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We consider high-dimensional measurement errors with high-frequency data. Our
objective is on recovering the high-dimensional cross-sectional covariance matrix of the
random errors with optimality. In this problem, not all components of the random vector
are observed at the same time and the measurement errors are latent variables, leading
to major challenges besides high data dimensionality. We propose a new covariance
matrix estimator in this context with appropriate localization and thresholding, and then
conduct a series of comprehensive theoretical investigations of the proposed estimator.
By developing a new technical device integrating the high-frequency data feature
with the conventional notion of «-mixing, our analysis successfully accommodates
the challenging serial dependence in the measurement errors. Our theoretical analysis
establishes the minimax optimal convergence rates associated with two commonly
used loss functions; and we demonstrate with concrete cases when the proposed
localized estimator with thresholding achieves the minimax optimal convergence rates.
Considering that the variances and covariances can be small in reality, we conduct a
second-order theoretical analysis that further disentangles the dominating bias in the
estimator. A bias-corrected estimator is then proposed to ensure its practical finite
sample performance. We also extensively analyze our estimator in the setting with
jumps, and show that its performance is reasonably robust. We illustrate the promising
empirical performance of the proposed estimator with extensive simulation studies and
a real data analysis.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

High-frequency data broadly refer to those collected at time points with very small time intervals between consecutive
observations. Exemplary scenarios with high-frequency data include longitudinal observations with intensive repeated
measurements (Bolger and Laurenceau, 2013), the tick-by-tick trading data in finance (Zhang et al., 2005), and functional
data with dense observations (Zhang and Wang, 2016). High-frequency data are commonly contaminated by some noise,
broadly termed as the measurement errors. For measurement errors in the context of functional data analysis, we refer
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to the review article Wang et al. (2016) and reference therein. In high-frequency financial data, as another example, the
microstructure noise is well known; see the monograph Ait-Sahalia and Jacod (2014) for an overview.

Despite the central interests on recovering the signals contaminated by the noise, the properties of the noise themselves
are of their own great interests. Recently, Jacod et al. (2017) highlighted the importance of statistical properties of the
microstructure noise and studied the estimation of its moments; see the recent study of Li and Linton (2022) on the
limiting distributions in a broad setting. Chang et al. (2018) investigated recovering the distribution of the noise with some
frequency-domain analysis. In a simultaneous and independent work of ours, Da and Xiu (2021) investigated the auto-
covariance of the measurement errors with a semiparametric approach that utilizing a working moving-average model.
These aforementioned studies aimed on univariate cases. Ubukata and Oya (2009) considered the covariance estimation
and testing for measurement errors in a bivariate case. Christensen et al. (2013) proposed an estimator for the covariance
matrix of the noise vector in high-frequency finance data. Both Ubukata and Oya (2009) and Christensen et al. (2013)
handled fixed dimensional cases with m-dependent or independent measurement errors.

We are motivated to concentrate on high-dimensional cases in this study that shed light on influential practical
applications where covariances between different components of the noise could bring us useful information in solving
various problems. For example, for functional-type observations, the covariations between the measurement errors may
help identifying the common source or reasons of contaminations so that improvement can be developed in designing
future investigations. For financial data, such covariations in the high-dimensional microstructure noise may help in better
understanding the trading behaviors that may show substantial different pattern between equities. Indeed, Li et al. (2016)
found that a parametric function incorporating the market information may account for a substantial contribution to
the variations in the microstructure noise. Nevertheless, studying the covariance between different components of the
high-dimensional noise in high-frequency data remains little explored.

Our primary interests in this study are on the validity and optimality of the covariance matrix estimation procedure for
the high-dimensional noise in high-frequency data. This problem has unique challenges from multiple aspects. First, since
the noise of interest are not directly observable, the targeted random vectors are latent. Second, the latency arises together
with high data dimensionality and high sampling frequency, two challenging features that interrelates to each other in
this investigation. The high-dimensional noise sequence is expected to contain some serial dependence, posing a major
methodological and theoretical challenge. The properties of high-dimensional covariance matrix estimation have not yet
been explored in this important scenario. Third, the high-dimensional observations may not be synchronous, i.e. different
components of the contaminated observation for the high-dimensional noise may be observed at different time points.
How these data features affect the statistical properties on the validity and optimality of the covariance matrix estimation
remains unclear.

High-dimensional covariance matrix estimation is an important problem in the current state of knowledge, and
has received intensive attentions in the past decade; see, among others, Bickel and Levina (2008a,b), Lam and Fan
(2009), Rothman et al. (2009), Cai et al. (2010), Cai and Liu (2011), Cai and Zhou (2012a,b). For high-dimensional sparse
covariance matrices, the minimax optimality of the estimations were investigated in-depth in Cai and Zhou (2012a,b).
We note that the existing estimation methods for high-dimensional sparse covariance matrices are developed when
the underlying data of interest are fully observed; hence they are not applicable for the covariance matrix estimation
of the noise in high-frequency data with latency and asynchronous observations. In the literature on multivariate and
high-dimensional high-frequency data analysis, existing studies mainly concern the estimations of the so-called realized
covariance matrix. Specifically, the major objective is on the signal part, attempting to eliminate the impact from the
noise; see, for example, Ait-Sahalia et al. (2010), Fan et al. (2012), Tao et al. (2013), Liu and Tang (2014), Lam et al. (2017),
and Xia and Zheng (2018). However, it remains little explored on the high-dimensional covariance matrix of the noises
in high-frequency data, accommodating all aforementioned challenging features.

Our study makes several contributions to the area. To our best knowledge, our method is the first handling covariance
matrix estimation of the serially dependent high-dimensional noises in high-frequency data. Methodologically, to over-
come the difficulties due to the latency, asynchronicity, and serially dependent observations, we propose a new approach
with appropriate localization and thresholding. Theoretically, to our best knowledge, our technical device integrating
high-frequency serial dependence with the «¢-mixing is a new development of the current state of knowledge; and it can
be more broadly applied for solving this class of problems. Meanwhile, our theoretical analysis establishes the minimax
optimal convergence rates associated with two commonly used loss functions for the covariance matrix estimations of
the high-dimensional noise in high-frequency data. The minimax optimal rates in this setting are our new theoretical
discoveries, and we establish cases when the proposed estimator achieves such rates. Our result also reveals that the
optimal convergence rates reflect the impact due to the asynchronous data, which are slower than those with synchronous
data. The higher the level of the data asynchronicity is, the slower the convergence rates are expected. We show that the
proposed localized estimator has the same accuracy as if the high-dimensional noises are directly observed in the sense
of the same convergence rates. Furthermore, our theory includes a second-order analysis revealing the dominating bias of
the estimator. We then propose a bias-corrected estimator and show that removing such a bias leads to more promising
performance, especially when components in the covariance matrix are small. Our analysis also indicates that the proposed
localized estimator is robust to the setting with jumps.

The rest of this paper is organized as follows. The methodology is outlined in Section 2, followed by theoretical
development in Section 3. Section 4 presents the theory and method handling the situation when the level of the noises is
small. Section 5 investigates the robustness of our method in the setting with jumps. Numerical studies with simulation
and a real data analysis are presented in Section 6. Section 7 includes some discussions. All technical proofs are given in
Section 8. Some additional numerical results are presented in the supplementary material.
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2. Methodology
2.1. Model and data

We introduce some notations first. For any positive integer g, we write [q] := {1, ..., q}. For a matrix B = (b; j)s, xs,»
let B®2 = BB, |B|,, = MaXic(s,} jes,] |Dijl, IBll1 = Maxjeps;) D ity 1bijl, 1Blloo = Maxieps,) ZJS-L |b;;| and |[Bll; = Al (B®2),
where An.(B®?) denotes the largest eigenvalue of B®2, Denote by I(-) the indicator function. For a countable set G, we
use |G| to denote its cardinality. For two sequences of positive numbers {a,} and {b,}, we write a, < b, or b, > aj if there
exist a positive constant ¢ and a large enough integer ny such that a, /b, < c for all n > ny. We write a, < b, if and only
if a, < b, and b, < a, hold simultaneously.

The setting of our study contains the signal part — a p-dimensional continuous-time process (X ):<[o,r}, Where, without
loss of generality, [0, T] is the time frame in which the high-frequency data are observed. We begin with a setting that

Xe = (X165, Xp.e) " satisfies:
dXi; = picdt + o dB;; and E(dB;; - dB;j,) = pj; dt, (1)

where u;; and o;; are progressively measurable processes, and By, ..., B, are univariate standard Brownian motions.
Here o; and p; j; are, respectively, governing the volatilities and correlations, where both of them may be dynamic over
time. A theoretical study of our method in the setting with jumps will be considered in Section 5.

