∈Si,j,k |ti,j,ℓ − ti,j,k|. To prove Theorem 1, we need the following three propositions
whose proofs are given in Sections 8.2–8.4, respectively.

Proposition 1. Under Assumptions 1–3, we have that

max
i,j∈[p]

P{|I(i, j)| > v} ≲ {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp{−C(n∗L−1
n ρ−1v)ϕ/(ϕ+1)

} + v−1 exp(−Cn∗K−1ρ−1v)

or any v ≫ exp(−CL−ϕ
n Kϕ) and ρ ≥ 1. Furthermore, it holds that maxi,j∈[p] E{|I(i, j)|m} ≲ 1 for any fixed positive integer m.

emark 5. As shown in Section 8.2, the upper bound stated in Proposition 1 holds for any v ≫ δ := maxi,j∈[p] |n−1
i,j

∑ni,j
k=1

(N−1
i,j,kUi,ti,j,k

∑
ti,j,ℓ∈Si,j,k

Uj,ti,j,ℓ )|. Since δ ≲ exp(−CL−ϕ
n Kϕ), by Davydov’s inequality, we need the restriction v ≫

xp(−CL−ϕKϕ) in general settings.
n

18
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(i) If {Utk} is an independent sequence, we can select Ln = 1/2 and ϕ = ∞ in Assumption 1. Then we have δ = 0 in this
setting, and the upper bound stated in Proposition 1 can be refined as {1+n∗(K+Ln)−1ρ−1v2}−ρ/2+v−1 exp(−Cn∗K−1ρ−1v)
which holds for any v > 0 and ρ ≥ 1.

(ii) If {Utk} is an Ln-dependent sequence, we can select ϕ = ∞ in Assumption 1. If K > Ln, we have δ = 0 in this setting,
and the upper bound stated in Proposition 1 can be refined as {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp(−Cn∗K−1ρ−1v)
hich holds for any v > 0 and ρ ≥ 1.

roposition 2. Under Assumptions 2, 4 and 5, we have that

max
i,j∈[p]

P{|II(i, j)| > v} ≲ exp(−Cn∗K−1v2) + exp{−C(n∗K−1)γ /(γ+4)
}

or any v = o{(n−1
∗

K )2/(γ+4)
}, where γ is specified in Assumption 5. Furthermore, it holds that maxi,j∈[p] E{|II(i, j)|m} ≲ n−m

∗
Km

or any fixed positive integer m.

roposition 3. Under Assumptions 1–5, if K (log n∗)1+2/γ
= o(n∗) and K ≳ Ln, we have that

max
i,j∈[p]

P{|III(i, j)| ≥ v} ≲ exp(−Cn∗L−1
n v2) + exp{−C(n∗L−1

n v)ϕ/(2ϕ+1)
} + exp{−C(n∗K−1)γ /(γ+2)

}

or any v > 0, where γ is specified in Assumption 5. Furthermore, it holds that maxi,j∈[p] E{|III(i, j)|m} ≲ n−m/2
∗ Km/2 for any

ixed positive integer m. The same results also hold for IV(i, j).

emark 6. If ϕ = ∞, the upper bound stated in Proposition 3 can be refined as exp(−Cn∗L−1
n v2)+exp{−C(n∗L−1

n v)1/2}+

xp{−C(n∗K−1)γ /(γ+2)
}.

Write ℵ = (n−1
∗

K log p)1/2. We first consider the case with ϕ < ∞. Notice that (1 + cx−1)−x
≥ e−c for any x > 0 and

> 0. By Propositions 1–3, if K (log n∗)1+2/γ
= o(n∗) and K ≳ Ln, we have

max
i,j∈[p]

P
(
|σ̂u,i,j − σu,i,j| > v

)
≲ {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp{−C(n∗L−1

n ρ−1v)ϕ/(ϕ+1)
} (19)

+ v−1 exp(−Cn∗K−1ρ−1v) + exp{−C(n∗K−1)γ /(γ+4)
} + exp{−C(n∗L−1

n v)ϕ/(2ϕ+1)
}

or any v ≫ exp(−CL−ϕ
n Kϕ), v = o{(n−1

∗
K )2/(γ+4)

} and ρ ≥ 1. Since K−ϕLϕn log{n∗(K log p)−1
} = o(1) and log p =

{(n∗K−1)γ /(γ+4)
}, then exp(−CL−ϕ

n Kϕ) = o(ℵ) and ℵ = o{(n−1
∗

K )2/(γ+4)
}. Given a sufficiently large constant α > 0, it

olds that

E
(
|Σ̂ u − Σ u|∞

)
≤ E

{
max
i,j∈[p]

|σ̂u,i,j − σu,i,j|I
(
|σ̂u,i,j − σu,i,j| ≤ αℵ

)}
+ E

{
max
i,j∈[p]

|σ̂u,i,j − σu,i,j|I
(
|σ̂u,i,j − σu,i,j| > αℵ

)}
= : A1 + A2 .

t is easy to see that A1 ≤ αℵ. By Cauchy–Schwarz inequality, we have

A2 ≤

p∑
i,j=1

E
{
|σ̂u,i,j − σu,i,j|I

(
|σ̂u,i,j − σu,i,j| > αℵ

)}
≤ p2 max

i,j∈[p]

{
E
(
|σ̂u,i,j − σu,i,j|

2)}1/2
· max
i,j∈[p]

{
P
(
|σ̂u,i,j − σu,i,j| > αℵ

)}1/2
.

et ρ ≍ log p ≥ 1. Since K log p = o(n∗), then it follows from (19) that

max
i,j∈[p]

P
(
|σ̂u,i,j − σu,i,j| > αℵ

)
≲ p−2w

+ exp{−C(n∗KL−2
n log p)ϕ/(4ϕ+2)

} + exp[−C{n∗K−1(log p)−1
}
1/2

]

+ exp{−C(n∗K−1)γ /(γ+4)
} + exp[−C{n∗KL−2

n (log p)−1
}
ϕ/(2ϕ+2)

]

ith some sufficiently large w > 0, where w → ∞ as α → ∞. Due to maxi,j∈[p] E(|σ̂u,i,j − σu,i,j|
2) ≲ 1, if log p =

[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ }] with χ = min{γ /(γ + 4), 1/3}, then

A2 ≲ p2−w + p2 exp{−C(n∗KL−2
n log p)ϕ/(4ϕ+2)

} + p2 exp[−C{n∗K−1(log p)−1
}
1/2

]

+ p2 exp{−C(n∗K−1)γ /(γ+4)
} + p2 exp[−C{n∗KL−2

n (log p)−1
}
ϕ/(2ϕ+2)

]

≲ p2−w + exp{−C(n∗KL−2
n log p)ϕ/(4ϕ+2)

} + exp[−C{n∗K−1(log p)−1
}
1/2

]

+ exp{−C(n∗K−1)γ /(γ+4)
} + exp[−C{n∗KL−2

n (log p)−1
}
ϕ/(2ϕ+2)

]

= o{(n−1
∗

K log p)4} .

ence, supP1
E(|Σ̂ u − Σ u|∞) ≲ (n−1

∗
K log p)1/2 provided that K (log n∗)1+2/γ

= o(n∗), K ≳ Ln, K−ϕLϕn log{n∗(K log p)−1
} =

−2K )ϕ/(3ϕ+2), (n K−1)χ }].
(1) and log p = o[min{(n∗Ln ∗

19
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Now we consider the case with ϕ = ∞. As we discussed in Remark 5(i), if {Utk} is an independent sequence, we can
elect Ln = 1/2. Due to K ≥ 1, we have K > Ln in this case. Without loss of generality, we can always assume K > Ln when
= ∞. Based on Remark 5, it holds that {1+ n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp(−Cn∗K−1ρ−1v) for any v > 0 and ρ ≥ 1
nder either of the scenarios: (i) {Utk} is an independent sequence, and (ii) {Utk} is an Ln-dependent sequence. Repeating
he arguments for ϕ < ∞, we have supP1

E(|Σ̂ u − Σ u|∞) ≲ (n−1
∗

K log p)1/2 provided that K (log n∗)1+2/γ
= o(n∗), K > Ln

nd log p = o{(n∗K−1)χ }. We complete the proof of Theorem 1. □

.2. Proof of Proposition 1

To prove Proposition 1, we need the following lemma whose proof is given in Section 8.16.

emma 1. Let {zt}ñt=1 be an α-mixing sequence of real-valued and centered random variables with α-mixing coefficients
α(k)}k≥1. Assume there exist some universal constants a1 > 1, a2, b1, b2 > 0, r ∈ (0, 2] and ϕ > 0 such that (i)
axt∈[ñ] P(|zt | > u) ≤ b1 exp(−b2ur ) for any u > 0, (ii) α(k) ≤ a1 exp(−a2L̃

−ϕ

ñ |k − m|
ϕ
+) for any integer k ≥ 1, where

˜ñ > 0 and m = o(ñ) ≥ 0 may diverge with ñ. Let s2ñ =
∑ñ

t1,t2=1 |Cov(zt1 , zt2 )| and r∗ = rϕ/(r + ϕ). It holds that

P
(
sup
k∈[ñ]

⏐⏐⏐⏐ k∑
t=1

zt

⏐⏐⏐⏐ ≥ ñx
)

≲ (1 + ñ2x2ρ−1s−2
ñ )−ρ/2 + x−1 exp(−Cñr∗xr∗ρ−r∗ L̃−r∗

ñ ) + x−1 exp(−Cm−r ñrxrρ−r )

or any x > 0 and ρ ≥ 1, where we adopt the convention exp(−C0−rxr ) = 0 for any x > 0.

emark 7. If ϕ = ∞, we have r∗ = r . Then the upper bound in Lemma 1 can be refined as (1 + ñ2x2ρ−1s−2
ñ )−ρ/2 +

−1 exp{−Cñrxrρ−r (m + L̃ñ)−r
}.

Now we begin to prove Proposition 1. Recall that

I(i, j) =
1
ni,j

ni,j∑
ℓ=1

(
1
2

+
1
2

∑
ti,j,k∈Si,j,ℓ

1
Ni,j,k

)
(Ui,ti,j,ℓUj,ti,j,ℓ − σu,i,j)  

I1(i,j)

−
1

2ni,j

ni,j∑
k=1

Ui,ti,j,k

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

Uj,ti,j,ℓ  
I2(i,j)

−
1

2ni,j

ni,j∑
k=1

Uj,ti,j,k

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

Ui,ti,j,ℓ  
I3(i,j)

. (20)

n the sequel, we will bound the tail probabilities of I1(i, j), I2(i, j) and I3(i, j), respectively.
For each ℓ ∈ [ni,j], let ζi,j,ℓ = 2−1(1+

∑
ti,j,k∈Si,j,ℓ

N−1
i,j,k)(Ui,ti,j,ℓUj,ti,j,ℓ −σu,i,j). Then we have I1(i, j) = n−1

i,j
∑ni,j

ℓ=1 ζi,j,ℓ. Recall
hat Ni,j,k = |Si,j,k| with Si,j,k = {ti,j,ℓ : K ≤ |ℓ− k| ≤ K +∆K }. Since K < K +∆K = o(n∗) and ni,j ≍ n∗ → ∞ as n → ∞,
e then have 2(K +∆K ) < ni,j for sufficiently large n. Thus for sufficiently large n, it holds that

Ni,j,k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆K + 1 , if 1 ≤ k ≤ K ,
∆K − K + k + 1 , if K + 1 ≤ k ≤ K +∆K ,

2∆K + 2 , if K +∆K + 1 ≤ k ≤ ni,j − K −∆K ,

ni,j +∆K − K − k + 2 , if ni,j − K −∆K + 1 ≤ k ≤ ni,j − K ,
∆K + 1 , if ni,j − K + 1 ≤ k ≤ ni,j ,

(21)

hich implies that mink∈[ni,j] Ni,j,k = ∆K + 1 and maxk∈[ni,j] Ni,j,k = 2∆K + 2. Therefore, we have that C−1 <

ti,j,k∈Si,j,ℓ
N−1

i,j,k < C holds uniformly over ℓ ∈ [ni,j] and i, j ∈ [p]. By Lemma 2 of Chang et al. (2013), Assumption 3
ields maxi,j∈[p],ℓ∈[ni,j] P(|ζi,j,ℓ| > v) ≤ C exp(−Cv) for any v > 0, which implies maxi,j∈[p],ℓ∈[ni,j] E(|ζi,j,ℓ|

4) ≤ C . It follows
rom Davydov’s inequality that

∑ni,j
ℓ1,ℓ2=1 |Cov(ζi,j,ℓ1 , ζi,j,ℓ2 )| ≲

∑ni,j
ℓ2=1 1 +

∑ni,j
ℓ2=1

∑ni,j
ℓ1=ℓ2+1 exp(−CL−ϕ

n |ℓ1 − ℓ2|
ϕ) ≲ n∗Ln.

y Lemma 1 with m = 0 and L̃ñ = Ln, we have

max
i,j∈[p]

P{|I1(i, j)| ≥ v} ≲ (1 + n∗L−1
n ρ−1v2)−ρ/2 + v−1 exp{−C(n∗L−1

n ρ−1v)ϕ/(ϕ+1)
} (22)

or any v > 0 and ρ ≥ 1.
Define ηi,j,k = (2Ni,j,k)−1Ui,ti,j,k

∑
ti,j,ℓ∈Si,j,k

Uj,ti,j,ℓ . Then I2(i, j) = n−1
i,j

∑ni,j
k=1 ηi,j,k. Since maxi,j∈[p],k∈[ni,j] Ni,j,k ≤ 2∆K + 2 for

ufficiently large n, we know max N is uniformly bounded away from infinity due to the fact ∆ is a fixed
i,j∈[p],k∈[ni,j] i,j,k K

20
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onstant. It follows from Assumption 3 that

max
i,j∈[p],k∈[ni,j]

P(|ηi,j,k| ≥ x) ≤ max
i,j∈[p],k∈[ni,j]

P
(⏐⏐⏐⏐ 1

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

Uj,ti,j,ℓ

⏐⏐⏐⏐ ≥
√
x
)

+ max
i,j∈[p],k∈[ni,j]

P
(
|Ui,ti,j,k | ≥ 2

√
x
)

≤ max
i,j∈[p],k∈[ni,j]

∑
ti,j,ℓ∈Si,j,k

P
(
|Uj,ti,j,ℓ | ≥

√
x
)
+ max

i,j∈[p],k∈[ni,j]
P
(
|Ui,ti,j,k | ≥ 2

√
x
)

≲ exp(−Cx)

or any x > 0. By Davydov’s inequality, we have
∑ni,j

k1,k2=1 |Cov(ηi,j,k1 , ηi,j,k2 )| ≲ n∗(K + Ln). Write η̊i,j,k = ηi,j,k − µi,j,k

with µi,j,k = E(ηi,j,k). By Lemma 1 with m = 2(K + ∆K ) and L̃ñ = Ln, maxi,j∈[p] P(|n−1
i,j

∑ni,j
k=1 η̊i,j,k| ≥ x) ≲ {1 +

n∗(K + Ln)−1ρ−1x2}−ρ/2 + x−1 exp{−C(n∗L−1
n ρ−1x)ϕ/(ϕ+1)