For each i € [p], we use G; = {t; 1, ..., tin;} to denote the grid of time points at which we observe the noisy data of the
ith component process X;,, where 0 < t;; < --- < t;,, < T. The subject-specific set g; reflects the asynchronous nature
of the problem. For the special case with synchronous data, all G;'s are the same. However, G;'s are typically different in
many practical high-frequency data. Let n be the number of different time points in Uleg,-, and we denote the different
time points in Uf:1gi by0<t; <---<t;, <T.Foranyi,je€ [p], we define

nij = |G N Gjl,

where n;j evaluates how many time points t;’s at which we observe the noisy data of the ith and jth component processes
Xi and X;; simultaneously. Clearly, n;; = n; for any i € [p].
We consider that the actual observed data are contaminated by additive measurement errors in the sense that

Yi~fi,lc = Xity + Ui,fi,k

with E(U;, ) = 0 for each i € [p] and k € [n;]. The additive noise assumption is common in the literature; see Ait-Sahalia

and Jacod (2014). Formally, we can write
Ytk = xtk + Utk s k € [Tl] ) (2)

and assume the measurement errors {Uy, };_; are independent of the process (X )ico,r;. At each time point t;, we only
observe Zle I(t, € G;) components of Yy,.

Besides the cross-sectional dependence, serial dependence is expected to be the case for {Uy, };_;; our study accommo-
dates such a feature with an innovative device. Denote by 7*  and F;° the o-fields generated by {Uy, }k<s and {U, }i=s,
respectively, the «-mixing coefficients are defined as

op(m) = sup sup |P(AB) — P(A)P(B)|, m=>1. (3)

S AeFS .BEFN L

Then {Uy,};_; is an a-mixing sequence if ay(m) — 0 as m — oo. The notion of «-mixing is a conventional foundation
for broadly characterizing the serial dependence. Among others, causal ARMA processes with continuous innovation
distributions are «-mixing with exponentially decaying a-mixing coefficients, so are stationary Markov chains satisfying
certain conditions; see Section 2.6.1 of Fan and Yao (2003). Stationary GARCH models with finite second moments
and continuous innovation distributions are also «-mixing with exponentially decaying «-mixing coefficients; see
Proposition 12 of Carrasco and Chen (2002). Under certain conditions, vector auto-regressive (VAR) processes, multivariate
ARCH processes, and multivariate GARCH processes are all «-mixing with exponentially decaying a-mixing coefficients;
see Hafner and Preminger (2009), Boussama et al. (2011) and Wong et al. (2020).

In (3), we highlight the necessary inclusion of n, the frequency related sample size, in the ¢-mixing coefficient. The
reason is that in a high-dimensional data setting, p is commonly specified as a function of the sample size n. Such an
intrinsic dependence makes characterizing the serial dependence substantially more challenging. To handle it in our study,
we impose the following assumption on «,(m) defined in (3).

Assumption 1. There exist some universal constants C; > 1, C; > 0 and ¢ > 0 such that a,(m) < C; exp{—Cy(L; 'm)*}
for any m > 1, where L, > 0 may diverge with n.

Assumption 1 is our new dedicated device for characterizing the serial dependence of {U;,};_, in the context of high-
frequency high-dimensional data. Here L, is introduced as a parameter to handle the aforementioned challenge due to
the high data dimensionality, together with the conventional m as in the «-mixing settings for analyzing time series. As a
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development of its own interests, the synthetic device in Assumption 1 successfully integrates the considerations of high-
frequency and high-dimensional data, where the usual interpretation of the «-mixing remains: the between-observation
dependence is still getting weaker when they are further away in the serial data, as characterized by both L, and m.
Intuitively, the rationale is that L,, as a standalone parameter, may diverge together with the sampling frequency and
data dimensionality in a synthetic manner. Such a divergence reflects the nature of this more challenging problem due
to relatively limited data information, in the sense that the serial dependence in the measurement errors will become
stronger as L, increases.

More specifically, Assumption 1 does not require {U,} to be strictly stationary, and it includes several commonly
used models for {U, } as special cases. For an independent sequence {U; }, we can select L, = 1/2 and ¢ = oo
in Assumption 1. For an L,-dependent sequence {Uy}, we can select ¢ = oo in Assumption 1. If {U,} follows VAR
model, multivariate ARCH model or multivariate GARCH model with certain conditions, we can select L, = ¢ = 1 in
Assumption 1. We provide a concrete example here with a diverging L,. For each i € [r], let Z;; satisfy the diffusion
process dZ;; = [ii(Zi; 0;) dt + 6i(Z;+; y;) dWi, where W;; is a univariate standard Brownian motion, f;(-; -) and &;(-; -)
are two functions of Z;; with some parameters #; and y;, respectively. Write Z; = (Zy,, ..., Z..)" with r independent
processes Zy, ..., Z ;. Letting Uy, = AZs for some known loading matrix A € RP*" and some § > 0, we can select
L, = 67" and ¢ = 1 when fi;(-; -) and &;(-; -) satisfy certain conditions,! where L, will diverge with n if § — 0 as
n — oo. Here L; is also allowed to depend directly on p, the dimension of U,. As an example, if each univariate sequence
{Ui ¢, }p—; is a-mixing with exponentially decaying «-mixing coefficients, with the independence assumption imposed
on the p sequences {Uq ¢ }p_qs - .- » {Upg }p—q, Theorem 5.1 of Bradley (2005) indicates that o;;,(m) defined in (3) satisfies
ap(m) < pexp(—cm) for some universal constant ¢ > 0, which implies Assumption 1 holds for ¢ = 1 and L, =< logp.

To our best knowledge, there is no alternative assumption in the literature that is capable of handling the setting
of our study. In existing studies, some serial dependence assumptions have been imposed on the measurement errors,
with a primary objective recovering its auto-covariance. When p = 1, Jacod et al. (2017) assume U, = ¥y, xx for some
nonnegative semimartingale y; and a p-mixing stationary sequence {xx}x>1, where {xx}«>1 is independent of the process
¢, see also the setting of Li and Linton (2022) that covers serially dependent, endogenous, and nonstationary noises. If y;
is the solution of some stochastic differential equations, {y;, }x>1 is also p-mixing. See, for example, Lemma 4 of Ait-Sahalia
and Mykland (2004). Based on the independence between {x}x=1 and {y, }x=1, Theorem 5.2 of Bradley (2005) implies the
sequence {Uj g, }k=1 is also p-mixing. Since p-mixing implies «-mixing, we know {Uj ;, }k>1 is also ¢-mixing. Varneskov
(2017) relaxes the p-mixing assumption on { xx}i>1 to the weaker «-mixing condition. In a recent study, Da and Xiu (2021)
assume instead a working moving average structure for the measurement errors.

For (2), we assume Cov(Uy ) = X, for each k € [n]. Our main goal in this study is to estimate X, the covariance
matrix that contains information on the between-component relationship of the unobserved noise U, . Clearly, Uy, is a
latent vector. To estimate its covariance matrix, eliminating the impact due to the process X; is required, which means
that now Uy, performs like ‘signal’ and X, is ‘noise’. Our strategy is to perform a dedicated localization: focusing on
observations that are in a specific neighborhood mentioned later. For any i,j € [p], we write Gi N G; = {tij1,..., ti,j,,,w.}
with tjj1 < --- < tijng;- Let Atijx = ijrr1 — tijk for any k € [n;j — 1]. In this paper, we consider the scenario with T
being fixed but max; jep MaXken;;—1) Alijx — 0as n — oo. Formally, we make the following assumption:

Assumption 2. (i) As n — 00, Min; je(p) MiNgepn, ;1] Atijk/ MaX; je[p) MaAXe[n;;—1] Alijk is uniformly bounded away from
zero. (ii) As n — oo, we have each n;; — oo, and min; jep) Nj j/ MaX; jegp) Mij is uniformly bounded away from zero. (iii)
mini’je[p](ti,j,ni‘j — ti,j,l) =T.

The setting with Assumption 2 is broad and general. The first part is a standard setting for studying high-frequency
data. The second part requires enough number of pairwise synchronous observations. This is a reasonable practical setting;
see also Ait-Sahalia et al. (2010) for a pairwise approach for estimating the realized covariance matrix for (X¢);efo,77. Based
on part (ii) of Assumption 2, we write

min n;; < maxn;; < n,, (4)

i,je[p] ijelp]
where n, — o0 as n — oo. As we will show in Theorems 1-4, the convergence rates for the estimates of the
covariance matrix X', = Cov(U,) will depend on n, instead of n. In the special case with synchronous observations,
we have n;; = n for any i,j € [n] and we can set n, = n. Then all our results also apply to the setting with
synchronous data. Assumption 2 is not necessary for our theoretical analysis which is just imposed for simplicity
and can be removed at the expenses of lengthier proofs. Our theoretical analysis essentially only requires the as-
sumption that min;jepnij — o0 and max;jeppy MaXgepn; j—1] Alijk — 0 as n — oo. With such assumption, both
min; jepp) minke[,,i,j_l] At j k/ Max; jepp) MaXyen; j—1) Alijk and min; jep) N j/ MaX; jegp; Nij Can decay to zero as n — oo. We

1 For each i € [r], Lemma 4 of Ait-Sahalia and Mykland (2004) indicates that {Z;s}k=1 is a p-mixing process with p-mixing coefficient
pi(m) < exp(—c;md) for any integer m > 0, where ¢; > 0 is a constant depending on the properties of ji;(-;-) and &;(-; -) (see Assumption
1 of Ait-Sahalia and Mykland (2004)). Theorem 5.1 of Bradley (2005) implies {Zys}x>1 is also a p-mixing process with p-mixing coefficient
p(m) < exp(—cminmd) for any integer m > 0, where cpin = minie 6. Since p-mixing implies «-mixing, then o,(m) defined in (3) satisfies
an(m) < 47 1p(m) < 47" exp(—cminmé) for any integer m > 0.
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will discuss in Section 7 how this assumption affects the convergence rates for the estimates of the covariance matrix
.

2.2. Covariance matrix estimation of U,

Write X = (oy,ij)pxp and Uy, = (U1 g, ..., Upy, )T. Here the subscript u in oy,ij indicates that it is a quantity associated
with the noise so as to differentiate it from the volatility process o; in (1). We know 2%, = Cov(U;, — U, )+ IE(UQUl) +
E(U[,(Ug) for any ¢ # k. By Assumption 1 and Davydov’s inequality (Davydov, 1968), |E(UuU1)|m + |IE1(UQ{U$)|OO <
exp(—C.L, |k — €|?) for some constant C, > 0, provided that maxje(y E(|Uj ") and maxjepp E(|Uj,|”) are uniformly
bounded away from infinity for some universal constant y > 2. Notice that U, — U, = (Y;, —Y;,) — (X, — X,,) and each
component process X;; is a continuous-time and continuous-path stochastic process. We have considerations from two
ends. First, due to |X;+n — Xi | — 0 almost surely as h — 0, in a small neighborhood A of t, the difference between the
high-frequency observations Y, and Y;,, for t@ € N, can be approximately viewed as U;, — U;,. Second, to avoid excessive
impact from aggregating IE(UQU[, )+ IE(U,,(U ), we cannot choose t, and t; too close. Putting these two considerations
together, we propose to estimate o, ;j by

n;
Ouij = 2n E E (Y; tije — Yi, I‘Uk)(ijU[ Ylfuk) (5)
i =1 ”"r,jees,,k

where S = {tij¢ € GiNG; : K < |£ — k| < K+ Ak} for some integers K > 1and Ax > 0, and N x = |S;|. Here the set
Sijk is designed to meet the aforementioned two considerations — ensuring data in an appropriate range are incorporated
for estimating X',.

Our estimator (5) with S;;  is generally applicable. For an independent sequence {Uy, }, we can select K = 1 and then
E(Uiﬂfi,j,e[‘,jvfi,j,k) = ]E(U,-,tuvkljj,[i’j_z) = 0 for any t;j¢ € Sij« due to (Ly, ¢) = (1/2, 00) in Assumption 1. For an L,-dependent
sequence {Uy }, we can select K > L, due to ¢ = oo in Assumption 1 and then E(Ui;,Ujy;,) = E(Uig;, Uy, ) = 0 for
any tij¢ € Sij For general case with ¢ < oo, with selecting K > L,(C,, log n,)"¢ for some sufficiently large constant
Cix > 0, MaX; je[p) MaAXken; ;] MAXy, ; €5, |IE(U,'¢,.J'[UJ',[,.J‘,‘) + E(Uiv[i,j.kufvfi.j,zn < n; %G+, which is negligible in comparison to
the bias from approximating (Ui, ; , — Ui Uitij o — Uit i) BY Vi, = Yieijio Yistj — Vit )- To simplify our presentation,
we assume Ag > 0 is a fixed integer in this paper. Our theoretical results can be parallel extended to the scenario with
diverging Ag.

For a fixed T, (4) and Assumption 2 imply that

min min Atjj < max max At”kﬁn
i,jelp]l ken; j—1] i.je[p] ke[n; j—1]

Let

o~

Y= (&u,i,j)pxp (6)

for 6,;; defined as (5). Theorem 1 in Section 3 shows that the elements of :‘:‘u are uniformly consistent to the
corresponding elements of X', with a suitable selection of K, i.e.

E(|§u — Yuls) < (Kn; 'logp)'/2.

~

Theorem 2 in Section 3 shows that (n! logp)'/? is the minimax optimal rate in the maximum element-wise loss for
the covariance matrix estimations of the high-dimensional noise Uy, in high-frequency data. If {U,} is an independent
or Ly-dependent sequence with fixed L,, we can select K as a fixed integer and then the associated convergence rate
of | ¥y — Xyl is minimax optimal. For general cases with ¢ < oo and fixed L,, with selecting K =< (log n, yW/ete for
some € > 0, the convergence rate of |2 — Xl is nearly optimal with an additional logarithm factor (log n,,)!/(2#)+€/2,
More importantly, as we will discuss below Remark 3 in Section 3, (n; ~1logp)'/? is also the minimax optimal rate in the
maximum element-wise loss for the covariance matrix estimations of Uy, if we have observations of the noise, which
indicates that our estimator shares some oracle property and the proposed localization actually makes the impact of the
latent process X; be negligible.

However, the aforementioned element-wise consistency and optimality do not imply their counterparts for the
covariance matrix estimation with high-dimensional data. That is, the estimator 3/, may not be consistent to 3/, under the
spectral norm || - ||, when p > n. This is a well-known phenomenon in high-dimensional covariance matrix estimation;
see, among other, Bickel and Levina (2008a). For high-dimensional covariance matrix estimations, one often resorts to
some classes of the target with extra information. With the extra information, the consistency under the spectral norm
and other properties associated with the covariance matrix estimations can be well established. In this paper, we focus
on the following class — the sparse covariance matrices considered in Bickel and Levina (2008b):

p
H(q, ¢, M) = {Eu = (Ouijlpxp : Ouii <M and Y |oy;jl? <, for all i} : (7)
j=1
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where q € [0, 1)and M > 0 are two prescribed constants, and ¢, may diverge with p. Here ¢, can be viewed as a parameter
that characterizes the sparsity of X', i.e, if ¢, is smaller, then X, is more sparse. If ¢ = 0, we have

p
(0, ¢p, M) = {Z‘u = (Ouij)pxp : Ouii <M and Y I(oyj # 0) < ¢, for all i},
j=1
where ¢, evaluates the number of nonzero components in each row of X,.
For X', € #(q, cp, M), we propose the following thresholding estimator based on the element-wise estimation Z‘
given in (6):
thre

3" = [6uis{16uisl = Bk logp)*}],.., - .

where 8 > O 15 a fixed constant for the thresholding level. Theorem 3 in Section 3 shows that such defined thresholding
estimator 2 ¢ is consistent to X, under the spectral norm with suitable selections of K and 3, i.e.

thre

E(I1Z," = Zul3) < c2(Kn;  logp)' ™. (9)

Furthermore, Theorem 4 in Section 3 indicates that c,(n; ! log p)\'=9/2 is the minimax optimal convergence rate with the
spectral norm loss function for the covariance matrix estimations of the high-dimensional noise Uy, in high-frequency
data, which is also the minimax optimal convergence rate in the spectral norm loss if we have observations of the noise

directly. If {Uy,} is an independent or L,-dependent sequence with fixed L,, we can select K as a fixed integer and then
thre . .. . . .
the associated convergence rate of || X, — X, is minimax optimal. For general cases with ¢ < oo and fixed L,, with

selecting K =< (logn,)/#*¢ for some ¢ > 0, the convergence rate of ||23‘t e Xl is nearly optimal with an additional

logarithm factor (log n, )(//¢+€)1-0)/2,

Remark 1. In finite samples, the thresholding estimator :‘Z‘thre given in (8) may not be positive definite in general.