} + x−1 exp(−Cn∗K−1ρ−1x) for any x > 0 and ρ ≥ 1. Let
Si,j,k,1 = {ti,j,ℓ ∈ Si,j,k : ℓ < k} and Si,j,k,2 = {ti,j,ℓ ∈ Si,j,k : ℓ > k}. Then µi,j,k = (2Ni,j,k)−1

{E(Ui,ti,j,k
∑

ti,j,ℓ∈Si,j,k,1
Uj,ti,j,ℓ ) +

E(Ui,ti,j,k
∑

ti,j,ℓ∈Si,j,k,2
Uj,ti,j,ℓ )}. By Davydov’s inequality and Jensen’s inequality, it holds that |E(Ui,ti,j,k

∑
ti,j,ℓ∈Si,j,k,1

Uj,ti,j,ℓ1
)| ≲

{E(|Ui,ti,j,k |
4)}1/4{E(|

∑
ti,j,ℓ∈Si,j,k,1

Uj,ti,j,ℓ |
4)}1/4α1/2

n (K ) ≲ exp(−CL−ϕ
n Kϕ). Similarly, we have |E(Ui,ti,j,k

∑
ti,j,ℓ∈Si,j,k,2

Uj,ti,j,ℓ )| ≲

xp(−CL−ϕ
n Kϕ). Thus, it holds that maxi,j∈[p],k∈[ni,j] |µi,j,k| ≲ exp(−CL−ϕ

n Kϕ), which implies maxi,j∈[p] |n−1
i,j

∑ni,j
k=1 µi,j,k| ≲

xp(−CL−ϕ
n Kϕ). For any v ≫ exp(−CL−ϕ

n Kϕ) and ρ ≥ 1, we have

max
i,j∈[p]

P{|I2(i, j)| ≥ v} ≤ max
i,j∈[p]

P
(⏐⏐⏐⏐ 1

ni,j

ni,j∑
k=1

η̊i,j,k

⏐⏐⏐⏐ ≥ v −

⏐⏐⏐⏐ 1
ni,j

ni,j∑
k=1

µi,j,k

⏐⏐⏐⏐) ≤ max
i,j∈[p]

P
(⏐⏐⏐⏐ 1

ni,j

ni,j∑
k=1

η̊i,j,k

⏐⏐⏐⏐ ≥
v

2

)
≲ {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp{−C(n∗L−1

n ρ−1v)ϕ/(ϕ+1)
} + v−1 exp(−Cn∗K−1ρ−1v) .

nalogously,

max
i,j∈[p]

P{|I3(i, j)| ≥ v} ≲ {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp{−C(n∗L−1
n ρ−1v)ϕ/(ϕ+1)

} + v−1 exp(−Cn∗K−1ρ−1v)

or any v ≫ exp(−CL−ϕ
n Kϕ) and ρ ≥ 1. Note that I(i, j) = I1(i, j) + I2(i, j) + I3(i, j). Together with (22), it holds that

max
i,j∈[p]

P{|I(i, j)| ≥ v} ≲ {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp{−C(n∗L−1
n ρ−1v)ϕ/(ϕ+1)

} + v−1 exp(−Cn∗K−1ρ−1v)

or any v ≫ exp(−CL−ϕ
n Kϕ) and ρ ≥ 1.

By (20), |I(i, j)|m ≲ |I1(i, j)|m + |I2(i, j)|m + |I3(i, j)|m for any fixed positive integer m. By Assumption 3, E{|I1(i, j)|m} ≲
−1
i,j

∑ni,j
ℓ=1 E(|Ui,ti,j,ℓUj,ti,j,ℓ − σu,i,j|

m) ≲ 1 and E{|I2(i, j)|m} ≲ n−1
i,j

∑ni,j
k=1 N

−1
i,j,k

∑
ti,j,ℓ∈Si,j,k

E(|Ui,ti,j,kUj,ti,j,ℓ |
m) ≲ 1. Analogously,

e also have E{|I3(i, j)|m} ≲ 1. Thus, maxi,j∈[p] E{|I(i, j)|m} ≲ 1. We complete the proof of Proposition 1. □

.3. Proof of Proposition 2

Notice that dXi,t = µi,t dt + σi,t dBi,t . Then

II(i, j) =
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

µi,s ds
)(∫ ti,j,ℓ

ti,j,k

µj,s ds
)

  
II1(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

σi,s dBi,s

)(∫ ti,j,ℓ

ti,j,k

σj,s dBj,s

)
  

II2(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

µi,s ds
)(∫ ti,j,ℓ

ti,j,k

σj,s dBj,s

)
  

II3(i,j)

(23)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

σi,s dBi,s

)(∫ ti,j,ℓ

ti,j,k

µj,s ds
)

  
II4(i,j)

.

ecall that ξ = maxi,j∈[p] maxk∈[ni,j] maxti,j,ℓ∈Si,j,k |ti,j,ℓ − ti,j,k|. In the sequel, we will bound the tail probabilities of
max |II (i, j)|, max |II (i, j)|, max |II (i, j)| and max |II (i, j)|, respectively.
i,j∈[p] 1 i,j∈[p] 2 i,j∈[p] 3 i,j∈[p] 4
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For any k = [ni,j], define ζ ∗

i,j,k = N−1
i,j,k

∑
ti,j,ℓ∈Si,j,k

(
∫ ti,j,ℓ
ti,j,k

µi,s ds)(
∫ ti,j,ℓ
ti,j,k

µj,s ds). Then we have II1(i, j) = (2ni,j)−1 ∑ni,j
k=1 ζ

∗

i,j,k.
e will first bound E{exp(θζ ∗

i,j,k)} for any |θ | ∈ (0, C5ξ
−2

], where C5 is specified in Assumption 4. By Jensen’s inequality
and Cauchy–Schwarz inequality,

E{exp(θζ ∗

i,j,k)} ≤
1

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

E
[
exp

{
θ

(∫ ti,j,ℓ

ti,j,k

µi,s ds
)(∫ ti,j,ℓ

ti,j,k

µj,s ds
)}]

≤
1

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

1
|ti,j,ℓ − ti,j,k|2

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

E{exp(θ |ti,j,ℓ − ti,j,k|2µi,s1µj,s2 )} ds1ds2 (24)

≤
1

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

1
|ti,j,ℓ − ti,j,k|2

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

[
E{exp(|θ ||ti,j,ℓ − ti,j,k|2µ2

i,s1 )}
]1/2 ds1

×

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

[
E{exp(|θ ||ti,j,ℓ − ti,j,k|2µ2

j,s2 )}
]1/2 ds2

≤ max
i∈[p]

sup
0≤s≤T

E{exp(|θ |ξ 2µ2
i,s)} .

Recall that ξ ≍ Kn−1
∗

= o(1). By Assumption 4, maxi∈[p] sup0≤s≤T E{exp(|θ |ξ 2µ2
i,s)} ≤ exp(C5C7) · exp(C6ξ

4θ2) ≲ exp(Cξθ2)
for any |θ | ∈ (0, C5ξ

−2
]. Therefore, by (24), maxi,j∈[p],k∈[ni,j] E{exp(θζ ∗

i,j,k)} ≲ exp(Cξθ2) for any |θ | ∈ (0, C5ξ
−2

]. By Lemma
2 of Fan et al. (2012), it holds that

max
i,j∈[p]

P{|II1(i, j)| > v} ≲ exp(−Cv2ξ−1) (25)

for any v = o(ξ−1).
For any k ∈ [ni,j], define ζ ∗∗

i,j,k = N−1
i,j,k

∑
ti,j,ℓ∈Si,j,k

(
∫ ti,j,ℓ
ti,j,k

σi,s dBi,s)(
∫ ti,j,ℓ
ti,j,k

σj,s dBj,s). Then we have II2(i, j) = (2ni,j)−1 ∑ni,j
k=1 ζ

∗∗

i,j,k.
For any constant d ∈ (0, ξ−1/2

], define a stopping time Γi,d = T∧inf{t > 0 : sup0≤s≤t σi,s > d}. For any |θ | ∈ (0, d−2ξ−1/4],
by Jensen’s inequality and Cauchy–Schwarz inequality, it holds that

E{exp(θζ ∗∗

i,j,k)I(Γi,d = Γj,d = T )}

≤
1

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

E
[
exp

{
θ

(∫ ti,j,ℓ

ti,j,k

σi,s dBi,s

)(∫ ti,j,ℓ

ti,j,k

σj,s dBj,s

)}
I(Γi,d = Γj,d = T )

]
(26)

≤
1

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(
E
[
exp

{
|θ |

(∫ ti,j,ℓ

ti,j,k

σi,s dBi,s

)2}
I(Γi,d = T )

])1/2

×

(
E
[
exp

{
|θ |

(∫ ti,j,ℓ

ti,j,k

σj,s dBj,s

)2}
I(Γj,d = T )

])1/2

.

Restricted on the event {Γi,d = T }, we have sup0≤s≤T σi,s ≤ d. For any |θ | ∈ (0, d−2ξ−1/4], it holds that

exp
{
|θ |

(∫ ti,j,ℓ

ti,j,k

σi,s dBi,s

)2}
I(Γi,d = T )

≤ exp
[
|θ |

{(∫ ti,j,ℓ∨ti,j,k

ti,j,ℓ∧ti,j,k

σi,s dBi,s

)2

−

∫ ti,j,ℓ∨ti,j,k

ti,j,ℓ∧ti,j,k

σ 2
i,s ds

}]
I(Γi,d = T ) (27)

× exp
(

|θ |

∫ ti,j,ℓ∨ti,j,k

ti,j,ℓ∧ti,j,k

σ 2
i,s ds

)
I(Γi,d = T )

≤ C exp
[
|θ |

{(∫ ti,j,ℓ∨ti,j,k

ti,j,ℓ∧ti,j,k

σi,s dBi,s

)2

−

∫ ti,j,ℓ∨ti,j,k

ti,j,ℓ∧ti,j,k

σ 2
i,s ds

}]
I(Γi,d = T ) .

ecall d ≤ ξ−1/2. Following the arguments of Equation (A.5) in Fan et al. (2012), we have that

E
{
exp

[
|θ |

{(∫ ti,j,ℓ∨ti,j,k

ti,j,ℓ∧ti,j,k

σi,s dBi,s

)2

−

∫ ti,j,ℓ∨ti,j,k

ti,j,ℓ∧ti,j,k

σ 2
i,s ds

}]
I(Γi,d = T )

⏐⏐⏐⏐F∗

i,ti,j,ℓ∧ti,j,k

}
≤ E[exp{|θ |(B2

i,d2|ti,j,ℓ−ti,j,k|
− d2|ti,j,ℓ − ti,j,k|)}] = E[exp{|θ |d2|ti,j,ℓ − ti,j,k|(Z2

− 1)}]

≤ exp(Cd4ξ 2θ2) ≤ exp{C(dξ 1/2)4−τ θ2} (28)
22
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or any τ ∈ [0, 4), where Z ∼ N(0, 1) and F∗

i,t is the σ -field generated by (σi,s, Bi,s)0≤s≤t . Thus, by (26) and (27), we have
maxi,j∈[p],k∈[ni,j] E{exp(θζ ∗∗

i,j,k)I(Γi,d = Γj,d = T )} ≲ exp{C(dξ 1/2)4−τ θ2} for any |θ | ∈ (0, d−2ξ−1/4]. By Lemma 2 of Fan et al.
(2012), it holds that maxi,j∈[p] P{|II2(i, j)| > v,Γi,d = Γj,d = T } ≲ exp{−Cv2(dξ 1/2)τ−4

} for any v = o{(dξ 1/2)2−τ }. Note
that

P{|II2(i, j)| > v} ≤ P{|II2(i, j)| > v,Γi,d = Γj,d = T } + P(Γi,d ̸= T ) + P(Γj,d ̸= T ) .

Since Γi,d = T ∧ inf{t > 0 : sup0≤s≤t σi,s > d}, by Assumption 5, we have maxi∈[p] P(Γi,d ̸= T ) ≤ maxi∈[p] P(sup0≤s≤T σi,s >

d) ≲ exp(−Cdγ ). Then

max
i,j∈[p]

P{|II2(i, j)| > v} ≲ exp{−Cv2(dξ 1/2)τ−4
} + exp(−Cdγ ) (29)

for any v = o{(dξ 1/2)2−τ } with d ≤ ξ−1/2.
Due to xy ≤ 2−1(x2 + y2) for any x, y > 0, we have

2|II3(i, j)| ≤
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

µi,s ds
)2

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

σj,s dBj,s

)2

.

dentical to deriving (25) and (29), it holds that

max
i,j∈[p]

P{|II3(i, j)| > v} ≲ exp(−Cv2ξ−1) + exp{−Cv2(dξ 1/2)τ−4
} + exp(−Cdγ )

or any v = o{(dξ 1/2)2−τ } with d ≤ ξ−1/2. Such upper bound also holds for maxi,j∈[p] P{|II4(i, j)| > v}. Together with (25)
nd (29), we have

max
i,j∈[p]

P{|II(i, j)| > v} ≲ exp(−Cv2ξ−1) + exp{−Cv2(dξ 1/2)τ−4
} + exp(−Cdγ ) (30)

for any v = o{(dξ 1/2)2−τ ∧ ξ−1
} with d ≤ ξ−1/2. To make maxi,j∈[p] |II(i, j)| = Op(n

−1/2
∗ K 1/2 log1/2 p), it suffices to

require d2τ−4ξ τ−1 log p = o(1), ξ 3 log p = o(1), d8−2τ ξ 2−τ = O(1), d2ξ ≤ 1 and log p = o(dγ ). Due to τ ∈ [0, 4),
ξ = o(1) and d → ∞, d8−2τ ξ 2−τ → ∞ when τ ∈ [2, 4). Thus, we need to restrict τ ∈ [0, 2), which leads to
ξ (τ−1)/(2−τ )(log p)1/(2−τ ) ≪ d2 ≪ ξ (τ−2)/(4−τ ) and log p = o(dγ ∧ξ−3). It follows from ξ (τ−1)/(2−τ )(log p)1/(2−τ ) ≪ ξ (τ−2)/(4−τ )

that ξ τ/(4−τ ) log p = o(1). Selecting d sufficiently close to ξ (τ−2)/(8−2τ ), we have log p = o[min{ξ−τ/(4−τ ), ξ γ (τ−2)/(8−2τ )
}]. To

make p diverge as fast as possible, we can choose τ = 2γ /(γ + 2) and d = ξ−1/(4+γ ). Note that ξ−1
≍ n∗K−1. It follows

from (30) that

max
i,j∈[p]

P{|II(i, j)| > v} ≲ exp(−Cn∗K−1v2) + exp{−C(n∗K−1)γ /(γ+4)
}

for any v = o{(n−1
∗

K )2/(γ+4)
}.

By (23), II(i, j) = II1(i, j) + II2(i, j) + II3(i, j) + II4(i, j). Notice that for sufficiently large n, mink∈[ni,j] Ni,j,k = ∆K + 1
and maxk∈[ni,j] Ni,j,k = 2∆K + 2. Since ∆K is a fixed constant, by Assumption 4, for any fixed positive integer m, Jensen’s
inequality implies that

max
i,j∈[p]

E{|II1(i, j)|m} ≲ max
i,j∈[p]

max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

E
{(∫ ti,j,ℓ

ti,j,k

µi,s ds
)2m

+

(∫ ti,j,ℓ

ti,j,k

µj,s ds
)2m}

≲ ξ 2m−1 max
i,j∈[p]

max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

sup
0≤s≤T

E(|µi,s|
2m) ds ≲ ξ 2m . (31)

eanwhile, by Assumption 4 and Burkholder–Davis–Gundy inequality, it holds that

max
i,j∈[p]

E{|II2(i, j)|m} ≲ max
i,j∈[p]

max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

E
{(∫ ti,j,ℓ

ti,j,k

σi,s dBi,s

)2m}
≲ ξm . (32)

ue to maxi,j∈[p] E{|II3(i, j)|m+|II4(i, j)|m} ≲ maxi,j∈[p] maxk∈[ni,j] maxti,j,ℓ∈Si,j,k E{(
∫ ti,j,ℓ
ti,j,k

µi,s ds)2m+(
∫ ti,j,ℓ
ti,j,k

σj,s dBj,s)2m}, together
ith (31) and (32), maxi,j∈[p] E{|II3(i, j)|m + |II4(i, j)|m} ≲ ξm. Hence, maxi,j∈[p] E{|II(i, j)|m} ≲ ξm. We complete the proof of
roposition 2. □

.4. Proof of Proposition 3

To prove Proposition 3, we need the following lemma whose proof is given in Section 8.17.

emma 2. Let {zt}ñt=1 be an α-mixing sequence of real-valued and centered random variables with α-mixing coefficients
α(k)} . Assume there exist some universal constants a > 1, a > 0, r̃ ≥ 0 and ϕ > 0 such that (i) max E(|z |

k) ≤
k≥1 1 2 t∈[ñ] t

23
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(
w

f

F

a

F

I
i

w

k!)1+r̃Hk
ñ for any integer k ≥ 2, where Hñ > 0 may diverge with ñ, (ii) α(k) ≤ a1 exp{−a2(L̃−1

ñ k)ϕ} for any integer k ≥ 1,
here L̃ñ > 0 may diverge with ñ. Let Sñ =

∑ñ
t=1 zt . It holds that

P(|Sñ| ≥ ñx) ≲ exp(−CñL̃−1
ñ H−2

ñ x2) + exp{−C(ñL̃−1
ñ H−1

ñ x)1/(1+ř)
}

or any x > 0, where ř = 1 + r̃ + ϕ−1.

Remark 8. If ϕ = ∞, the upper bound in Lemma 2 holds with ř = 1 + r̃ .

By the definition of III(i, j), we can reformulate it as

III(i, j) =
1

2ni,j

ni,j∑
k=1

∑
ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)
(Xi,ti,j,k − Xi,ti,j,ℓ )Uj,ti,j,k .

or each i, j ∈ [p] and k ∈ [ni,j], define

Gi,j,k =

∑
ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)
(Xi,ti,j,k − Xi,ti,j,ℓ )

nd Di,j = maxk∈[ni,j] |Gi,j,k|. Recall ξ = maxi,j∈[p] maxk∈[ni,j] maxti,j,ℓ∈Si,j,k |ti,j,ℓ − ti,j,k|.
We will first consider the tail probability P(Di,j > v). By Bonferroni inequality, we have

P(Di,j > v) ≤

ni,j∑
k=1

P
{⏐⏐⏐⏐ ∑

ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)
(Xi,ti,j,k − Xi,ti,j,ℓ )

⏐⏐⏐⏐ > v

}

≤

ni,j∑
k=1

P
{⏐⏐⏐⏐ ∑

ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

µi,s ds
⏐⏐⏐⏐ > v

2

}
(33)

+

ni,j∑
k=1

P
{⏐⏐⏐⏐ ∑

ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐ > v

2

}
.

or any θ > 0, by Triangle inequality and Jensen’s inequality, similar to (24), it holds that

max
k∈[ni,j]

E
[
exp

{
θ

⏐⏐⏐⏐ ∑
ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

µi,s ds
⏐⏐⏐⏐}]

≤ sup
0≤t≤T

E{exp(Cθξ |µi,t |)} .

t follows from Assumption 4 that sup0≤t≤T E{exp(Cθξ |µi,t |)} ≤ C exp(Cξ 2θ2). Selecting θ ≍ ξ−1 and applying Markov’s
nequality, we have

max
k∈[ni,j]

P
{⏐⏐⏐⏐ ∑

ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

µi,s ds
⏐⏐⏐⏐ > v

2

}
≤ exp(−θv) max

k∈[ni,j]
E
[
exp

{
2θ

⏐⏐⏐⏐ ∑
ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

µi,s ds
⏐⏐⏐⏐}]

(34)

≲ exp(−Cξ−1v)

for any v > 0. For any constant d ∈ (0, ξ−1/2
], define a stopping time Γi,d = T ∧ inf{t > 0 : sup0≤s≤t σi,s > d}. By

Cauchy–Schwarz inequality,⏐⏐⏐⏐ ∑
ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐2 ≲
1

Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

)2

,

hich implies that for any θ > 0,

P
{⏐⏐⏐⏐ ∑

ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐ > v

2
,Γi,d = T

}

≲ exp(−Cθv2)E
[
exp

{
θ

Ni,j,k

∑
t ∈S

(∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

)2}
I(Γi,d = T )

]
.

(35)
i,j,ℓ i,j,k

24
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B

=

S
T

A

a

p
e

B
s

8

a
F
v
l

L
{

y Jensen’s inequality, E[exp{θN−1
i,j,k

∑
ti,j,ℓ∈Si,j,k

(
∫ ti,j,k
ti,j,ℓ

σi,s dBi,s)2}I(Γi,d = T )] ≤ N−1
i,j,k

∑
ti,j,ℓ∈Si,j,k

E[exp{θ (
∫ ti,j,k
ti,j,ℓ

σi,s dBi,s)2}I(Γi,d

T )]. Same as (27) and (28), for any θ ∈ (0, d−2ξ−1/4], E[exp{θ (
∫ ti,j,k
ti,j,ℓ

σi,s dBi,s)2}I(Γi,d = T )] ≤ exp(Cd4ξ 2θ2) ≲ 1.

electing θ = d−2ξ−1/4, together with (35), we have maxk∈[ni,j] P{|
∑

ti,j,ℓ∈Si,j,k
(N−1

i,j,ℓ + N−1
i,j,k)

∫ ti,j,k
ti,j,ℓ

σi,s dBi,s| > v/2,Γi,d =

} ≲ exp(−Cd−2ξ−1v2) for any v > 0. It follows from Assumption 5 that

max
k∈[ni,j]

P
{⏐⏐⏐⏐ ∑

ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐ > v

2

}
≤ max

k∈[ni,j]
P
{⏐⏐⏐⏐ ∑

ti,j,ℓ∈Si,j,k

(
1

Ni,j,ℓ
+

1
Ni,j,k

)∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐ > v

2
,Γi,d = T

}
+ P(Γi,d ̸= T )

≲ exp(−Cdγ ) + exp(−Cd−2ξ−1v2)

for any v > 0. Letting d → ∞, together with (34), (33) implies that

max
i,j∈[p]

P(Di,j > v) ≲ n∗ exp(−Cdγ ) + n∗ exp(−Cd−2ξ−1v2) (36)

for any 0 < v ≤ C . Write Ē(·) = E{· | (Xt )t∈[0,T ]}. For any integer s ≥ 2, we have Ē(|Gi,j,kUj,ti,j,k |
s) ≤ Ds

i,j · E(|Uj,ti,j,k |
s) ≤

Ds
i,j · C ss(s+1)/2

≤ s! · (CDi,j)s. Applying Lemma 2 with L̃ñ = Ln, P{|III(i, j)| ≥ x | (Xt )t∈[0,T ]} ≲ exp(−Cn∗L−1
n D−2

i,j x
2) +

exp{−C(n∗L−1
n D−1

i,j x)
ϕ/(2ϕ+1)

} for any x > 0, which implies that

P{|III(i, j)| ≥ x} ≲ E
{
exp

(
−

Cn∗L−1
n x2

D2
i,j

)}
+ E

[
exp

{
−C

(
n∗L−1

n x
Di,j

)ϕ/(2ϕ+1)}]
for any x > 0. Therefore, from (36) with v ≍ 1, it holds that

E
{
exp

(
−

Cn∗L−1
n x2

D2
i,j

)}
≲ exp(−Cv−2n∗L−1

n x2) + P(Di,j > v)

≲ exp(−Cn∗L−1
n x2) + n∗ exp(−Cdγ ) + n∗ exp(−Cd−2ξ−1) .

nalogously, we also have

E
[
exp

{
−C

(
n∗L−1

n x
Di,j

)ϕ/(2ϕ+1)}]
≲ exp{−C(n∗L−1

n x)ϕ/(2ϕ+1)
} + n∗ exp(−Cdγ ) + n∗ exp(−Cd−2ξ−1) .

Thus, maxi,j∈[p] P{|III(i, j)| ≥ x} ≲ exp(−Cn∗L−1
n x2) + exp{−C(n∗L−1

n x)ϕ/(2ϕ+1)
} + n∗ exp(−Cdγ ) + n∗ exp(−Cd−2ξ−1) for

ny x > 0. Recall that ξ ≍ Kn−1
∗

. To make maxi,j∈[p] |III(i, j)| = Op(n
−1/2
∗ K 1/2 log1/2 p), it suffices to require K ≳ Ln,

log p = o[min{dγ , d−2n∗K−1, (n∗L−2
n K )ϕ/(3ϕ+2)

}] and log n∗ = o[min{dγ , d−2n∗K−1
}]. In order to make p diverge as fast as

ossible, we can select d = (n∗K−1)1/(2+γ ). If K (log n∗)1+2/γ
= o(n∗), then maxi,j∈[p] P{|III(i, j)| ≥ v} ≲ exp(−Cn∗L−1

n v2) +

xp{−C(n∗L−1
n v)ϕ/(2ϕ+1)

} + exp{−C(n∗K−1)γ /(2+γ )} for any v > 0.
By Jensen’s inequality and Cauchy–Schwarz inequality, it holds that

E{|III(i, j)|m} ≲ max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

E(|Xi,ti,j,k − Xi,ti,j,ℓ |
m
|Uj,ti,j,k |

m)

= max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

E
(⏐⏐⏐⏐ ∫ ti,j,k

ti,j,ℓ

µi,s ds +

∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐m|Uj,ti,j,k |
m
)

≲ max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

{
E
(⏐⏐⏐⏐ ∫ ti,j,k

ti,j,ℓ

µi,s ds
⏐⏐⏐⏐2m +

⏐⏐⏐⏐ ∫ ti,j,k

ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐2m)}1/2

{E(U2m
j,ti,j,k )}

1/2 .

y Assumption 3, maxk∈[ni,j] E(U
2m
j,ti,j,k

) ≲ 1. Together with (31) and (32), maxi,j∈[p] E{|III(i, j)|m} ≲ ξm/2. Analogously, we can
how the same results hold for IV(i, j). We complete the proof of Proposition 3. □

.5. Proof of Theorem 2

To prove Theorem 2, we need the Le Cam’s lemma as stated in Lemma 3. Its proof can be found in Le Cam (1973)
nd Donoho and Liu (1991). Let Z be an observation from a distribution Pθ where θ belongs to a parameter space Θ .
or two distributions Q0 and Q1 with densities q0 and q1 with respect to any common dominating measure µ, the total
ariation affinity is given by ∥Q0 ∧Q1∥ =

∫
q0 ∧ q1 dµ. Let Θ = {θ0, θ1, . . . , θD} and denote by L the loss function. Define

min = mind∈[D] inft{L(t, θ0) + L(t, θd)} and denote P̄ = D−1 ∑D
d=1 Pθd .

emma 3 (Le Cam’s lemma). Let T be any estimator of θ based on an observation Z from a distribution Pθ with θ ∈ Θ =

θ , θ , . . . , θ }, then sup E {L(T , θ )} ≥ 2−1l ∥P ∧ P̄∥.
0 1 D θ∈Θ Z|θ min θ0
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For each k ∈ [n], define Ck = {i ∈ [p] : tk ∈ Gi} where Gi is the grid of time points where we observe the
oisy data of the ith component process. For any s-dimensional vector a and an index set C ⊂ [s], denote by aS the
ubvector of a with components indexed by C. The data we have is Z = {Yt1,C1 , . . . ,Ytn,Cn}. Select the loss function
(T , θ ) = maxi,j∈[p] |ωi,j − θi,j| for any T = (ωi,j)p×p and θ = (θi,j)p×p ∈ Θ . Select D = p, θ0 = Σ u,0 = Ip and

θd = Σ u,d = Ip + (v1/2n−1/2
∗

log1/2 D)diag(0, . . . , 0  
d−1

, 1, 0, . . . , 0  
p−d

),

for any d ∈ [D], where v > 0 is a sufficiently small constant. For each d = 0, 1, . . . ,D, we write θd = Σ u,d = (σu,i,j,d)p×p.
Then

lmin = min
d∈[D]

inf
t

{L(t, θ0) + L(t, θd)}

≥ min
d∈[D]

max
i,j∈[p]

|σu,i,j,0 − σu,i,j,d| ≥

√
v log p
n∗

≍

√
log p
n∗

.
(37)

To prove the lower bound stated in Theorem 2, it suffices to construct a specific model which makes the stated lower
bound be achievable. To do this, we select µi,t = 0 and σi,t = 0 for any t ∈ [0, T ]. Then the associated Xt = 0 for any
t ∈ [0, T ]. In this special case, Ytk = Utk . Given (n, n∗) with n ≥ n∗, and 0 ≤ t1 < · · · < tn = T , we define G∗ = {t̃1, . . . , t̃n∗

}

with each t̃j ∈ {t1, . . . , tn} and t̃j < t̃j+1. For each tj ∈ G∗, we assume all p component processes are observed. For any
tj /∈ G∗, we assume only one component process are observed. Without loss of generality, we assume G∗ = {t1, . . . , tn∗

}.
Let n − n∗ = ap + q∗ where a ≥ 0 and 0 ≤ q∗ < p are two integers. We assume the ith component process is observed
at tn∗+jp+i’s with j = 0, . . . , a and i ∈ [p]. Then Gi = G∗ ∪ {tn∗+i, . . . , tn∗+ap+i}.

Let Utk
i.i.d.
∼ N(0,Σ u,d), and denote the joint density of Ut1,C1 , . . . ,Utn,Cn by fd. Denote by φσ the density of N(0, σ 2).