~thie  thr . A A
We can first apply the smgular value decomposition to X, . X, " ’\rdlag(r], .. p) where 7; > .- > T
~ thre

are the elgenvalues of Z‘ hre ,and P is an orthogonal matrix. If there are s negative elgenvalues we can use X

Pldiag(t1, ... Tpsr Tpsin —i—e ., #,4¢)P as the estimate of X, for some € > 0. Write 8, = c,(Kn; ! log p)1~9/2 and let

h
71 > --- > 1, > 0 be the elgenvalues of X,. Since maxjep) |7 — 7| < || Z‘t = Op(8n), if 7, is uniformly bounded

away from zero and we select € = —17, + (Kn;'logp)V/? when 7, < 0, such defined E‘i s positive definite and also
satisfies (9).

3. Theoretical analysis

In this section, we establish the theoretical properties of the proposed estimators. To mimic the high-dimensional
scenario, we always assume p > nf for some universal constant « > 0 in this paper. We also require the following
assumptions.

Assumption 3. Write Uy, = (Upy,...,Upy, )T. There exist some universal constants C3 > 1 and C4; > 0 such that
P(|Ui¢,| > u) < G exp(—C4u?) for any i € [p], k € [n] and u > 0.

Assumption 4. There exist some universal constants Cs > 0, C; > 0 and C; > 0 such that (i) ]E(exp[&{u,?’t — ]E(,uﬁt)}]) <
exp(Cs0?) and E(exp[6{o, —E(0})}]) < exp(Cs6?) for any i € [p], t € [0, T]and [0] < Cs; (ii) E(u?,) < G and E(o?,) < G;
foranyie [p]andt € [0, T].

Assumption 5. There exist some universal constants y > 0, Cg¢ > 1 and Cg > 0 such that P(supy_,<r 0i; > u) <
Cgexp(—Cou”) for any i € [p] and u > 0.

All assumptions are mild for studying high-dimensional covariance matrix estimations with high-frequency data.
Assumption 3 requires that each component of U, is sub-Gaussian. Following Lemma 2.2 of Petrov (1995), we know
that part (i) of Assumption 4 holds if there exist two positive constants C, and C,, such that P{|/Lﬁt - IE(/,L,—Z’[N >u} <
C, exp(—C,su) and ]P’{|aft — IE(aft)| > u} < Coexp(—C,,u) foranyi € [pl, t € [0, T] and u > 0. Assumption 5 describes the
behavior of the tail probability of supy.;-r ;.. If the spot volatility process o;; is uniformly bounded away from infinity
overi € [p] and t € [0, T], we can select y = oo in Assumption 5. Then we have the following result.

Theorem 1. Let P; denote the collections of models for {Yy, };_; such that Y, = X, + Uy, where the noises {Uy, };_; satisfy
Assumption 3, X = (X1, - - .,Xp,t)T follows model (1) with each p;, and oy, satisfying Assumptions 4 and 5, and the grids
of time points {gi}f=1 satisfy Assumption 2. Let K > CL, for some constant C > 1. Under Assumption 1, it holds that

SupE(1Zy — Zuls) S (Kn; ' logp)'?
P1
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provided that logp = o[min{(n,L;2K)*/G¢*2) (n,K~1)*}] and K=L} log{n.(K logp)~'} = o(1), where n, is specified in (4)
and x = min{y /(y + 4), 1/3}.

Remark 2. Theorem 1 gives the convergence rate of max; jepp |6u,ij — Ou,ijl-

(i) For an independent sequence {Uy, }, due to (L,, ¢) = (1/2, 00) and K > 1, E(2, — Zul) < (Kn;'logp)'/? provided
that log p = of(n..K~1)*}. For fixed K, max; je(p) |6u.ij — ouijl = Op{(n;! logp)l/z}

(i) For an L, dependent sequence {U, }, due to ¢ = oo and K > Ln, E(| X, — Fulw) < (Knz'logp)'/2 provided that
logp = o{(n.K~1)*}. For fixed L,, max; je(p) |6y,ij — Ouijl = Op{(n‘l log p)!/?} with selecting a fixed K > L,. For diverging
Ln, Max; jep) 16uij — ou.ijl = Op{(Lany ! log p)"/2} with selecting K = L, and K > L.

(iii) For the general cases with ¢ < oo and fixed L,, to make K~¢L log{n.(K logp)~'} = o(1), we need to select
K > (logn,)'¢.1f we select K =< (log n,)"/¢* for some € > 0, max; jcp) [6u.ij — 0u.ijl = Op{(n; ' logp)/?(log n,)/2¥)+</2},

Furthermore, Theorem 2 shows that the convergence rate (n; ! log p)!/? is minimax optimal in the maximum element-
wise loss for the covariance matrix estimations of the high-dimensional noise Uy, in high-frequency data.

Theorem 2. Let n/n, < p. Denote by F the class of all measurable functionals of the data. Then

inf supE(| X — Zul.) 2 (n; ' logp)'/2,
YeF P

where Py is defined in Theorem 1.

Remark 3. (i) If {U,, } is an independent sequence or L,-dependent sequence with fixed L,, Remarks 2(i) and 2(ii) indicate
that our proposed estimate 3, is minimax optimal under the maximum element-wise loss.

(ii) For the general cases with ¢ < oo and fixed L,, Remark 2(iii) indicates our proposed estimate 2 is nearly minimax
optimal under the maximum element-wise loss with an additional logarithm factor (log n,,)!/(2¢#)+€/2,

To establish the lower bound stated in Theorem 2, we essentially focus on a model belonging to P; with u;; = 0 and
oit = 0forany t € [0,T] and i € [p]. Let Cx = {i € [p] : tx € G;} for any k € [n]. In this specific model, the latent
process X; = 0 for any t € [0, T] and thus the data we observed are Z = {U;, ¢,, ..., Uy, c,}. Here Uy ¢, denotes the
subvector of U;, with components indexed by Ci. Hence, (n;'logp)V/? is also the minimax optimal rate in the maximum
element—wj\se loss for the covariance matrix estimations of U,, with data 2 = {Uy, ¢,, ..., Uy, ¢,}, which indicates that the
estimator X', shares some oracle property and the proposed localization actually makes the impact of the latent process
X; be negligible.

Regarding the loss function under the spectral norm || - ||, for the whole covariance matrix estimation, Theorem 3
establishes the convergence rate of the thresholding estimator Z’ ¢ defined as (8).

Theorem 3. Let P, denote the collections of models for {Y };_; such that Y, = th + Uy, where the noises {U, };_, satisfy
Assumption 3 with the covariance matrix X, € H(q, ¢p, M), X = X1 ¢, ..., Xp, )7 follows model (1) with each i, and o,
satisfying Assumptions 4 and 5, and the grids of time points {g,-}le satisfy Assumptlon 2. Let K > CL, for some constant C > 1.
Under Assumption 1, with sufficiently large constant > 0 in (8), it holds that

thre

supIEl(HE — Xull3) < cj(Kn, ' logp)'
provided that logp = o[min{(n,L,2K)?/®¢*2) (n,K~1)*}] and K=L} log{n.(K logp)~'} = o(1), where n, is specified in (4)
and x = min{y /(y +4), 1/3}.

Our result in the following Theorem 4 justifies that the convergence rate c,(n; ! logp)'~%/2 is minimax optimal under
the spectral norm loss function for the covariance matrix estimations of U, with the sparsity structure (7). Again, this

rate is also the minimax optimal rate in the spectral norm loss for the covariance matrix estimations of U, with data
Z = {Url,cly cees Utn,cn}-

Theorem 4. Let n/n, < p. Denote by F the class of all measurable functionals of the data. Then
inf sup IE(||E’ — Xul3) 2 cp(n; ' logp)' 1
YeF Pa

< -7

provided that ¢, < log p)~G~9/2, where P, is defined in Theorem 3.

Remark 4. (i) If {U, } is an independent sequence or L,-dependent sequence with fixed L, Theorems 3 and 4 indicate
that E‘thre defined as (8) is minimax optimal under the spectral norm loss when we select K as a fixed integer.
(ii) For the general cases with ¢ < oo and fixed L,, if we select K = (logn,)/#*¢ for some € > 0, Theorems 3 and 4

indicate that 2 ¢ defined as (8) is nearly minimax optimal under the spectral norm with an additional logarithm factor
(logn )]/‘ﬂJre)(] Q)/z
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In summary, we conclude that it is n, - the effective sample size of the pairwise synchronous observations -
determining the convergence rate of the covariance matrix estimation of the noise U, . Practically, n, is expected to
be smaller than n — the total number of observation times. Hence, the accuracy of the covariance matrix estimation
is affected by the level of data asynchronicity — the more asynchronous the data are, the more difficult it is to estimate
X, Another finding from our theoretical analysis is that although the noise {Uy, ¢,, ..., Uy, ¢c,} are not directly observable,
the localized estimator in some scenarios has the (nearly) same accuracy as the one when the noise {U;, ¢, ..., Us,.c,}
are observed in the sense of the (nearly) same convergence rates for estimating X', with high-frequency data. From the
practical perspective, it can be viewed as a bless from the high-frequency data with adequate amount of data information
locally, so that the statistical properties of the noise can be accurately revealed.