Write σ 2
∗

= 1 + v1/2n−1/2
∗ log1/2 D. Then f0 =

∏n
k=1

∏
j∈Ck

φ1(uk,j) and fd =
∏n

k=1
∏

j∈Ck\{d}
φ1(uk,j) ·

∏n
k=1

∏
d∈Ck

φσ∗
(uk,d)

for each d ∈ [D]. Here we adopt the convention
∏

d∈Ck
φσ∗

(uk,d) ≡ 1 if d /∈ Ck. We will show ∥Pθ0 ∧ P̄∥ ≥ c for some
niversal constant c > 0.
For any two densities q0 and q1, by Cauchy–Schwarz inequality, we have (

∫
|q0 − q1| dµ)2 ≤

∫
(q0 − q1)2/q1 dµ =

q20/q1 dµ− 1, which implies that
∫
q0 ∧ q1 dµ = 1 − 2−1

∫
|q0 − q1| dµ ≥ 1 − 2−1(

∫
q20/q1 dµ− 1)1/2. In order to show

Pθ0 ∧ P̄∥ ≥ c for some universal constant c > 0, it suffices to show that
∫
(D−1 ∑D

d=1 fd)
2f −1

0 dµ− 1 → 0, that is,

1
D2

D∑
d=1

(∫
f 2d
f0

dµ− 1
)

+
1
D2

∑
d1 ̸=d2

(∫
fd1 fd2
f0

dµ− 1
)

→ 0 . (38)

ince fd1 fd2/f0 =
∏n

k=1[
∏

d1∈Ck
φσ∗

(uk,d1 ) ·
∏

d2∈Ck
φσ∗

(uk,d2 ) ·
∏

j∈Ck\{d1,d2}
φ1(uk,j)] for any d1 ̸= d2, then

∫
fd1 fd2/f0 dµ = 1,

which implies D−2 ∑
d1 ̸=d2

(
∫
fd1 fd2/f0 dµ− 1) = 0. For any d ∈ [D], we have

f 2d
f0

=

n∏
k=1

∏
j∈Ck\{d}

φ1(uk,j) ·

n∏
k=1

[
1

√
2πσ 2

∗

exp
{
−

(2 − σ 2
∗
)u2

k,d

2σ 2
∗

}]I(d∈Ck)

,

hich implies∫
f 2d
f0

dµ =

(
1

σ∗

√
2 − σ 2

∗

)∑n
k=1 I(d∈Ck) n∏

k=1

∏
j∈Ck\{d}

{∫
φ1(uk,j) duk,j

}

×

n∏
k=1

[∫ √
2 − σ 2

∗
√
2πσ∗

exp
{
−

(2 − σ 2
∗
)u2

k,d

2σ 2
∗

}
duk,d

]I(d∈Ck)

=

(
1

σ∗

√
2 − σ 2

∗

)∑n
k=1 I(d∈Ck)

=

(
1 −

v logD
n∗

)−
∑n

k=1 I(d∈Ck)/2

.

otice that
∑n

k=1 I(d ∈ Ck) ≤ n∗ + a + 1 for each d ∈ [D]. Therefore,
∫
f 2d /f0 dµ ≤ (1 − vn−1

∗
logD)−(n∗+a+1)/2 for each

∈ [D]. Due to n/n∗ ≲ p, we know a ≲ n∗. Applying the inequality log(1 − x) ≥ −2x for any 0 < x < 1/2, we have

0 ≤
1
D2

D∑
d=1

(∫
f 2d
f0

dµ− 1
)

≤ exp
[
−

{
1 − v

(
1 +

a + 1
n∗

)}
logD

]
→ 0

or sufficiently small v > 0. Then (38) holds. Hence ∥Pθ0 ∧ P̄∥ ≥ c for some universal constant c > 0. Together with (37),
e can obtain Theorem 2 by Lemma 3. □
26
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.6. Proof of Theorem 3

We first consider the case with ϕ < ∞. Write ℵ = (n−1
∗

K log p)1/2. For each i, j ∈ [p], we define the event
i,j = {|σ̂ thre

u,i,j − σu,i,j| ≤ 4min(|σu,i,j|, αℵ)} with some α > 0, and di,j = (σ̂ thre
u,i,j − σu,i,j)I(Ac

i,j). Write D = (di,j)p×p. Due
to ∥W∥2 ≤ ∥W∥∞ for any p × p symmetric matrix W, it holds that

∥Σ̂
thre
u − Σ u∥

2
2 ≤

{
max
i∈[p]

p∑
j=1

|σ̂ thre
u,i,j − σu,i,j|

}2

≤ 2
(
max
i∈[p]

p∑
j=1

|di,j|
)2

+ 2
{
max
i∈[p]

p∑
j=1

|σ̂ thre
u,i,j − σu,i,j|I(Ai,j)

}2

.

(39)

For the second term on the right-hand side of (39), we have that
∑p

j=1 |σ̂ thre
u,i,j − σu,i,j|I(Ai,j) ≤ 4

∑p
j=1 αℵI(|σu,i,j| > αℵ) +

4
∑p

j=1 |σu,i,j|I(|σu,i,j| ≤ αℵ). Due to
∑p

j=1 |σu,i,j|
q

≤ cp, we then have
∑p

j=1 |σu,i,j|I(|σu,i,j| ≤ αℵ) ≤
∑p

j=1 |σu,i,j|
q(αℵ)1−q

≤

α1−qcpℵ1−q and
∑p

j=1 αℵI(|σu,i,j| > αℵ) ≤
∑p

j=1 |σu,i,j|
q(αℵ)1−q

≤ α1−qcpℵ1−q. Therefore, we have that
∑p

j=1 |σ̂ thre
u,i,j −

σu,i,j|I(Ai,j) ≤ 8α1−qcpℵ1−q holds uniformly over i ∈ [p]. It follows from (39) that

E
(
∥Σ̂

thre
u − Σ u∥

2
2

)
≲ E

{(
max
i∈[p]

p∑
j=1

|di,j|
)2}

+ c2pℵ
2(1−q) . (40)

Recall σ̂u,i,j is defined as (5). It holds that

E
{(

max
i∈[p]

p∑
j=1

|di,j|
)2}

≤ p
p∑

i,j=1

E
{
|σ̂ thre

u,i,j − σu,i,j|
2I(Ac

i,j)
}

= p
p∑

i,j=1

E
(
|σ̂ thre

u,i,j − σu,i,j|
2I[Ac

i,j ∩ {σ̂ thre
u,i,j = 0}]

)
  

I

(41)

+ p
p∑

i,j=1

E
(
|σ̂ thre

u,i,j − σu,i,j|
2I[Ac

i,j ∩ {σ̂ thre
u,i,j = σ̂u,i,j}]

)
  

II

.

ecall σ̂ thre
u,i,j = σ̂u,i,jI(|σ̂u,i,j| ≥ βℵ) for any i, j ∈ [p]. Then

I = p
p∑

i,j=1

σ 2
u,i,jP

[
{|σu,i,j| ≥ 4αℵ} ∩ {|σ̂u,i,j| < βℵ}

]
≤ p

p∑
i,j=1

σ 2
u,i,jP

[
{|σu,i,j| ≥ 4αℵ} ∩ {|σu,i,j| − |σ̂u,i,j − σu,i,j| < βℵ}

]
(42)

≤ p
p∑

i,j=1

σ 2
u,i,jP

{
|σ̂u,i,j − σu,i,j| ≥ (4α − β)ℵ

}
.

electing α = β/2 and β being sufficiently large, identical to the arguments used in Section 8.1 for bounding the
onvergence rate of A2, we have I ≲ o(ℵ4) provided that K (log n∗)1+2/γ

= o(n∗), K ≳ Ln, K−ϕLϕn log{n∗(K log p)−1
} = o(1),

og p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ }] with χ = min{γ /(γ + 4), 1/3}. Also, by Cauchy–Schwarz inequality, it holds

hat

II = p
p∑

i,j=1

E
{
|σ̂u,i,j − σu,i,j|

2I(|σ̂u,i,j − σu,i,j| > 4αℵ)I(|σu,i,j| > αℵ)I(|σ̂u,i,j| ≥ βℵ)
}

+ p
p∑

i,j=1

E
{
|σ̂u,i,j − σu,i,j|

2I(|σ̂u,i,j − σu,i,j| > 4|σu,i,j|)I(|σu,i,j| ≤ αℵ)I(|σ̂u,i,j| ≥ βℵ)
}

≤ p
p∑{

E(|σ̂u,i,j − σu,i,j|
4)

}1/2{P(|σ̂u,i,j − σu,i,j| > 4αℵ)
}1/2 (43)
i,j=1

27
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+ p
p∑

i,j=1

{
E(|σ̂u,i,j − σu,i,j|

4)
}1/2[P{|σ̂u,i,j − σu,i,j| > (β − α)ℵ}

]1/2
.

Notice that maxi,j∈[p] E(|σ̂u,i,j − σu,i,j|
4) ≲ 1. Since α = β/2, repeating the arguments used in Section 8.1 for bounding the

convergence rate of A2 again, we have

p3
{
max
i,j∈[p]

P(|σ̂u,i,j − σu,i,j| > 4αℵ)
}1/2

≤ p3
[
max
i,j∈[p]

P{|σ̂u,i,j − σu,i,j| > (β − α)ℵ}

]1/2

≲ o(ℵ2)

provided that K (log n∗)1+2/γ
= o(n∗), K ≳ Ln, K−ϕLϕn log{n∗(K log p)−1

} = o(1) and log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2),

(n∗K−1)χ }]. With sufficiently large β , we have II ≲ o(ℵ2). Together with I ≲ o(ℵ4), we have E{(maxi∈[p]
∑p

j=1 |di,j|)2} ≤

I+ II ≲ o(ℵ2). It follows from (40) that supP2
E(∥Σ̂thre

u −Σu∥
2
2) ≲ c2p (n

−1
∗

K log p)1−q. Analogously, in the case with ϕ = ∞,
we have supP2

E(∥Σ̂thre
u −Σu∥

2
2) ≲ c2p (n

−1
∗

K log p)1−q provided that K (log n∗)1+2/γ
= o(n∗), K > Ln and log p = o{(n∗K−1)χ }.

We complete the proof of Theorem 3. □

8.7. Proof of Theorem 4

Same as the proof of Theorem 2, we also select µi,t = 0 and σi,t = 0 for any t ∈ [0, T ]. Then the associated Xt = 0
for any t ∈ [0, T ]. In this special case, Ytk = Utk . Given (n, n∗) with n ≥ n∗, and 0 ≤ t1 < · · · < tn = T , we define
G∗ = {t̃1, . . . , t̃n∗

} with each t̃j ∈ {t1, . . . , tn} and t̃j < t̃j+1. For each tj ∈ G∗, we assume all p component processes are
observed. For any tj /∈ G∗, we assume only one component process are observed. Without loss of generality, we assume
G∗ = {t1, . . . , tn∗

}. Let n − n∗ = ap + q∗ where a ≥ 0 and 0 ≤ q∗ < p are two integers. We assume the ith component
process is observed at tn∗+jp+i’s with j = 0, . . . , a and i ∈ [p]. Then Gi = G∗ ∪ {tn∗+i, . . . , tn∗+ap+i}. The data we have is
Z = {Yt1,C1 , . . . ,Ytn,Cn} where Ck = {i ∈ [p] : tk ∈ Gi}.

Let r = ⌊p/2⌋, where ⌊x⌋ denotes the largest integer less than or equal to x. Let B be the collection of all p-dimensional
row vectors v = (v1, . . . , vp) such that vj = 0 for 1 ≤ j ≤ p− r and vj = 0 or 1 for p− r + 1 ≤ j ≤ p under the restriction∑p

j=1 |vj| = K∗. We will specify K∗ later. If each λj ∈ B, we say λ = (λ1, . . . , λr ) ∈ Br . Set Γ = {0, 1}r and Λ ⊂ Br . For
each λ = (λ1, . . . , λr ) ∈ Λ, we define p × p symmetric matrices A1(λ1), . . . ,Ar (λr ) where Am(λm) is a matrix with the
mth row and mth column being λm and λ⊤

m , respectively, and the rest of the entries being 0. Define Θ = Γ ⊗Λ. For each
θ ∈ Θ , we write θ = {γ (θ ), λ(θ )} with γ (θ ) = {γ1(θ ), . . . , γr (θ )} ∈ Γ and λ(θ ) = {λ1(θ ), . . . , λr (θ )} ∈ Λ. We select
K∗ = ⌊cp(n∗/ log p)q/2⌋ and define a collection M(α, ν) of covariance matrices as

M(α, ν) =

{
Σ (θ ) : Σ (θ ) = αIp +

√
ν log p
n∗

r∑
m=1

γm(θ )Am{λm(θ )}, θ ∈ Θ

}
,

here α > 0 and ν > 0 are two constants. Notice that each Σ ∈ M(α, ν) has value α along the main diagonal, and
ontains an r × r submatrix, say A, at the upper right corner, A⊤ at the lower left corner and zero elsewhere. Write
(θ ) = {σi,j(θ )}p×p. It holds that maxθ∈Θ maxi∈[p] σi,i(θ ) = α and maxθ∈Θ maxi∈[p]

∑p
j=1 |σi,j(θ )|q ≤ αq

+ cpνq/2. For
ufficiently small α and ν, we have M(α, ν) ⊂ H(q, cp,M) for H(q, cp,M) defined as (7). Without loss of generality,
e assume α = 1 in the sequel and write M(1, ν) as M for simplification.
Let Utk ∼ N{0,Σ (θ )} with Σ (θ ) ∈ M. When Utk ∼ N{0,Σ (θ )}, we write the distribution of Z as Pθ . More specifically,

he joint density of Z is

fθ =

n∗∏
k=1

1
(2π )p/2|Σ (θ )|1/2

exp
{
−

1
2
u⊤

k Σ
−1(θ )uk

}
×

n∏
k=n∗+1

1√
2πσk,k(θ )

exp
{
−

u2
k,k

2σk,k(θ )

}

=

n∗∏
k=1

1
(2π )p/2|Σ (θ )|1/2

exp
{
−

1
2
u⊤

k Σ
−1(θ )uk

}
×

n∏
k=n∗+1

1
√
2π

exp
(

−
u2
k,k

2

)
where uk = (uk,1, . . . , uk,p)⊤. It follows from Lemma 3 of Cai and Zhou (2012b) with s = 2 and d being the matrix spectral
norm ∥ · ∥2 that

inf
Σ̂

max
θ∈Θ

EZ|θ

{
∥Σ̂ − Σ (θ )∥2

2

}
≥ min

(θ,θ ′):H{γ (θ ),γ (θ ′)}≥1

∥Σ (θ ) − Σ (θ ′)∥2
2

H{γ (θ ), γ (θ ′)}
·
r
8

· min
i∈[r]

∥P̄i,0 ∧ P̄i,1∥,

where H(·, ·) is the Hamming distance, and P̄i,a = 2−(r−1)
|Λ|

−1 ∑
θ∈{θ∈Θ:γi(θ )=a} Pθ for each a ∈ {0, 1}. In the sequel, we

ill show the following two results:

min
(θ,θ ′):H{γ (θ ),γ (θ ′)}≥1

∥Σ (θ ) − Σ (θ ′)∥2
2

H{γ (θ ), γ (θ ′)}
≳

c2p
p

(
log p
n∗

)1−q

(44)

nd

min ∥P̄i,0 ∧ P̄i,1∥ ≳ 1 . (45)

i∈[r]

28
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ecall r = ⌊p/2⌋. Then we will have Theorem 4. The proofs of (44) and (45) are identical to that for Lemmas 5 and 6
n Cai and Zhou (2012b), respectively. Hence, we omit here. □

8.8. Proof of Theorem 5

As shown in (23), II(i, j) = II1(i, j) + II2(i, j) + II3(i, j) + II4(i, j). Notice that ∆K is a fixed integer. By Jensen’s inequality,
{(

∫ ti,j,ℓ
ti,j,k

µi,s ds)2} ≤ |ti,j,ℓ − ti,j,k|
∫ ti,j,ℓ∨ti,j,k
ti,j,ℓ∧ti,j,k

E(µ2
i,s) ds ≤ |ti,j,ℓ − ti,j,k|2 max0≤s≤T E(µ2

i,s), which implies

max
i,j∈[p]

max
k∈[ni,j]

max
ℓ: K≤|ℓ−k|≤K+∆K

E
{(∫ ti,j,ℓ

ti,j,k

µi,s ds
)2}

≲ K 2n−2
∗
.

ue to E{(
∫ ti,j,ℓ
ti,j,k

σj,s dBj,s)2} = E(
∫ ti,j,ℓ∨ti,j,k
ti,j,ℓ∧ti,j,k

σ 2
j,s ds) ≤ |ti,j,ℓ − ti,j,k|max0≤s≤T E(σ 2

j,s), we have

max
i,j∈[p]

max
k∈[ni,j]

max
ℓ: K≤|ℓ−k|≤K+∆K

E
{(∫ ti,j,ℓ

ti,j,k

σj,s dBj,s

)2}
≲ Kn−1

∗
.

By Cauchy–Schwarz inequality, maxi,j∈[p] |E{II1(i, j)}| ≲ K 2n−2
∗

, maxi,j∈[p] |E{II3(i, j)}| ≲ K 3/2n−3/2
∗ and maxi,j∈[p] |E{II4(i, j)}| ≲

K 3/2n−3/2
∗ . Notice that

E{II2(i, j)} =
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
K≤|ℓ−k|≤K+∆K

E
(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

σi,sσj,sρi,j,s ds
)

=
1

2ni,j

ni,j−1∑
ℓ=1

[ ℓ−K∑
k=ℓ−K−∆K+1

min{k + K +∆K , ni,j} − ℓ

Ni,j,k

+

ℓ∑
k=ℓ−K+1

|min{k + K +∆K , ni,j} − k − K + 1|
+

Ni,j,k

+

ℓ+K∑
k=ℓ+1

|k − K + 1 − max{k − K −∆K , 1}|+
Ni,j,k

+

ℓ+K+∆K∑
k=ℓ+K+1

ℓ+ 1 − max{k − K −∆K , 1}
Ni,j,k

]
E
(∫ ti,j,ℓ+1

ti,j,ℓ

σi,sσj,sρi,j,s ds
)

:=
1

2ni,j

ni,j−1∑
ℓ=1

Qi,j,ℓ · E
(∫ ti,j,ℓ+1

ti,j,ℓ

σi,sσj,sρi,j,s ds
)
,

where we adopt the convention Ni,j,k = ∞ if k > ni,j or k < 0. For sufficiently large n, Ni,j,k follows the formula (21).
Since K = o(n∗) and ∆K is a fixed integer, for sufficiently large n, we have

Qi,j,ℓ

⎧⎪⎪⎨⎪⎪⎩
≲ K , if 1 ≤ ℓ ≤ 2(K +∆K ) − 1 ,

=
2K +∆K

2
, if 2(K +∆K ) ≤ ℓ ≤ ni,j − 2(K +∆K ) ,

≲ K , if ni,j − 2(K +∆K ) + 1 ≤ ℓ ≤ ni,j − 1 ,

hich implies that

E{II2(i, j)} =
2K +∆K

4ni,j

ni,j−2(K+∆K )∑
ℓ=2(K+∆K )

E
(∫ ti,j,ℓ+1

ti,j,ℓ

σi,sσj,sρi,j,s ds
)

+ R1(i, j)

=
2K +∆K

4ni,j
E
(∫ ti,j,ni,j

ti,j,1

σi,sσj,sρi,j,s ds
)

+ R2(i, j) ,

here maxi,j∈[p] |R1(i, j)| = O(K 2n−2
∗

) and maxi,j∈[p] |R2(i, j)| = O(K 2n−2
∗

). Therefore, it follows from (23) that

max
i,j∈[p]

⏐⏐⏐⏐E{
II(i, j) −

2K +∆K

4ni,j

∫ ti,j,ni,j

ti,j,1

σi,sσj,sρi,j,s ds
}⏐⏐⏐⏐ ≲ K 3/2

n3/2
∗

.

e complete the proof of Theorem 5. □
29
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.9. Proof of Theorem 6

Write ℵ = (n−1
∗

K log p)1/2. For Part (i), Theorem 1 implies maxi,j∈[p] |σ̂u,i,j − σu,i,j| = Op(ℵ). Due to maxi,j∈[p] |ψ̂i,j| =

Op(log p) and ℵ = o(1), by Triangle inequality, maxi,j∈[p] |σ̂
bc
u,i,j − σu,i,j| ≤ maxi,j∈[p] |σ̂u,i,j − σu,i,j| + maxi,j∈[p](4ni,j)−1(2K +

∆K )|ψ̂i,j| = Op(ℵ). Then Part (i) holds. To prove Part (ii), we define an event E = {maxi,j∈[p](4ni,j)−1(2K +∆K )|ψ̂i,j| ≤ ϵℵ}

for some constant ϵ > 0. Since maxi,j∈[p] |ψ̂i,j| = Op(log p) and ℵ = o(1), then maxi,j∈[p](4ni,j)−1(2K + ∆K )|ψ̂i,j| = Op(ℵ2),
which implies P(Ec) = o(1). For any C > 0, by Markov’s inequality, we have

P(∥Σ̂
bc,thre
u − Σ u∥2 ≥ Ccpℵ1−q) ≤ P(∥Σ̂

bc,thre
u − Σ u∥2 ≥ Ccpℵ1−q , E) + P(Ec)

≤ C−2c−2
p ℵ

2(q−1)E{∥Σ̂
bc,thre
u − Σ u∥

2
2I(E)} + P(Ec) .

In the sequel, we will show E{∥Σ̂
bc,thre
u − Σ u∥

2
2I(E)} ≲ c2pℵ

2(1−q). Based on this result, we know Part (ii) holds.
For each i, j ∈ [p], we define the event Ai,j = {|σ̂

bc,thre
u,i,j − σu,i,j| ≤ 4min(|σu,i,j|, αℵ)} with some constant α > 0,

and di,j = (σ̂ bc,thre
u,i,j − σu,i,j)I(Ac

i,j). Write D = (di,j)p×p. Identical to (39) and the arguments below it, ∥Σ̂
bc,thre
u −

Σ u∥
2
2 ≲ (maxi∈[p]

∑p
j=1 |di,j|)2 + {maxi∈[p]

∑p
j=1 |σ̂

bc,thre
u,i,j − σu,i,j|I(Ai,j)}2 ≲ (maxi∈[p]

∑p
j=1 |di,j|)2 + c2pℵ

2(1−q), which implies
E{∥Σ̂

bc,thre
u − Σ u∥

2
2I(E)} ≲ E{(maxi∈[p]

∑p
j=1 |di,j|)2I(E)} + c2pℵ

2(1−q). Identical to (41), we have

E
{(

max
i∈[p]

p∑
j=1

|di,j|
)2

I(E)
}

≤ p
p∑

i,j=1

E
(
|σ̂

bc,thre
u,i,j − σu,i,j|

2I(E)I[Ac
i,j ∩ {σ̂

bc,thre
u,i,j = 0}]

)
  

I

+ p
p∑

i,j=1

E
(
|σ̂

bc,thre
u,i,j − σu,i,j|

2I(E)I[Ac
i,j ∩ {σ̂

bc,thre
u,i,j = σ̂ bc

u,i,j}]
)

  
II

.

ecall σ̂ bc,thre
u,i,j = σ̂ bc

u,i,jI(|σ̂
bc
u,i,j| ≥ βℵ) and maxi,j∈[p] |σ̂

bc
u,i,j − σ̂u,i,j| ≤ ϵℵ restricted on E . Then I = p

∑p
i,j=1 σ

2
u,i,jP(|σu,i,j| ≥

4αℵ , |σ̂ bc
u,i,j| < βℵ , E) ≤ p

∑p
i,j=1 σ

2
u,i,jP{|σ̂u,i,j − σu,i,j| ≥ (4α − β − ϵ)ℵ}. Notice that maxi,j∈[p] E{|σ̂ bc

u,i,j − σu,i,j|
4I(E)} ≲

maxi,j∈[p] E(|σ̂u,i,j − σu,i,j|
4) + ℵ

4 ≲ 1. Identical to (43), we have that II ≲ p
∑p

i,j=1{P(|σ̂
bc
u,i,j − σu,i,j| > 4αℵ , E)}1/2 +

p
∑p

i,j=1[P{|σ̂ bc
u,i,j − σu,i,j| > (β − α)ℵ , E}]

1/2
≤ p

∑p
i,j=1[P{|σ̂u,i,j − σu,i,j| > (4α − ϵ)ℵ , E}]

1/2
+ p

∑p
i,j=1[P{|σ̂u,i,j − σu,i,j| >

(β−α−ϵ)ℵ , E}]
1/2. Selecting α = 2ϵ = β/2 for some sufficiently large β > 0, applying the same arguments for bounding

I and II there in Section 8.6, we have I + II ≲ o(ℵ2), which implies E{∥Σ̂bc,thre
u − Σu∥

2
2I(E)} ≲ c2pℵ

2(1−q). We complete the
proof of Theorem 6. □

8.10. Proof of Part (i) in Theorem 7

For any k ∈ [ni,j], let Si,j,k = {ti,j,ℓ : K ≤ |ℓ− k| ≤ K +∆K }. For any i, j ∈ [p], we have that

σ̂u,i,j − σu,i,j =
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Ui,ti,j,ℓ − Ui,ti,j,k )(Uj,ti,j,ℓ − Uj,ti,j,k ) − σu,i,j  
I(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Xi,ti,j,ℓ − Xi,ti,j,k )(Xj,ti,j,ℓ − Xj,ti,j,k )  
II′(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Xi,ti,j,ℓ − Xi,ti,j,k )(Uj,ti,j,ℓ − Uj,ti,j,k )  
III′(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(Ui,ti,j,ℓ − Ui,ti,j,k )(Xj,ti,j,ℓ − Xj,ti,j,k )  
IV′(i,j)

.
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ased on Proposition 1, we can obtain the convergence rate of maxi,j∈[p] |I(i, j)|. Notice that dXi,t = µi,t dt + σi,t dBi,t +

Ji,t dMi,t . In comparison to II(i, j) specified in (23), we have

II′(i, j) −
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

Ji,s dMi,s

)(∫ ti,j,ℓ

ti,j,k

Jj,s dMj,s

)

= II(i, j) +
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

µi,s ds
)(∫ ti,j,ℓ

ti,j,k

Jj,s dMj,s

)
  

II5(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

σi,s dBi,s

)(∫ ti,j,ℓ

ti,j,k

Jj,s dMj,s

)
  

II6(i,j)

(46)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

Ji,s dMi,s

)(∫ ti,j,ℓ

ti,j,k

σj,s dBj,s

)
  

II7(i,j)

+
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
ti,j,ℓ∈Si,j,k

(∫ ti,j,ℓ

ti,j,k

Ji,s dMi,s

)(∫ ti,j,ℓ

ti,j,k

µj,s ds
)

  
II8(i,j)

.

or III(i, j) specified in Section 8.1, we have III′(i, j) = III(i, j) + (2ni,j)−1 ∑ni,j
k=1

∑
ti,j,ℓ∈Si,j,k

(N−1
i,j,ℓ + N−1

i,j,k)(
∫ ti,j,k
ti,j,ℓ

Ji,s dMi,s)Uj,ti,j,k .
ropositions 2 and 3 give the convergence rates of maxi,j∈[p] |II(i, j)| and maxi,j∈[p] |III(i, j)|, respectively. Write II′′(i, j) =

I′(i, j)− II(i, j)−ϖi,j and III′′(i, j) = III′(i, j)− III(i, j). To prove Theorem 7, we need the following two propositions whose
roofs are given in Sections 8.11 and 8.12, respectively.

roposition 4. Under Assumptions 2 and 4–7, if K (log n∗)(2ι+2γ+ιγ )/(ιγ )
= o(n∗), we have that

max
i,j∈[p]

P{|II′′(i, j)| > v} ≲ exp(−Cn∗K−1v) + exp{−C(n∗K−1)ιγ /(2ι+2γ+ιγ )
}

or any v ≫ n−1
∗

Kλ∗, where γ and ι are specified in Assumptions 5 and 7, respectively. Furthermore, it holds that
axi,j∈[p] E{|II′′(i, j)|m} ≲ n(1−m)/2

∗ Km/2 for any fixed positive integer m provided that n−1
∗

Kλ∗ = o(1).

roposition 5. Under Assumptions 2–7, if K (log n∗)2+2/ι
= o(n∗), we have that

max
i,j∈[p]

P{|III′′(i, j)| ≥ v} ≲ exp{−C(n∗K−1)(3ι+2)/(4ι+4)v} + exp{−C(n∗K−1)ι/(2ι+2)
}

or any v ≫ (n−1
∗

K )(3ι+2)/(4ι+4)λ∗, where ι is specified in Assumption 7. Furthermore, it holds thatmaxi,j∈[p] E{|III′′(i, j)|m} ≲ n1/2
∗

or any fixed positive integer m provided that n−1
∗

Kλ∗ = o(1).