4. The effect of the smallness of the noise

Our results in Section 3 assume that n;; — oo with T fixed. Empirically, as pointed out in Hansen and Lund (2006),
the magnitude of o, ;; may be small; see also Christensen et al. (2014). To address this issue, we study the second-order
property of our estimator concerning its bias. For &, ;; defined as (5), since {U, };_, is independent of (X;)o<¢<r, we have
that

E{Gu.ij | (Xe)o<e<r} — Ouij

nj j Mi.j

1 Uit ! St
— o (R P U ) 2B X b,
e " tiyjlesuﬁk (B 1], t,j,eESijvk
A s
] nij 1
2n; ;i N; ; Z (Xi,ti,j.z _Xi,t.-.j,k)(xj,ti.j.z _XJlfi.j-k)’ "
oot K e

11(i.j)

which indicates that the bias in &,;; includes three parts: I5(i, j), I5(i, j) and II(i, j). Proposition 2 in Section 8 shows
that max;jep (i, j)] = Op{(Kn;'logp)'/?}, but E{II(i,j)} # O, causing a bias of order O(Kn;}') that summarized in
Theorem 5. Under Assumptions 1 and 3, it follows from Davydov’s inequality that max; jegp) [15(i, j)| + max;jepp 1150, j)| <
exp(—C,L, “K¢) for some universal constant C, > 0. If {Uy, };_; is an independent sequence or L,-dependent sequence,
we know ¢ = oo and then max; jepp 1151, j)| + max;jepp) 15(1, j)| < exp(—oo) = 0 with K > L,. If ¢ < oo, with selecting
K = Ly(C, logn,)/¢ for some sufficiently large constant C,, > 0, max; jerp) 1531, j)| + max; jegp 1500, ) < n; %G will be
negligible in comparison to II(i, j).

Theorem 5. Under Assumptions 2 and 4, if K = o(n,.), it holds that

2K + Ak /[f~f-”i,j
4Tl,'.j G

max

§ (Kn;1 )3/2 .
i.jelp]

]E{I[(i,j) — 0i,507,5Pij.s ds}

g
From (10) and Theorem 5, we have

R 2K + Ax [l _
E(6y,ij) =au,i,j+1E(— / 0i503,spijs ds | +O0(K**n3/?) (11)
4an; j tij1
o(kn; 1)

provided that K = L,(C,, logn,)'/¢ for some sufficiently large constant C,, > 0. Since K = o(n,.), the second term on the
right-hand side of (11) is asymptotically negligible if o, ;; is not vanishing; our Theorem 5 implies that it is the leading
term in the bias. Impact from the bias on &, ;; could be empirically substantial, especially when o, ;; is relatively small.

.. lijn; ; . . ~
For any i,j € [p], let ¥;; = ffi,j.1 " 01 50j5pi s ds. As a remedy, we propose a bias-correction for 6, ;; as follows:

2K + Ak -
=G 12
an;, Vi (12)

sbe &~
Oyij = Ouij

where &, ;; is given in (5), and 1/A/i’j is an estimate of 1;;. Since ;; is an integrated covariance, it can be estimated by
existing approaches, for example, the polarization method (Ait-Sahalia et al., 2010), the two time scales approach (Zhang,
2011), the pre-averaging method (Jacod et al, 2009; Christensen et al, 2010), and the quasi-maximum likelihood
approach (Liu and Tang, 2014). Section 6.1.2 gives details for calculating ;; by the two time scales approach. Based

o . . . 5b Sbe,th . . S Sth
on alf’ﬁj given in (12), we can obtain Euc and EUC ' " the bias-corrected version of Y, defined as (6) and Z’L " defined

. . A N . b Sbe,th
as (8), respectively, by replacing o0,;; by alf’ﬁ i Theorem 6 indicates that Euc and Eu” " share the same convergence

™~ ~th .
rates of X', and Z‘Z ", respectively.
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Theorem 6. Assume max; jepp |1Apj,]‘| = Op(logp). The following two assertions are satisfied:
(i) Under the conditions of Theorem 1, |ZJEc — Xul,, = Op{(Kn;"logp)'/}.
(ii) Under the conditions of Theorem 3, ||§'Zc'thre — Xyl = Op{cy(Kn; ' logp) =972} for any covariance matrix X, €

H(q, cp, M).

5. Impact from jumps and the robustness of our methods

We now consider the setting with jumps in the underlying process X;. Assume X; = (Xi,..., Xp,t)T satisfies the
following model:
dXi = pi¢dt +o; dB;; + JirdM;, and E(dB;; - dBj,) = p;; dt, (13)

where w;;'s, 0i¢’s, Bi+'s and p; ;’s are same as those in (1), J; ;s are the jump sizes, and M;;’s are counting processes. Our
analysis reveals that our estimators proposed in Section 2.2 for X', are reasonably robust against jumps. In our theoretical
analysis, we impose Assumptions 6 and 7 on the counting process M;; and the jump size J; , respectively.

Assumption 6. Let (AM;.);; = Mi-fi.j,n,-j —M,l_[iyj_1 forany i, j € [p]. There exist A1, ..., A, > 0 and some universal constants

Cio > 0, Cy1 > 0 such that (i) E{exp(0[(AM;.);j — E{(AM;.)ij}])} < eXp{)\.i(ti’j’ni'j — ti,j,l)ez} for any |0| < Cl‘o1 and i € [p];
(i) E{(AM; . )ij} < Cradiltijn; — tij1) for any i € [p].

Assumption 7. There exist some universal constants ¢ > 0, C;; > 1 and Ci3 > 0 such that P(supg,<7 il > u) <
Ci2 exp(—Cy3u') for any i € [p] and u > 0.

If M;; is a Poisson process with intensity A; > 0, then (AM;.);; follows Poisson distribution with parameter
)Li(t,»,j’n,._j — tij1) and Assumption 6 holds for Cip = C;; = 1. Assumption 7 controls the tail behavior of the random
jump size supg.,rJi:. If the jump size J;; is bounded from above uniformly for i € [p] and ¢t € [0, T], we can select
¢ = oo in Assumption 7.

Recall Sjjx = {tije € GiNG; : K < |€ — k| < K 4 Ay} for some integers K > 1 and Agx > 0, and N;jx = |S;;«|. For any
i,j € [p], define

1 ij 1 tije Gije
wij = T Z N.. Z ( ]i,s dMi,s) ( ]j,s dle,s) . (14)
M kot Nk e\ figk
Let £2 = (@ j)pxp and
2 = i e = Bu— 2,

where f‘u is defined as (6). Analogous to (8), we define the thresholding version of E'Lump as

2 < [GlTPH{161P) > B(kn  logp)' )]

u u,i,j u,ij

pxp’ (15)

where B8 > 0 is a fixed constant for the thresholding level.
Our theory has two parts. As the first part, parallel to Theorems 1 and 3, we have the next theorem for the convergence

<~ jump - jump, thre
rates of X" and X, .

Theorem 7.  Assume Assumptions 1-7 hold. Let A, = maxypA; and K > CL, for some constant C > 1. If
A(n7 1K)V H(logp)~! = o(1), logp = o[min{(n,L,2K)*/G¢+2) (n, K~1)X}] and K—¢LY log{n.(K logp)~'} = o(1), where
n, is specified in (4) and ¥ = min{ty /(2t + 2y + ty), t/(2t 4+ 2), v /(y + 4), 1/3}, then the following two assertions are
satisfied:

(i) Let P3 denote the collections of models for {Yy};_; such that Y, = X; + U, where the noises {Uy };_, satisfy
Assumption 3, X¢ = (X1t - -- ,Xp,r)T follows model (13) with each wi¢, oi¢, Mi¢ and J;, satisfying Assumptions 4-7, and
the grids of time points {gi}f=1 satisfy Assumption 2. It holds that

$yJjump

supE(|1 X, — Zuly) < (Kn; ' logp)'/2.
P3

(i) Let P4 denote the collections of models for {Y};_, such that Y, = X, + Uy, where the noises {U};_, satisfy
Assumption 3 with the covariance matrix X, € H(q, ¢p, M), X; = (X1 ¢, ... ,Xp,t)T follows model (13) with each p;, oir, Mi;
and J;; satisfying Assumptions 4-7, and the grids of time points {gi}f:] satisfy Assumption 2. With sufficiently large constant
B > 0in (15), it holds that

< jump, thre

sng(uzu — Xul3) < ci(Kn; logp)' 9.
4
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Theorems 7(i) and 7(ii) can be viewed as the generalization of Theorems 1 and 3, respectlvely If there are no jumps in
X¢,we have J;; =0foranyi € [p]andt € [0, T], and then Ejump = :":‘ and EJump thee = 2 . In this scenario, we can set
A =0foranyi € [p] and : = oo in Assumptions 6 and 7, respectlvely, which 1mplies )\2(11‘1K)‘/(2”’2)(logp)‘1 = 0(1) holds
automatically and ¥ = min{y /(y + 4), 1/3}. Hence, the results of Theorems 7(i) and 7(ii) in this scenario are identical to
Theorems 1 and 3, respectively.