Recall that σ̂ jump
u,i,j = σ̂u,i,j −ϖi,j = σu,i,j + I(i, j)+ II(i, j)+ II′′(i, j)+ III′(i, j)+ IV′(i, j). Write ℵ = (n−1

∗
K log p)1/2. We first

onsider the case with ϕ < ∞. Notice that (1 + cx−1)−x
≥ e−c for any x > 0 and c > 0, and III′(i, j) = III(i, j) + III′′(i, j).

ince the tail probability of maxi,j∈[p] |IV′(i, j)| is the same as that of maxi,j∈[p] |III′(i, j)|, by Propositions 1–5, if K ≳ Ln and
(log n∗)χ1 = o(n∗) with χ1 = max{(2ι+ 2γ + ιγ )/(ιγ ), 2 + 2/ι, 1 + 2/γ }, we have

max
i,j∈[p]

P
(
|σ̂

jump
u,i,j − σu,i,j| > v

)
≲ {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp{−C(n∗L−1

n ρ−1v)ϕ/(ϕ+1)
}

+ v−1 exp(−Cn∗K−1ρ−1v) + exp{−C(n∗L−1
n v)ϕ/(2ϕ+1)

}

+ exp{−C(n∗K−1)(3ι+2)/(4ι+4)v} + exp{−C(n∗K−1)η} (47)

or any ρ ≥ 1 and (n−1
∗

K )2/(γ+4)
≫ v ≫ max{exp(−CL−ϕ

n Kϕ), (n−1
∗

K )(3ι+2)/(4ι+4)λ∗}, where η = min{γ /(γ + 4), ιγ /(2ι +
γ + ιγ ), ι/(2ι+2)}. Since K−ϕLϕn log{n∗(K log p)−1

} = o(1), λ2
∗
(n−1

∗
K )ι/(2ι+2)(log p)−1

= o(1) and log p = o{(n∗K−1)γ /(γ+4)
},

hen (n−1
∗

K )2/(γ+4)
≫ ℵ ≫ max{exp(−CL−ϕ

n Kϕ), (n−1
∗

K )(3ι+2)/(4ι+4)λ∗}. Given a sufficiently large constant α > 0, we have
(|Σ̂

jump
u − Σ u|∞) ≤ E{maxi,j∈[p] |σ̂

jump
u,i,j − σu,i,j|I(|σ̂

jump
u,i,j − σu,i,j| ≤ αℵ)} + E{maxi,j∈[p] |σ̂

jump
u,i,j − σu,i,j|I(|σ̂

jump
u,i,j − σu,i,j| >

ℵ)} =: A∗

1+A∗

2. It is easy to see that A∗

1 ≤ αℵ. By Cauchy–Schwarz inequality, we have A∗

2 ≤
∑p

i,j=1 E{|σ̂
jump
u,i,j − σu,i,j|I(|σ̂

jump
u,i,j

− σ | > αℵ)} ≤ p2 max {E(|σ̂ jump
− σ |

2)}1/2 · max {P(|σ̂ jump
− σ | > αℵ)}1/2. Let ρ ≍ log p ≥ 1.
u,i,j i,j∈[p] u,i,j u,i,j i,j∈[p] u,i,j u,i,j
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ince K log p = o(n∗), (47) implies maxi,j∈[p] P(|σ̂
jump
u,i,j − σu,i,j| > αℵ) ≲ p−2w

+ exp[−C{n∗KL−2
n (log p)−1

}
ϕ/(2ϕ+2)

] +

xp[−C{n∗K−1(log p)−1
}
1/2

] + exp{−C(n∗KL−2
n log p)ϕ/(4ϕ+2)

} + exp{−C(n∗K−1)ι/(4ι+4)(log p)1/2} + exp{−C(n∗K−1)η} with
ome sufficiently large w > 0, where w → ∞ as α → ∞. Due to maxi,j∈[p] E(|σ̂

jump
u,i,j − σu,i,j|

2) ≲ n1/2
∗ ≤ p2c∗ with

∗ = 1/(4κ), where κ is specified in the beginning of Section 3, if log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ2}] with

2 = min{ιγ /(2ι + 2γ + ιγ ), ι/(2ι + 2), γ /(γ + 4), 1/3}, then A∗

2 ≲ p2+c∗−w
+ exp[−C{n∗KL−2

n (log p)−1
}
ϕ/(2ϕ+2)

] +

xp[−C{n∗K−1(log p)−1
}
1/2

] + exp{−C(n∗KL−2
n log p)ϕ/(4ϕ+2)

} + exp{−C(n∗K−1)ι/(4ι+4)(log p)1/2} + exp{−C(n∗K−1)η} =

{(n−1
∗

K log p)4}. Hence, supP3
E(|Σ̂

jump
u − Σ u|∞) ≲ (n−1

∗
K log p)1/2 provided that K−ϕLϕn log{n∗(K log p)−1

} = o(1),
2
∗
(n−1

∗
K )ι/(2ι+2)(log p)−1

= o(1), K ≳ Ln and K (log n∗)χ1 = o(n∗) with χ1 = max{(2ι + 2γ + ιγ )/(ιγ ), 2 + 2/ι, 1 + 2/γ },
nd log p = o[min{(n∗L−2

n K )ϕ/(3ϕ+2), (n∗K−1)χ2}] with χ2 = min{ιγ /(2ι+ 2γ + ιγ ), ι/(2ι+ 2), γ /(γ + 4), 1/3}.
Now we consider the case with ϕ = ∞. As we discussed in Remark 5(i), if {Utk} is an independent sequence, we

an select Ln = 1/2. Due to K ≥ 1, we have K > Ln in this case. Without loss of generality, we can always assume
> Ln when ϕ = ∞. Based on Remark 5, it holds that {1 + n∗(K + Ln)−1ρ−1v2}−ρ/2 + v−1 exp(−Cn∗K−1ρ−1v) for

ny v > 0 and ρ ≥ 1 under either of the scenarios: (i) {Utk} is an independent sequence, and (ii) {Utk} is an Ln-
ependent sequence. Repeating the arguments for ϕ < ∞, we have supP3

E(|Σ̂
jump
u − Σ u|∞) ≲ (n−1

∗
K log p)1/2 provided

hat λ2
∗
(n−1

∗
K )ι/(2ι+2)(log p)−1

= o(1), K (log n∗)χ1 = o(n∗) with χ1 = max{(2ι + 2γ + ιγ )/(ιγ ), 2 + 2/ι, 1 + 2/γ } and
og p = o{(n∗K−1)χ2} with χ2 = min{ιγ /(2ι+ 2γ + ιγ ), ι/(2ι+ 2), γ /(γ + 4), 1/3}. We complete the proof of part (i) in
heorem 7. □

.11. Proof of Proposition 4

Recall that ξ = maxi,j∈[p] maxk∈[ni,j] maxti,j,ℓ∈Si,j,k |ti,j,ℓ − ti,j,k| ≍ n−1
∗

K , Si,j,k = {ti,j,ℓ : K ≤ |ℓ− k| ≤ K + ∆K } and
i,j,k = |Si,j,k|. In the sequel, we will bound the tail probabilities of maxi,j∈[p] |II5(i, j)|, maxi,j∈[p] |II6(i, j)|, maxi,j∈[p] |II7(i, j)|

and maxi,j∈[p] |II8(i, j)|, respectively.
We first bound the tail probabilities of maxi,j∈[p] |II5(i, j)| and maxi,j∈[p] |II8(i, j)|. Notice that for sufficiently large n,

ink∈[ni,j] Ni,j,k = ∆K + 1 and maxk∈[ni,j] Ni,j,k = 2∆K + 2. Since ∆K is a fixed constant, it holds that

|II5(i, j)| ≤
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
K≤|ℓ−k|≤K+∆K

(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|µi,s| ds
)(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|Jj,s| dMj,s

)

≤

(
max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|µi,s| ds
)

×
1

2ni,j

ni,j−1∑
ℓ=1

[ ℓ−K∑
k=ℓ−K−∆K+1

min{k + K +∆K , ni,j} − ℓ

Ni,j,k

+

ℓ∑
k=ℓ−K+1

|min{k + K +∆K , ni,j} − k − K + 1|
+

Ni,j,k
(48)

+

ℓ+K∑
k=ℓ+1

|k − K + 1 − max{k − K −∆K , 1}|+
Ni,j,k

+

ℓ+K+∆K∑
k=ℓ+K+1

ℓ+ 1 − max{k − K −∆K , 1}
Ni,j,k

] ∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s

≲

(
max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

K |µi,s| ds
)

×
1

2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s

:= Qµ

i,j ·
1

2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s ,

here we adopt the convention Ni,j,k = ∞ if k > ni,j or k < 0. For any constant d1 ∈ (0, K−1ξ−1
], define Ej,d1 =

{sup0≤s≤T |Jj,s| > d1}. Recall (∆Mi,·)i,j = Mi,ti,j,ni,j
− Mi,ti,j,1 for any i, j ∈ [p]. By Assumption 7, for any v > 0, we have

P
(
Qµ

i,j ·
1

2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s ≥ v

)
≤ P

(
Qµ

i,j ·
1

2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s ≥ v, Ec
j,d1

)
+ P(Ej,d1 )

≤ P{d1Q
µ

i,j · (∆Mj,·)j,i ≥ 2ni,jv} + C exp(−Cdι1) .
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t follows from Bonferroni inequality that P(d1Q
µ

i,j ≥ v) ≲ n∗ maxk∈[ni,j] maxti,j,ℓ∈Si,j,k P(
∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

Kd1|µi,s| ds ≥ v) for any

> 0. For any θ ∈ (0, C5d−1
1 K−1ξ−1

], by Jensen’s inequality, Assumption 4 implies that E{exp(θ
∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

Kd1|µi,s| ds)} ≤

ti,j,ℓ − ti,j,k|−1 ∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

E{exp(θKd1|ti,j,ℓ − ti,j,k||µi,s|)} ds ≤ sup0≤s≤T E{exp(θKd1ξ |µi,s| )} ≲ exp(CK 2d21ξ
2θ2). Selecting

≍ K−1d−1
1 ξ−1, by Markov’s inequality, maxk∈[ni,j] maxti,j,ℓ∈Si,j,k P(

∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

Kd1|µi,s| ds ≥ v) ≲ exp(−CK−1d−1
1 ξ−1v) for

ny v > 0, which implies that

max
i,j∈[p]

P(d1Q
µ

i,j ≥ v) ≲ n∗ exp(−CK−1d−1
1 ξ−1v) (49)

or any v > 0. By Assumption 6, applying Proposition 2.9 of Wainwright (2019), we have P[|(∆Mj,·)j,i − E{(∆Mj,·)j,i}| ≥

] ≤ 2 exp[−v2/{4λj(tj,i,nj,i − tj,i,1)}] + 2 exp{−v/(2C10)} for any v > 0. By Assumption 2 and (4), (tj,i,nj,i − tj,i,1) ≍ 1
nd ni,j ≍ n∗, which implies that P[|(∆Mj,·)j,i − E{(∆Mj,·)j,i}| ≥ ni,jv] ≲ exp(−Cn2

∗
v2/λj) + exp(−Cn∗v) for any v > 0. By

ssumption 6(ii), we have maxi,j∈[p] |n−1
i,j E{(∆Mj,·)j,i}| ≲ n−1

∗
λ∗. Then for any v ≫ n−1

∗
λ∗, it holds that

max
i,j∈[p]

P{|(∆Mj,·)j,i| ≥ ni,jv} ≤ max
i,j∈[p]

P[|(∆Mj,·)j,i − E{(∆Mj,·)j,i}| ≥ ni,jv − |E{(∆Mj,·)j,i}|]

≲ max
i,j∈[p]

P[|(∆Mj,·)j,i − E{(∆Mj,·)j,i}| ≥ ni,jv/2] (50)

≲ exp(−Cλ−1
∗

n2
∗
v2) + exp(−Cn∗v) ≲ exp(−Cn∗v) .

ombining (49) and (50), we have that P{d1Q
µ

i,j(∆Mj,·)j,i ≥ 2ni,jv} ≤ P(d1Q
µ

i,j ≥ K ) + P{|(∆Mj,·)j,i| ≥ 2K−1ni,jv} ≲

∗ exp(−Cd−1
1 ξ−1) + exp(−Cn∗K−1v) for any v ≫ n−1

∗
Kλ∗. Then P{Qµ

i,j · (2ni,j)−1 ∑ni,j−1
ℓ=1

∫ ti,j,ℓ+1
ti,j,ℓ

|Jj,s| dMj,s ≥ v} ≲

∗ exp(−Cd−1
1 ξ−1) + exp(−Cn∗K−1v) + exp(−Cdι1) for any v ≫ n−1

∗
Kλ∗. Notice that ξ ≍ n−1

∗
K . Thus, by (48),

axi,j∈[p] P{|II5(i, j)| ≥ v} ≲ exp(−Cn∗K−1v) + n∗ exp(−Cd−1
1 n∗K−1) + exp(−Cdι1) for any v ≫ n−1

∗
Kλ∗. In order to

ake maxi,j∈[p] |II5(i, j)| = Op(n
−1/2
∗ K 1/2 log1/2 p) and p diverge as fast as possible, we require log p = o(n∗K−1) and select

1 ≍ (n∗K−1)1/(1+ι). Then if K (log n∗)(1+ι)/ι = o(n∗), it holds that

max
i,j∈[p]

P{|II5(i, j)| ≥ v} ≲ exp(−Cn∗K−1v) + exp{−C(n∗K−1)ι/(ι+1)
} (51)

or any v ≫ n−1
∗

Kλ∗. Identically, if K (log n∗)(1+ι)/ι = o(n∗), we also have

max
i,j∈[p]

P{|II8(i, j)| ≥ v} ≲ exp(−Cn∗K−1v) + exp{−C(n∗K−1)ι/(ι+1)
} (52)

or any v ≫ n−1
∗

Kλ∗.
Now we consider II6(i, j) and II7(i, j). Analogously to (48), we have

|II6(i, j)| ≤
1

2ni,j

ni,j∑
k=1

1
Ni,j,k

∑
K≤|ℓ−k|≤K+∆K

⏐⏐⏐⏐ ∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|Jj,s| dMj,s

)

≲

(
max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

K
⏐⏐⏐⏐ ∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐) ×
1

2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s (53)

:= Q σ
i,j ·

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s .

For any constant d2 ∈ (0, K−1ξ−1
], define the event Ej,d2 = {sup0≤s≤T |Jj,s| > d2}. By Assumption 7,

P
(
Q σ
i,j ·

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s ≥ v

)
≤ P

(
Q σ
i,j ·

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Jj,s| dMj,s ≥ v, Ec
j,d2

)
+ P(Ej,d2 )

≤ P{d2Q σ
i,j · (∆Mj,·)j,i ≥ 2ni,jv} + C exp(−Cdι2)

for any v > 0. By Bonferroni inequality, we have

P(d2Q σ
i,j ≥ v) ≤

ni,j∑
k=1

∑
ti,j,ℓ∈Si,j,k

P
(
Kd2

⏐⏐⏐⏐ ∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐ ≥ v

)

≲ n∗ max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

P
(
d2K

⏐⏐⏐⏐ ∫ ti,j,k∨ti,j,ℓ
σi,s dBi,s

⏐⏐⏐⏐ ≥ v

)
(54)
ti,j,k∧ti,j,ℓ
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f
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f
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P
v

P
w
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l
w

f

f
o

[

I

T
i
p

T
m
P

or any v > 0. For any constant d ∈ (0, d−1/2
2 K−1/2ξ−1/2

], define a stopping time Γi,d = T ∧ inf{t > 0 : sup0≤s≤t σi,s > d}.
hen it holds that

P
(
d2K

⏐⏐⏐⏐ ∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

σi,s dBi,s

⏐⏐⏐⏐ ≥ v,Γi,d = T
)

≲ exp(−Cθv2)E
[
exp

{
θd22K

2
(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

σi,s dBi,s

)2}
I(Γi,d = T )

]
(55)

or any θ > 0. Identical to (27) and (28), E[exp{θd22K
2(

∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

σi,s dBi,s)2}I(Γi,d = T )] ≲ 1. With θ = d−2
2 d−2K−2ξ−1/4,

55) implies P(d2K |
∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

σi,s dBi,s| ≥ v,Γi,d = T ) ≲ exp(−Cd−2
2 d−2K−2ξ−1v2). By Assumption 5, maxk∈[ni,j] maxti,j,ℓ∈Si,j,k

(d2K |
∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

σi,s dBi,s| ≥ v) ≲ exp(−Cd−2
2 d−2K−2ξ−1v2) + exp(−Cdγ ) for any v > 0. Then (54) implies that P(d2Q σ

i,j ≥

) ≲ n∗ exp(−Cd−2
2 d−2K−2ξ−1v2)+ n∗ exp(−Cdγ ) for any v > 0. Together with (50), we have P{d2Q σ

i,j(∆Mj,·)j,i ≥ 2ni,jv} ≤

(d2Q σ
i,j ≥ K )+P{|(∆Mj,·)j,i| ≥ 2K−1ni,jv} ≲ n∗ exp(−Cd−2

2 d−2ξ−1)+n∗ exp(−Cdγ )+exp(−Cn∗K−1v) for any v ≫ n−1
∗

Kλ∗,
hich implies maxi,j∈[p] P{|II6(i, j)| ≥ v} ≲ n∗ exp(−Cd−2

2 d−2ξ−1) + n∗ exp(−Cdγ ) + exp(−Cdι2) + exp(−Cn∗K−1v) for
ny v ≫ n−1

∗
Kλ∗. To make maxi,j∈[p] |II6(i, j)| = Op(n

−1/2
∗ K 1/2 log1/2 p) and p diverge as fast as possible, we require

og p = o(n∗K−1), and select d2 ≍ (n∗K−1)γ /(2ι+2γ+ιγ ) and d ≍ (d−2
2 n∗K−1)1/(γ+2). Then if K (log n∗)(2ι+2γ+ιγ )/(ιγ )

= o(n∗),
e have

max
i,j∈[p]

P{|II6(i, j)| ≥ v} ≲ exp(−Cn∗K−1v) + exp{−C(n∗K−1)ιγ /(2ι+2γ+ιγ )
} (56)

or any v ≫ n−1
∗

Kλ∗. Analogously, if K (log n∗)(2ι+2γ+ιγ )/(ιγ )
= o(n∗), it holds that

max
i,j∈[p]

P{|II7(i, j)| ≥ v} ≲ exp(−Cn∗K−1v) + exp{−C(n∗K−1)ιγ /(2ι+2γ+ιγ )
} (57)

or any v ≫ n−1
∗

Kλ∗. Notice that ιγ /(2ι+2γ+ιγ ) ≤ ι/(1+ι). Combining (51), (52), (56) and (57), if K (log n∗)(2ι+2γ+ιγ )/(ιγ )
=

(n∗), it holds that maxi,j∈[p] P{|II′′(i, j)| > v} ≲ exp(−Cn∗K−1v) + exp{−C(n∗K−1)ιγ /(2ι+2γ+ιγ )
} for any v ≫ n−1

∗
Kλ∗.

By (48) and Cauchy–Schwarz inequality, for any positive integer m, we have E{|II5(i, j)|m} ≲ [E{(K−1Qµ

i,j)
2m

}]
1/2

·

E{(n−1
i,j K

∑ni,j−1
ℓ=1

∫ ti,j,ℓ+1
ti,j,ℓ

|Jj,s| dMj,s)2m}]
1/2

=: Ei,j,1 · Ei,j,2. By Assumption 4 and Jensen’s inequality, it holds that

E2
i,j,1 ≲ n∗ max

k∈[ni,j]
max

ti,j,ℓ∈Si,j,k
E
{(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|µi,s| ds
)2m}

≲ n∗ξ
2m−1 max

k∈[ni,j]
max

ti,j,ℓ∈Si,j,k

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

sup
0≤s≤T

E(|µi,s|
2m) ds ≲ n∗ξ

2m .

f λ∗n−1
∗

K = o(1), it follows from Assumptions 6 and 7 that

E2
i,j,2 ≤ E

[(
sup
0≤s≤T

|Ji,s|2m
)

{Kn−1
i,j (∆Mj,·)j,i}2m

]
≲

{
E
(

sup
0≤s≤T

|Ji,s|4m
)}1/2

· (E[{Kn−1
i,j (∆Mj,·)j,i}4m])1/2 (58)

≲ (E[exp{Kn−1
i,j (∆Mj,·)j,i}])1/2 ≲ 1 .

hus, maxi,j∈[p] E{|II5(i, j)|m} ≲ n1/2
∗ ξm. Analogously, we have maxi,j∈[p] E{|II8(i, j)|m} ≲ n1/2

∗ ξm. By (53) and Cauchy–Schwarz
nequality, it holds that E{|II6(i, j)|m} ≲ [E{(K−1Q σ

i,j)
2m

}]
1/2

· [E{(n−1
i,j K

∑ni,j−1
ℓ=1

∫ ti,j,ℓ+1
ti,j,ℓ

|Jj,s| dMj,s)2m}]
1/2

=: Ei,j,3 · Ei,j,2 for any
ositive integer m. By Assumptions 4 and 5, Burkholder–Davis–Gundy inequality implies

E2
i,j,3 ≲ n∗ max

k∈[ni,j]
max

ti,j,ℓ∈Si,j,k
E
{(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

σi,s dBi,s

)2m}
≲ n∗ξ

m.

ogether with (58), maxi,j∈[p] E{|II6(i, j)|m} ≲ n1/2
∗ ξm/2. Analogously, maxi,j∈[p] E{|II7(i, j)|m} ≲ n1/2

∗ ξm/2. Hence, we have
axi,j∈[p] E{|II′′(i, j)|m} ≲ n1/2

∗ ξm/2 for any positive integer m provided that λ∗n−1
∗

K = o(1). We complete the proof of

roposition 4. □
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.12. Proof of Proposition 5

Notice that for sufficiently large n, mink∈[ni,j] Ni,j,k = ∆K + 1 and maxk∈[ni,j] Ni,j,k = 2∆K + 2. Analogously to (48), we
have that

|III′′(i, j)| ≲
1

2ni,j

ni,j∑
k=1

∑
K≤|ℓ−k|≤K+∆K

(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|Ji,s| dMi,s

)
|Uj,ti,j,k |

≲

(
K max

k∈[ni,j]
|Uj,ti,j,k |

)
×

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Ji,s| dMi,s . (59)

For any constant d3 > 0, define the event Ei,d3 = {sup0≤s≤T |Ji,s| > d3}. By Assumption 7, it holds that

P
{(

K max
k∈[ni,j]

|Uj,ti,j,k |

)
·

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Ji,s| dMi,s ≥ v

}

≤ P
{(

K max
k∈[ni,j]

|Uj,ti,j,k |

)
·

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Ji,s| dMi,s ≥ v, Ec
i,d3

}
+ P(Ei,d3 ) (60)

≤ P
{(

d3K max
k∈[ni,j]

|Uj,ti,j,k |

)
(∆Mi,·)i,j ≥ 2ni,jv

}
+ C exp(−Cdι3)

or any v > 0. By Bonferroni inequality and Assumption 3, P(d3K maxk∈[ni,j] |Uj,ti,j,k | ≥ v) ≤
∑ni,j

k=1 P(|Uj,ti,j,k | ≥ d−1
3 K−1v) ≲

∗ maxk∈[ni,j] P(|Uj,ti,j,k | ≥ d−1
3 K−1v) ≲ n∗ exp(−Cd−2

3 K−2v2) for any v > 0. Recall ξ ≍ n−1
∗

K . Together with (50), for any
∈ (0, 1), we have that P{(d3K maxk∈[ni,j] |Uj,ti,j,k |)(∆Mi,·)i,j ≥ 2ni,jv} ≤ P(d3K maxk∈[ni,j] |Uj,ti,j,k | ≥ Kξ−δ) + P{(∆Mi,·)i,j ≥

ni,jK−1ξ δv} ≲ n∗ exp(−Cd−2
3 ξ−2δ) + exp(−Cξ δ−1v) for any v ≫ ξ 1−δλ∗. By (59) and (60), maxi,j∈[p] P{|III′′(i, j)| ≥ v} ≲

∗ exp(−Cd−2
3 ξ−2δ)+exp(−Cξ δ−1v)+exp(−Cdι3) for any v ≫ ξ 1−δλ∗. To make maxi,j∈[p] |III′′(i, j)| = Op(n

−1/2
∗ K 1/2 log1/2 p),

t suffices to require log p = o[min{d−2
3 ξ−2δ, dι3, ξ

2δ−1
}], λ2

∗
ξ 1−2δ(log p)−1

= o(1) and log n∗ = o(d−2
3 ξ−2δ). To make p

iverge as fast as possible, we select δ such that d−2
3 ξ−2δ

≍ dι3 ≍ ξ 2δ−1. Then δ = (ι+2)/(4ι+4) and d3 = ξ−1/(2ι+2). Hence,
f K (log n∗)2(ι+1)/ι

= o(n∗), we have maxi,j∈[p] P{|III′′(i, j)| ≥ v} ≲ exp{−C(n∗K−1)(3ι+2)/(4ι+4)v} + exp{−C(n∗K−1)ι/(2ι+2)
} for

ny v ≫ (n−1
∗

K )(3ι+2)/(4ι+4)λ∗.
By (59) and Cauchy–Schwarz inequality, we have E{|III′′(i, j)|m} ≲ {E(maxk∈[ni,j] |Uj,ti,j,k |

2m)}1/2 · [E{(n−1
i,j K

∑ni,j−1
ℓ=1

∫ ti,j,ℓ+1
ti,j,ℓ

Ji,s| dMi,s)2m}]
1/2

=: Fi,j,1 · Fi,j,2 for any positive integer m. It follows Assumption 3 that F 2
i,j,1 ≲ n∗ maxk∈[ni,j] E(U

2m
j,ti,j,k

) ≲ n∗.

nalogously to (58), we have F 2
i,j,2 ≲ 1 if λ∗n−1

∗
K = o(1). Hence, maxi,j∈[p] E{|III′′(i, j)|m} ≲ n1/2

∗ for any positive integer m
rovided that λ∗n−1

∗
K = o(1). We complete the proof of Proposition 5. □

.13. Proof of Part (ii) in Theorem 7

We first consider the case with ϕ < ∞. Write ℵ = (n−1
∗

K log p)1/2. For each i, j ∈ [p], we define the event
i,j = {|σ̂

jump,thre
u,i,j − σu,i,j| ≤ 4min(|σu,i,j|, αℵ)} with some constant α > 0, and di,j = (σ̂ jump,thre

u,i,j − σu,i,j)I(Ac
i,j). Identical to

40), we have E(∥Σ̂
jump,thre
u − Σ u∥

2
2) ≲ E{(maxi∈[p]

∑p
j=1 |di,j|)2} + c2pℵ

2(1−q). It holds that

E
{(

max
i∈[p]

p∑
j=1

|di,j|
)2}

≤ p
p∑

i,j=1

E
{
|σ̂

jump,thre
u,i,j − σu,i,j|

2I(Ac
i,j)

}
= p

p∑
i,j=1

E
(
|σ̂

jump,thre
u,i,j − σu,i,j|

2I[Ac
i,j ∩ {σ̂

jump,thre
u,i,j = 0}]

)
  

I

+ p
p∑

i,j=1

E
(
|σ̂

jump,thre
u,i,j − σu,i,j|

2I[Ac
i,j ∩ {σ̂

jump,thre
u,i,j = σ̂

jump
u,i,j }]

)
  

II

.

ecall σ̂ jump,thre
u,i,j = σ̂

jump
u,i,j I(|σ̂ jump

u,i,j | ≥ βℵ) for any i, j ∈ [p]. Identical to (42), I ≤ p
∑p

i,j=1 σ
2
u,i,jP{|σ̂

jump
u,i,j − σu,i,j| ≥ (4α−β)ℵ}.

Selecting α = β/2 and β being sufficiently large, identical to the arguments used in Section 8.10 for bounding the conver-
gence rate of A∗, we know I ≲ o(ℵ4) provided that K−ϕLϕ log{n (K log p)−1

} = o(1), λ2(n−1K )ι/(2ι+2)(log p)−1
= o(1), K ≳ L ,
2 n ∗ ∗ ∗ n
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f
T

(log n∗)χ1 = o(n∗) with χ1 = max{(2ι+2γ + ιγ )/(ιγ ), 2+2/ι, 1+2/γ }, and log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ2}]

ith χ2 = min{ιγ /(2ι+ 2γ + ιγ ), ι/(2ι+ 2), γ /(γ + 4), 1/3}. Also, identical to (43),

II ≤ p
p∑

i,j=1

{E(|σ̂ jump
u,i,j − σu,i,j|

4)}1/2{P(|σ̂ jump
u,i,j − σu,i,j| > 4αℵ)}1/2

+ p
p∑

i,j=1

{E(|σ̂ jump
u,i,j − σu,i,j|

4)}1/2[P{|σ̂
jump
u,i,j − σu,i,j| > (β − α)ℵ}]

1/2 .

otice that maxi,j∈[p] E(|σ̂
jump
u,i,j − σu,i,j|

4) ≲ n1/2
∗ ≤ p2c∗ with c∗ = 1/(4κ), where κ is specified in the beginning of

ection 3. Since α = β/2, repeating the arguments used in Section 8.10 for bounding the convergence rate of A∗

2
gain, it holds that II ≲ p3+c∗ [maxi,j∈[p] P{|σ̂

jump
u,i,j − σu,i,j| > (β − α)ℵ}]

1/2 ≲ o(ℵ2) if K−ϕLϕn log{n∗(K log p)−1
} = o(1),

2
∗
(n−1

∗
K )ι/(2ι+2)(log p)−1

= o(1), K ≳ Ln, K (log n∗)χ1 = o(n∗) with χ1 = max{(2ι + 2γ + ιγ )/(ιγ ), 2 + 2/ι, 1 +

/γ }, log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ2}] with χ2 = min{ιγ /(2ι + 2γ + ιγ ), ι/(2ι + 2), γ /(γ + 4), 1/3}.

herefore, E{(maxi∈[p]
∑p

j=1 |di,j|)2} ≤ I + II ≲ o(ℵ2), which implies supP4
E(∥Σ̂

jump,thre
u − Σu∥

2
2) ≲ c2p (n

−1
∗

K log p)1−q.
nalogously, in the case with ϕ = ∞, we have supP4

E(∥Σ̂
jump,thre
u − Σu∥

2
2) ≲ c2p (n

−1
∗

K log p)1−q provided that K > Ln,
2
∗
(n−1

∗
K )ι/(2ι+2)(log p)−1

= o(1), K (log n∗)χ1 = o(n∗) with χ1 = max{(2ι + 2γ + ιγ )/(ιγ ), 2 + 2/ι, 1 + 2/γ } and
og p = o{(n∗K−1)χ2} with χ2 = min{ιγ /(2ι + 2γ + ιγ ), ι/(2ι + 2), γ /(γ + 4), 1/3}. We complete the proof of Part
ii) in Theorem 7. □

.14. Proof of Theorem 8

For sufficiently large n, mink∈[ni,j] Ni,j,k = ∆K + 1 and maxk∈[ni,j] Ni,j,k = 2∆K + 2. Analogously to (48), we have that

|ϖi,j| ≤
1

2ni,j

ni,j∑
k=1

∑
K≤|ℓ−k|≤K+∆K

(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|Ji,s| dMi,s

)(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|Jj,s| dMj,s

)

≲

(
K max

k∈[ni,j]
max

ti,j,ℓ∈Si,j,k

∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|Jj,s| dMj,s

)
×

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Ji,s| dMi,s (61)

:= Q J
i,j ·

1
2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Ji,s| dMi,s .