In the second part of our theory, we establish the propertles of 2 itself. Since X, " = Eu — £2 where 2 = (@i j)pxp
with @;; defined as (14), the gap between Z‘u and Z‘u P is seen determined by an extra ‘bias’. We assume the following
condition for controlling the tail probability of ;.

jump

Assumption 8. Each M;,; has independent increments. Let (AM;. )(k) = Mt — Mig, for any i,j € [p] and

k € [n;; — 1]. There exist A1, ..., A, > 0 and some universal constants Cjp > 0, C11 > 0 such that (i) E{exp(0[(AM;.. )(k) —

E{(AM; )} < exp{ai(tijuer — 6iju)0%) for any 6] < Cpo' and i € [p]; (if) E{(AM; )} < CiiAiltijust — tiji) for any
i€ [pl

Assumption 6 holds automatically under Assumption 8. If M;  is a Poisson process with intensity A; > 0, then (AM;. )(k)
follows the Poisson distribution with parameter A;(t; ;41 — t,J,k) and Assumption 8 holds for Cig = Ci; = 1. leen
Assumptions 7 and 8, we have the following theorem for the tail probability of ;.

Theorem 8. Let A, = Maxicpy Ai. Under Assumptions 7 and 8, if K(log n,, )3/ = o(n,) and n; 'K, = o(1), it holds that

max (|| 2 v) < expl~C(n.K~)* /0490 4 exp(—Cln.k /O
i.jelp

for any v > (n; 'K )@+2/CH4) where ¢ is specified in Assumption 7. Furthermore, it holds that max; jey E(|mij|™) < 1 for
any fixed positive integer m.

Theorem 8 implies |§2|,, = Op{(Kn; 1)@ +2/C+4) og p} = o,{(Kn; ' logp)!/?} if logp = o{(n.K~1)/C*+4}, which leads
to the robustness of our proposed estimators against possible jumps in the underlying process X, as established in the
following theorem.

Theorem 9. Let A, = maxjpri and K > CL, for some constant C > 1. Under Assumptions 1-5 and 7-8, if
22(n; 'K )G+ (logp) ! = o(1), logp = o[min{(n,L;2K)?/3¢+2) (n,K~1)"}] and K~¢L{ log{n.(K logp)~'} = o(1), where
n, is specified in (4) and x* = min{ty /(2 + 2y +1y), ¢/(3t +4), y /(y +4)}, then the following two assertions are satisfied:

(i) |2y — Zulo = Op{(Kn;  logp)'/2}.

(i) With sufficiently large constant 8 > 0 in (8), ||Z‘thre Xulla = Op{cy(Kn;logp)'=9/2} for any covariance matrix
Xy e Mg, cp, M).

Specifically, Theorem 9 implies that if the intensity parameter A, of the counting processes diverges no faster than

o~ o~ h .
(n K~1)/6+8)(log p)/2, the convergence rates of X, and E’; " are the same as those in Theorems 1 and 3, even there are
jumps in the processes.

6. Numerical studies
6.1. Simulations

6.1.1. Data generating procedure o
We set (pij)pxp = {diag(A®?)}~1/2A®2{diag(A®2)}~1/2, where A = (a;;)pxp With a;; = (—0.8)"JI({i > j). For

Xe =Xy ,Xp,t)T, we generated each X;; from the following stochastic volatility model:

dXi; = i dBi; + Jir dM; dU,',zt = (02 —0j )dt + soi AW, (16)
where My, ..., M, are independent Poisson processes with intensity Aj, and By, ..., By ¢, Wiy, ..., W, ¢ are univariate
standard Brownian motions such that (i) Wy, ..., W, are p independent Brownian motions, and (ii) E(dB;; - dWj,) =

—0.3I(i = j)dt and E(dB;, - dB;;) = p;;dt. We considered two settings — with or without jumps: (i) Ji¢, ..., Jps Sy
N(O, ch2) which are independent of My, ..., M,,, and (ii) i = 0 for i € [p] and t. We set («,s, oz,ajz,kj) =
(5,0.5,0.1,0.015%, 5), the same as that in the numerical studies of Ait-Sahalia et al. (2013) that mimics the empirical
features of financial data (Ait-Sahalia and Kimmel, 2007). This setting is reasonable; comparable settings are found in
existing studies (Ait- Sahalia and Yu, 2009; Ait-Sahalia et al., 2010; Liu and Tang, 2014; Ait-Sahalia and Xiu, 2017). The
initial observations of a . (i € [p]) were generated from a Gamma distribution I'(2k6% /%, s% /(2k)). In our simulation, we
set p € {50, 100, 200}.

We took t € [0,T] with T = 1/252; here 1 unit of t means one year, so T = 1/252 is corresponding to a
trading day. We first generated high-frequency data available at each second in a 6.5-hour period; this setting results

10
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in 60 x 60 x 6.5 = 23400 observations. By letting f = k/(252 x 23400), we generated Y;, = X; + U with (Xt )eepo.1]
from (16), and each element of Uy, = (Uy 3, .., Up, tk) from a stationary GARCH(1,1) model

Uiz, = Gii Mg » 0o =0.162 +0.167 ”ffk,l +0.862

it ltk1 itg—1’

where 7z, = (717, ---» T]pyfk) is independently generated from N(0, R); the settings of R will be described later. In this
model, upon observing ]E(~2 ) = o2 for each i € [p], we considered different settings for the signal-to-noise ratio

o /(T 1f0 o} dt) by varymg o2. Since the signal-to-noise ratio can be approximated by 25202/52 with 62 in (16),

we specified two selections of o2: (i) 62 = 0.005° such that 25202/52 = 0.063, and (ii) 0> = 0.001% such that
25202 /52 = 0.00252. In Part S1 of the supplementary material, we have also investigated the finite-sample performance
of the proposed estimators when Uy, ..., Up,, Hg- N(0, o2R) with o> = 0.0052 and 0.0012.

We studied the following three models for R= (rij)pxp that controls the correlations:
Model 1: R is a banded matrix, where ri; = 1, ri41; = rijit1 = 0.6, Iiy2; = Tijy2 = 0.3, and r;; = 0 for |i — j| > 3.

Model 2: R = {diag(R*)}~"/?R*{diag(R*)} /2, where R* = R+ {|Amin(R)| + 0.05}1,, I, is the identity matrix of order p,
Amin(R) is the smallest eigenvalue of R, and R = (F; j),«p satisfies that 7; j = wj jb; j, w;'s are independently generated
from the uniform distribution U(0.4, 0.8), b;;’s are independently generated from the Bernoulli distribution with
successful probability 0.04.

Model 3: R is a bandable matrix with r;; = 0.6/,

We considered both synchronous and asynchronous high-frequency data in our simulation. To model the synchronous

data setting, we took {Y; }%3400/ 4J 35 the observed data where |x] is the floor function; by varying A, we simulated
tkatk=1

data sets of different sizes: larger A means fewer observations. Then the time points where we observed the noisy data
are t, = fs with k = 1,...,[23400/A]. In our numerical studies, we set A € {1, 2, 3}. To model the asynchronous
data setting, for eachi e [p] we applied the Poisson process sampling scheme with intensity A to {tk}23400 for generating
Gi = {ti1, ..., tiy}, the grid of time points at which we actually observed Y;,. The Poisson process samplmg schemes for
different i’s are independent. Based on this setting for asynchronous data, on average there were |23400/X] observations
for each Y;;. We selected A € {1, 2, 3} in our simulation.