For any constant d ≥ 1 and i ∈ [p], define the event Ei,d = {sup0≤s≤T |Ji,s| > d}. Let (∆Mj,·)
(k,ℓ)
j,i =

∫ ti,j,k∨ti,j,ℓ
ti,j,k∧ti,j,ℓ

dMj,s for any

∈ [ni,j] and ti,j,ℓ ∈ Si,j,k. Recall (∆Mi,·)i,j =
∫ ti,j,ni,j
ti,j,1 dMi,s. By Assumption 7, it holds that

P
( Q J

i,j

2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Ji,s| dMi,s ≥ v

)
≤ P

( Q J
i,j

2ni,j

ni,j−1∑
ℓ=1

∫ ti,j,ℓ+1

ti,j,ℓ

|Ji,s| dMi,s ≥ v , Ec
i,d , E

c
j,d

)
+ P(Ei,d) + P(Ej,d)

≲ P
{
d2K max

k∈[ni,j]
max

ti,j,ℓ∈Si,j,k
(∆Mj,·)

(k,ℓ)
j,i · (∆Mi,·)i,j ≥ 2ni,jv

}
+ exp(−Cdι) (62)

or any v > 0. By Bonferroni inequality, we have that

P
{
max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

(∆Mj,·)
(k,ℓ)
j,i ≥ v

}
≲ n∗ max

k∈[ni,j]
max

ti,j,ℓ∈Si,j,k
P{(∆Mj,·)

(k,ℓ)
j,i ≥ v} (63)

or any v > 0. Recall that ξ = maxi,j∈[p] maxk∈[ni,j] maxti,j,ℓ∈Si,j,k |ti,j,ℓ − ti,j,k| ≍ n−1
∗

K . By Assumption 8(ii), it holds that
axk∈[ni,j] maxti,j,ℓ∈Si,j,k E{(∆Mj,·)

(k,ℓ)
j,i } ≲ λ∗n−1

∗
K . If λ∗n−1

∗
K = o(1), by Markov’s inequality, Assumption 8 implies that

P{(∆Mj,·)
(k,ℓ)
j,i ≥ v} = P[(∆Mj,·)

(k,ℓ)
j,i − E{(∆Mj,·)

(k,ℓ)
j,i } ≥ v − E{(∆Mj,·)

(k,ℓ)
j,i }]

≲ P[(∆Mj,·)
(k,ℓ)
j,i − E{(∆Mj,·)

(k,ℓ)
j,i } ≥ v/2] ≲ exp(−Cv) exp(Cλ∗n−1

∗
K ) ≲ exp(−Cv)

or any v ≫ λ∗n−1
∗

K . By (63), we have P{maxk∈[ni,j] maxti,j,ℓ∈Si,j,k (∆Mj,·)
(k,ℓ)
j,i ≥ v} ≲ n∗ exp(−Cv) for any v ≫ λ∗n−1

∗
K .

ogether with (50), for any δ ∈ (0, 1), it holds that

P
{
d2K max

k∈[ni,j]
max

ti,j,ℓ∈Si,j,k
(∆Mj,·)

(k,ℓ)
j,i · (∆Mi,·)i,j ≥ 2ni,jv

}
≲ P

{
max max (∆Mj,·)

(k,ℓ)
j,i ≥ ξ−δ

}
+ P{d2K (∆Mi,·)i,j ≥ 2ni,jξ

δv}

k∈[ni,j] ti,j,ℓ∈Si,j,k
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R

x
R

≲ n∗ exp(−Cξ−δ) + exp(−Cd−2ξ δ−1v)

for any v ≫ ξ 1−δd2λ∗. Together with (61) and (62), maxi,j∈[p] P(|ϖi,j| ≥ v) ≲ n∗ exp(−Cξ−δ) + exp(−Cd−2ξ δ−1v) +

exp(−Cdι) for any v ≫ ξ 1−δd2λ∗. In order to make maxi,j∈[p] |ϖi,j| = Op(ξ 1/2 log1/2 p), it suffices to require log p =

o[min{ξ−δ, d−4ξ 2δ−1, dι}], λ2
∗
ξ 1−2δd4(log p)−1

= o(1) and log n∗ = o(ξ−δ). To make p diverge as fast as possible, we select
δ = ι/(3ι + 4) and dι ≍ ξ−δ . Then if K (log n∗)(3ι+4)/ι

= o(n∗), maxi,j∈[p] P(|ϖi,j| ≥ v) ≲ exp{−C(n∗K−1)(2ι+2)/(3ι+4)v} +

exp{−C(n∗K−1)ι/(3ι+4)
} for any v ≫ (n−1

∗
K )(2ι+2)/(3ι+4)λ∗.

Analogous to (58), by Assumptions 7 and 8, it holds that

max
i,j∈[p]

E(|ϖi,j|
m) ≲ max

i,j∈[p]
max
k∈[ni,j]

max
ti,j,ℓ∈Si,j,k

E
{(∫ ti,j,k∨ti,j,ℓ

ti,j,k∧ti,j,ℓ

|Ji,s| dMi,s

)2m}
≲ 1

for any fixed positive integer m. We complete the proof of Theorem 8. □

8.15. Proof of Theorem 9

Write ℵ = (n−1
∗

K log p)1/2. Recall σ̂ jump
u,i,j = σ̂u,i,j −ϖi,j. By Theorem 8 and the proof of Section 8.10, for some sufficiently

large constant α∗ > 0, if λ2
∗
(n−1

∗
K )ι/(3ι+4)(log p)−1

= o(1), we have

P
(
max
i,j∈[p]

|σ̂u,i,j − σu,i,j| ≥ α∗ℵ

)
≲ p2 max

i,j∈[p]
P(|σ̂ jump

u,i,j − σu,i,j| > α∗ℵ/2) + p2 max
i,j∈[p]

P(|ϖi,j| ≥ α∗ℵ/2) = o(ℵ4)

provided that log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ

∗

}], K−ϕLϕn log{n∗(K log p)−1
} = o(1) and K ≳ Ln, where χ∗

=

min{ιγ /(2ι + 2γ + ιγ ), ι/(3ι + 4), γ /(γ + 4)}. Hence, Part (i) holds. For any C > 0, by Markov’s inequality, we have
P(∥Σ̂

thre
u − Σ u∥2 ≥ Ccpℵ1−q) ≤ C−2c−2

p ℵ
2(q−1)E(∥Σ̂

thre
u − Σ u∥

2
2). In the sequel, we will show E(∥Σ̂

thre
u − Σ u∥

2
2) ≲

c2pℵ
2(1−q). Based on this result, we know Part (ii) holds. For each i, j ∈ [p], we define the event Ai,j = {|σ̂ thre

u,i,j − σu,i,j| ≤

4min(|σu,i,j|, αℵ)} with some constant α > 0, and di,j = (σ̂ thre
u,i,j −σu,i,j)I(A

c
i,j). As shown in (40) and (41), E(∥Σ̂

thre
u −Σ u∥

2
2) ≲

E{(maxi∈[p]
∑p

j=1 |di,j|)2} + c2pℵ
2(1−q) and

E
{(

max
i∈[p]

p∑
j=1

|di,j|
)2}

≤ p
p∑

i,j=1

E
(
|σ̂ thre

u,i,j − σu,i,j|
2I[Ac

i,j ∩ {σ̂ thre
u,i,j = 0}]

)
  

I

+ p
p∑

i,j=1

E
(
|σ̂ thre

u,i,j − σu,i,j|
2I[Ac

i,j ∩ {σ̂ thre
u,i,j = σ̂u,i,j}]

)
  

II

.

ecall σ̂ thre
u,i,j = σ̂u,i,jI(|σ̂u,i,j| ≥ βℵ). By (42), I ≤ p

∑p
i,j=1 σ

2
u,i,jP{|σ̂u,i,j − σu,i,j| ≥ (4α − β)ℵ}. Notice that maxi,j∈[p]

E{|σ̂u,i,j − σu,i,j|
4
} ≲ n1/2

∗ . Identical to (43), II ≲ pn1/4
∗

∑p
i,j=1{P(|σ̂u,i,j − σu,i,j| > 4αℵ)}1/2 + pn1/4

∗

∑p
i,j=1[P{|σ̂u,i,j − σu,i,j| >

(β − α)ℵ}]
1/2. Selecting α = β/2 for some sufficiently large β > 0, we have I + II ≲ o(ℵ2) provided that

λ2
∗
(n−1

∗
K )ι/(3ι+4)(log p)−1

= o(1), log p = o[min{(n∗L−2
n K )ϕ/(3ϕ+2), (n∗K−1)χ

∗

}], K−ϕLϕn log{n∗(K log p)−1
} = o(1) and K ≳ Ln,

where χ∗
= min{ιγ /(2ι+ 2γ + ιγ ), ι/(3ι+ 4), γ /(γ + 4)}. Thus E(∥Σ̂thre

u − Σu∥
2
2) ≲ c2pℵ

2(1−q). We complete the proof of
Theorem 9. □

8.16. Proof of Lemma 1

Write Sk =
∑k

t=1 zt . Note that maxt∈[ñ] Var(zt ) < ∞. We will apply the Fuk–Nagaev inequality (Rio, 2017, Theorem 6.2)
to bound the tail probability of maxk∈[ñ] |Sk|. Define α−1(u) =

∑
∞

k=1 I{u < α(k)}. Since α(k) ≤ a1 exp(−a2L̃
−ϕ

ñ |k − m|
ϕ
+),

then α−1(u) ≤ m + a−1/ϕ
2 L̃ñ log1/ϕ(a1u−1) for any u > 0. Define Q (u) = supt∈[ñ] Qt (u) with Qt (u) = inf{x > 0 : P(|zt | >

) ≤ u}. Since P(|zt | > x) ≤ b1 exp(−b2xr ), then Q (u) ≤ b−1/r
2 log1/r (b1u−1). Define R(u) = α−1(u)Q (u). We have

(u) ≤ c1L̃ñ log1/r∗ (c2u−1) + c1m log1/r (c2u−1) with c1 = b−1/r
2 max(a−1/ϕ

2 , 1), c2 = max(a1, b1) and r∗ = rϕ/(r + ϕ).
Since R(u) is a right-continuous and non-increasing function, then its inverse function H(x) = R−1(x) = inf{u : R(u) ≤

x} ≤ inf{u : c1L̃ñ log1/r∗ (c2u−1) + c1m log1/r (c2u−1) ≤ x} ≤ c̃1 exp(−c̃2L̃
−r∗
ñ xr∗ ) + c̃1 exp(−c̃2m−rxr ) for any x > 0 with

c̃1 = c2 and c̃2 = min{(2c1)−r∗ , (2c1)−r
}. Write ũ = c̃1 exp(−c̃2L̃

−r∗
ñ xr∗ ) + c̃1 exp(−c̃2m−rxr ). Therefore,

∫ H(x)
0 Q (u) du ≤∫ ũ

0 b−1/r
2 log1/r (b1u−1) du ≲

∫
∞

log(b1ũ−1) y
1/re−y dy ≲ b−1

1 ũ log1/r (b1ũ−1) ≲ ũ1/2
{ũr/2 log(b1ũ−1)}1/r . As x → +∞, we have

ũ → 0+, which implies ũr/2 log(b1ũ−1) → 0. Hence there exists a universal constant ε > 0 such that ũr/2 log(b1ũ−1) < ε

for any ũ ∈ (0, 2c̃1]. By the definition of ũ, we have
∫ H(x)
0 Q (u) du ≲ exp(−CL̃−r∗

ñ xr∗ ) + exp(−Cm−rxr ) for any x > 0.
2 ∑ñ

˜ ˜2 −1 −2 2 −ρ/2
Recall sñ = t1,t2=1 |Cov(zt1 , zt2 )|. By the Fuk–Nagaev inequality, P(maxk∈[ñ] |Sk| ≥ 4nλ) ≤ 4(1 + n ρ sñ λ ) +
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4
ρ

8

a

f
C
T
2
S

λ−1
∫ H(ñλ/ρ)
0 Q (u) du ≲ (1 + ñ2ρ−1s−2

ñ λ2)−ρ/2 + λ−1
{exp(−Cñr∗λr∗ρ−r∗ L̃−r∗

ñ ) + exp(−Cm−r ñrλrρ−r )} for any λ > 0 and
≥ 1. We complete the proof of Lemma 1. □

.17. Proof of Lemma 2

We first consider the case with ϕ < ∞. Define Λñ(α, u) = max{1,maxs∈[ñ]
∑ñ

t=s α
1/u(t − s)}. Notice that α(k) ≤

1 exp{−a2(L̃−1
ñ k)ϕ} for any integer k ≥ 1. For any k ≥ 2, it holds that

Λñ{α, 2(k − 1)} ≤ 1 + max
s∈[ñ]

ñ∑
t=s

{α(t − s)}1/(2k−2)
≤ 1 +

ñ∑
m=0

{α(m)}1/(2k−2)

≤ 1 + a1 + a1
ñ∑

m=1

∫ m

m−1
exp{−a2(2k − 2)−1L̃−ϕ

ñ xϕ} dx

≤ 1 + a1 + a1

∫
∞

0
exp{−a2(2k − 2)−1L̃−ϕ

ñ xϕ} dx ≤ C∗(k − 1)1/ϕ L̃ñ

or some constant C∗ > 0 independent of k. Due to kk ≤ k!ek for any integer k ≥ 1, we then have Λk−1
ñ {α, 2(k − 1)} ≤

k−1
∗

{(k− 1)k−1
}
1/ϕ L̃k−1

ñ ≤ (C∗e2/ϕ L̃ñ)(C∗e1/ϕ L̃ñ)k−2(k!)1/ϕ . Let Γk(x) be the kth order cumulant of the random variable x. By
heorem 4.17 of Saulis and Statulevičius (1991) with δ = 1, we have |Γk(Sñ)| ≤ (k!)2+r̃+1/ϕ(C̄ L̃ñH2

ñ )(C̄ L̃ñHñ)k−2ñ with C̄ =

7+2r̃C∗e2/ϕ , which implies |Γk(Sñ/ñ)| = ñ−k
|Γk(Sñ)| ≤ (k!)2+r̃+1/ϕ(C̄ L̃ñH2

ñ ñ
−1)(C̄ L̃ñHññ−1)k−2. By Lemma 2.4 of Saulis and

tatulevičius (1991), it holds that P(|Sñ| ≥ ñx) ≲ exp(−CñL̃−1
ñ H−2

ñ x2)+exp{−C(ñL̃−1
ñ H−1

ñ x)1/(1+ř)
} for any x > 0, where ř =

1+ r̃ +ϕ−1. Analogously, when ϕ = ∞, we can also show P(|Sñ| ≥ ñx) ≲ exp(−CñL̃−1
ñ H−2

ñ x2)+ exp{−C(ñL̃−1
ñ H−1

ñ x)1/(1+ř)
}

for any x > 0, where ř = 1 + r̃ . We complete the proof of Lemma 2. □
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