6.1.2. Implementation of bias-correction R

To obtain the bias-corrected estimator 6361.,1 in (12), we need to calculate ; j, the estimate of the integrated covariance
¥i;. In the simulation, we applied the two time scales approach (Zhang, 2011) to estimate v;;. Recall G; = {ti 1, ..., tin;}
is the grid of time points we observed Y; . For given i, j € [p], we first used the refresh time procedure (Barndorff-Nielsen
et al,, 2011) to synchronize the data if G; # G;. More specifically, let the first refresh time point be v; = max(t;1, 1),
and then define the other refresh time points vi; with [ > 1 as vy = max[min{t € G; : t > y}, min{t € G; : t > v;}]
iteratively. Denoted by n*] the resulting refresh time points for G; and g;, and write t; = max{t € G; : t < v} and
thy=max{t € Gj: t < v} for each [ € [nf il If G; = gj, the refresh time points based on above procedure are identical to
ti:ly ..., tin;, and thus the associated t’f, = t’f, = t;. For given positive integers §; and §,, the two time scales estimator
for v is given by

So(nj; — 61+ 1)

B (52)
st — s+ 1y (17)

Jij = Y Y100 —

where [Y;, Y;]® = §~ Z, sr(Yier, = Yier Wiz, —Yier, ) for any positive integer 8. Following Ait-Sahalia and Yu (2009),
we set (81, 8,) = (25, 1) in our simulation. ’ ’

6.1.3. Selections of (K, Ak) and the thresholding level

To obtain &,;; defined as (5) in practice, we need to select the tuning parameters K and Ag. If each univariate
sequence {U;, };_; is «-mixing with exponentially decaying o-mixing coefficients,> with the independence assumption
imposed on the p sequences {Uj ¢ };_;, - -, {Up¢ k_q» Theorem 5.1 of Bradley (2005) indicates that e,(m) defined in (3)
satisfies a,(m) < p exp(—cm) for some universal constant ¢ > 0, which provides a rough upper bound for «,(m). Hence,
Assumption 1 holds for ¢ = 1 and L, = clogp for some sufficiently small constant ¢ > 0. Our theoretical results
require KLY log{n.(Klogp)~'} = o(1) and K > CL, for some constant C > 1. To match these requirements, when
we estimate o, ;j, we can select K = c(logp)(log n; j)(loglogn; ;) for some small constant ¢ > 0. In our simulation, we
have tried ¢ € [0.03, 0.07] and the associated results are similar. We suggest to select ¢ = 0.05 in practice. Since we
use (Yig., — Y Yit ;o — Yig,,) to approximate (Uig;, — Uiy, Uiy, — Ujgy,) for K < [£ — k| < K + Ay, the bias

Jlije Wik

2 such requirement can be easily satisfied in most commonly used univariate time series models. See our discussion below (3).
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issue caused by X; ., — Xi¢;, and Xj,;, — Xjr,;, will impact the performance of our estimators. Notice that a smaller Ak
results in a smaller bias. We need to select Ax as some small positive integers. Table 1 shows that (i) the estimators with
Ak € {1, 2, 3} perform quite well, and (ii) the estimators with Ax = 1 work best in most cases and perform quite close
to the best ones in other cases. This verifies our claim that Ak should be selected as some small integers. We suggest to
select Ak € {1 2, 3} in practice.

Based on Z‘u = (6u,ij)pxp and 2 (&lﬁ’j,j)pxp, to derive their thresholding version E‘ and Z‘th " we need
to determine the thresholdmg level. Our theoretlcal analysis shows that the thresholding level should have the order
(Kn'logp)'/2. Notice that & Uuu =n; Zk | Cijr With & = (2Niji) ™! Ztlﬂes”k(Y, tje — Vit )(Yiey, — Yie,,) Since
Var(6y,;;) has the order Kn;!, the long -run variance of the sequence {¢; ,k}k , has the order K. To incorporate the
heterogeneity of the estimators 64.ij» we implemented the thresholding estimators in practice as

Sthre A~ ~ ~ A

Eu = (O'Jflifje)pxp = [Uu,i,j1{|(7u,ij| > ﬂ*(@ijnij] lOgP)l/z}]pxp s (]8)
<obe, thre ~ be,th -1 1/2
Su = (Gu.ci.j re)pxp = [ Ouij {|Uu 1]| > /3*( z]n,] logp) / }]pxp ,
where 8, > 0 is a constant, and 9“- is an estimate for the long-run variance of the sequence {g“i.j.k}:'i]. Write ;:i,j =
nl_j1 ZZ':fl Sijk- We chose 6;; in (18) as

njj—1 ¢
bj= > IC(E)Hi_j(E),
l=—n;j+1

where K(-) is a symmetric kernel function, h is the bandwidth, I)-I\,-J(E) = n,—fj] Z”H](Cu k — Cij)Gijk—e — Gij) for € > 0

and H;;(¢) = nifjl S, 1(Gijkre — Gij)&ijk — i) otherwise. Andrews (1991) suggested the quadratic spectral kernel
25 sin(67rx/5)
1272x2 67x/5

K(x) = - cos(671x/5)}

with optimal bandwidth h = 1.3221{4n; ]5‘2 (1 — 9i;)~*}"/%, where ¥ is the estimated autoregressive coefficient in the

fitted AR(1) model for the sequence {; j, k}k . In our simulation, we have tried 8, € [1.75, 2.25] and the associated results
are similar. We suggest to select 8, = 2 in practlce.

6.1.4. Simulation results

For given estimator ZJ we evaluated its relative estimation error ||ZJ Yull2/ll ¥ull2 in different settings. Table 1
summarizes the averages of the relative estimation errors based on 1000 repetitions. We have several observations.
First, we find that i m general, 2 e performs quite well for all cases with satisfactorily small relative estimation errors

compared with Z‘u . Further, Z‘u ¢ performs quite well when 25262/ = 0.063 but poorly when 252062/ = 0.00252.
This suggests that when the noise is quite small, the bias-correction is necessary. Second, as the dimension p increases,
the relative estimation errors worsen a bit, but at a very slow pace growing with p. This demonstrates the promising
performance of the thresholding method for handling high-dimensional covariance estimations. Third, as the sampling
frequency becomes higher (smaller A or 1), the performance is improved by observing smaller relative estimation errors,
reflecting the blessing to the covariance estimations with more high-frequency data. This is actually the reason why the
performance of the estimator with synchronous data is better than that with asynchronous data when A and A are the
same. Fourth, we find that the differences are small among the performances with different Ay, especially when the data
are synchronous. Fifth, we find that the empirical performance of the proposed estimators is robust to jumps, confirming
our finding in Theorem 9.

In addition, for given estimator 3= (61 j)pxp» We also calculated in Tables 2 and 3 the true positive rate (TPR) and the
false positive rate (FPR) defined as
I{(i,j) : 6ij # 0 and oy,i; # 0}

[{(i, J) : ouij # O}
[{(i,j) : 6i; # 0 and 0y ;; = 0}
I{(i, J) : ouij = O}

Since the covariance matrix considered in Model 3 has no exact zero element, we omit reporting the TPR and FPR in
this case. Results in Tables 2 and 3 show that the TPRs of our proposed estimators for all cases are equal to 1 or quite
close to 1, and the FPRs for all cases are almost 0. This indicates that our proposed thresholding method can recover the
non-zero elements of the covarlance matrix very accurately. From the results in Table 3 when the data are asynchronous
with A = 2 and 3, we find that 2 be thre performs a bit better than Z‘ ¢, and both 2 be thre and 2 ¢ have lower TPRs

when 25202 /6% = 0.00252, which is reasonable as the signal-to-noise ratlo in terms of estlmatmg the covariance matrix
h .
of noises is lower in this case. For the FPRs, we find that there is no big difference between the FPRs of Eth * with

TPR =

)

FPR =

12
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Table 1
Averages of the relative estimation errors (x 100) for the proposed estimators when jumps exist and do not exist (in parentheses) based on 1000
repetitions.

Synchronous data Model 1 Model 2 Model 3
25202/6% p Estimators Ax A =3 A= A=1 A=3 A=2 A=1 A=3 A=2 A=1
0.063 50  sithre 1 45(45)  4.0(40) 32(32) 52(55) 46(49) 3.3(34) 63(63) 53(53)  4.3(43)
2 45(45)  40(40)  32(32) 53(56) 47(49) 3.3(35) 6.1(6.0)  52(51)  42(42)
3 46(46)  4.1(4.1) 32(3.3)  56(59)  48(5.1)  34(36) 59(59) 50050)  41(41)
Sibe thre 1 46(46) 4.1(42) 33(33) 53(55) 47(49) 34(35) 64(64) 54(54)  4.4(4.3)
2 46(46)  42(42) 33(3.3) 53(56) 47(50)  34(36) 6.1(6.1) 52(52)  4.2(42)
3 47(47)  42(43)  3.3(34) 56(59) 49(52) 3537) 6.0(6.0) 51(5.1)  4.1(4.1)
100 sthre 1 52(52) 44(44) 36(36) 57(59) 46(47) 35(35) 7.069) 6.0(60)  4.8(47)
2 52(52)  4.4(44) 3.6(3.6) 58(59)  46(47) 35(36) 6.7(6.7)  58(58)  4.6(4.6)
3 53(53)  4.5(45) 3.6(3.7)  6.0(6.1)  48(49) 3.6(3.7) 66(65) 57(57)  4.6(45)
Sbethre 1 53(54)  4.5(45) 3.7(3.7)  5.8(6.0)  47(48) 3.6(37) 7.1(7.0)  6.1(6.1)  4.8(4.8)
2 54(5.4)  45(4.6) 3.7(3.7)  59(6.1)  48(49) 3.7(37) 69(68)  59059)  47(46)
3 55(55) 46(47) 3.8(38) 6.1(63) 505.1) 38(39) 6.8(6.7) 58(58)  4.6(4.6)
200 ssthre 1 6.0(60) 5050) 404.0) 55055) 44(45) 33(34) 75(76) 65(65)  52(5.1)
2 59(59) 50050) 40(40) 54(55)  4.4(45) 33(3.3)  7.3(7.3) 6.3(63)  5.0(5.0)
3 5959) 50050) 40(40) 54(55) 45(45) 3.3(33) 7.2(72) 63(62)  5.0(4.9)
Sbethre 1 62(62) 52(52) 42(42) 57(57)  46(47) 36(36) 7.7(7.8) 66(66)  5.3(52)
2 63(63) 53(53) 42(42) 57(5.7) 47(47) 36(36)  7.5(76)  65(65)  5.1(5.1)
3 6.3(63) 54(54) 43(43) 58(58)  48(48)  3.6(3.7) 75(75)  6.4(64)  5.1(5.1)
0.00252 50 st 1 235(18.6) 21.0(16.6) 9.9(8.0)  40.6(34.8) 36.4(30.9) 165(14.2) 19.9(16.3) 17.1(14.1) 9.0(7.5)
2 282(22.1) 243(19.0) 115(9.1) 49.0(41.6) 42.1(35.7) 19.4(16.6) 22.7(18.6) 19.0(15.7) 10.0(8.3)
3 33.0(25.9) 27.5(21.6) 13.1(10.4) 57.4(49.0) 47.6(40.7) 22.4(19.0) 25.5(20.9) 20.9(17.3) 10.9(9.1)
Sbethre 1 46(46) 4.1(4.1) 3.3(3.3) 5.7(5.8) 4.9(5.1) 3.4(3.5) 6.7(6.7) 5.6(5.5) 4.4(4.4)
2 47(46)  41(41)  33(33) 59(6.1)  50(52) 34(36) 65(64) 54(54)  4.3(4.3)
3 48(47)  4.2(42) 33(3.3)  63(65) 52(54) 3.6(37) 63(63) 53(53)  4.2(42)
100 Sithre 1 31.9(32.1) 205(20.8) 12.6(12.8) 46.7(48.9) 29.8(31.4) 18.0(19.0) 25.5(25.3) 17.1(17.2) 11.0(10.9)
2 36.7(36.6) 23.8(23.9) 14.2(14.3) 53.7(56.0) 34.7(36.2) 20.5(21.5) 28.2(28.0) 19.0(19.1) 11.9(11.9)
3 415(41.3) 27.1(27.0) 15.9(16.0) 60.7(63.0) 39.5(41.0) 23.0(24.0) 31.1(30.7) 21.0(21.0) 12.9(12.8)
e thre 1 54(54)  45(45) 37(37) 64(65) 49(49) 37(37) 75(74) 63(63)  4.9(48)
2 54(5.4)  45(45) 37(37) 66(6.7) 5005.1) 37(38) 7.3(72) 6.1(6.1)  4.8(4.7)
3 56(56) 46(4.7) 3.7(3.8)  69(7.0)  52(53) 3.8(39) 72(7.1) 6.0(6.0)  4.7(46)
200 sithre 1 40.8(40.9) 26.5(26.6) 15.5(15.6) 44.7(45.4) 29.0(29.4) 16.8(17.1) 31.0(30.9) 21.0(21.1) 12.8(12.9)
2 454(455) 29.7(29.7) 17.2(17.2) 49.8(50.5) 32.5(32.9) 18.6(18.9) 33.8(33.6) 22.9(22.9) 13.8(13.8)
3 50.1(50.1) 32.9(32.8) 18.8(18.8) 55.0(55.6) 35.9(36.3) 20.4(20.6) 36.7(36.5) 24.8(24.8) 14.7(14.8)
S hethre 1 7.5(6.2) 5.4(5.1) 4.2(4.1) 8.3(6.4) 5.7(4.8) 3.8(3.6) 8.2(8.2) 6.9(6.9) 5.3(5.3)
2 81(63) 57(52) 42(41) 89(65)  6.1(49) 39(36) 8.1(8.1) 6.7(6.7)  52(52)
3 88(65) 6.0(53) 43(42) 96(67) 6.6(50) 4.1(3.7) 8.0(80) 6.7(66)  52(5.1)
Asynchronous data Model 1 Model 2 Model 3
25202/6% p Estimators Ax A =3 A= A= A=3 A= A= A= A=2 r=1
0.063 50  Sithre 1 63(63) 5.1(5.1) 3.7(3.7)  9.8(10.1)  7.3(7.6)  4.4(47)  98(9.7)  7.3(72)  5.5(5.5)
2 65(64) 52(52) 37(37) 98(10.3) 75(7.8)  46(48)  9.2(9.2)  7.0(69)  52(52)
3 6.7(67)  5.4(5.3) 3.8(3.8) 10.3(10.7) 7.8(82)  48(5.1) 89(88) 68(6.7)  5.1(5.1)
5 hethre 1 62(63) 52(52) 3.8(38)  98(102) 7.4(78)  45(47) 9.7(96)  72(72)  5.5(5.5)
2 64(64)  5.3(5.3) 3.8(3.8)  9.9(104) 7.6(8.0)  46(49) 9.1(9.1)  69(6.9)  5.3(53)
3 6.7(68)  54(55) 3.9(3.9) 10.4(11.0) 8.0(8.4)  49(52) 87(87) 67(67)  5.1(5.1)
100 Sthre 1 76(76) 56(5.6) 42(4.2) 11.0(11.3) 7.3(74)  4.9(5.0) 10.5(104) 8.3(8.2)  5.9(5.9)
2 78(78) 57(57)  4.3(4.3) 11.0(11.3) 7.5(7.7)  5.0(5.1) 10.1(100) 7.9(7.8)  5.7(5.7)
3 81(8.1)  59(59)  44(44) 11.3(11.6) 7.8(80)  52(53)  99(98)  7.7(76)  5.6(5.6)
S thre 1 77(77)  57(57)  43(43)  112(11.6) 75(7.6)  5.1(52)  104(10.3) 82(8.1)  59(5.9)
2 80(80) 58(59)  4.4(4.4) 11.3(11.7) 7.7(7.9)  5.2(5.3) 10.0(9.9) 7.9(7.8)  5.8(5.8)
3 83(83) 6.1(6.1)  4.6(4.6) 11.8(12.1) 8.1(8.3)  5.4(55) 98(9.7)  7.7(76)  5.7(5.7)
200 Sithre 1 91(91) 66(66)  4.8(48) 10.6(11.0) 7.2(7.4)  4.7(4.8) 11.3(11.2) 8.8(8.7)  6.3(6.3)
2 92(92) 67(67)  4.8(4.9) 10.4(10.8) 7.3(7.4)  4.7(4.8) 11.0(11.0) 85(8.5)  6.2(6.2)
3 94(94) 68(68)  4.9(4.9) 10.6(10.9) 7.4(7.5)  4.7(4.8) 10.9(10.8) 8.4(8.3)  6.1(6.1)
Sibethre 1 94(94) 69(69)  5.0(5.0) 11.1(11.6) 7.6(7.7)  5.0(5.1) 11.2(112) 8.7(8.7)  6.4(6.4)
2 97(96)  7.0(7.1)  5.1(5.1) 11.1(11.5) 7.7(7.8)  5.0(5.1) 11.0(11.0) 8.5(8.5)  6.3(6.3)
3 10.0(10.0) 7.3(7.3)  5.2(5.2) 11.4(11.7) 7.9(8.1)  5.1(5.2) 10.9(10.9) 8.4(8.4)  6.2(6.2)

(continued on next page)
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Table 1 (continued).

0.00252 50  xthre 1 61.8(49.2) 46.7(36.8) 18.4(147) 109(93.2) 81.8(69.6) 31.5(27.0) 48.2(40.4) 36.7(30.3) 16.1(13.3)
2 789(62.3) 55.5(43.9) 22.1(17.4) 137(118)  97.2(83.5) 38.2(32.4) 57.5(47.8) 41.5(345) 18.3(15.1)

3 95.8(75.9) 64.3(51.3) 26.0(20.3) 165(143)  113(97.7) 45.0(38.1) 67.4(55.5) 46.4(38.8) 20.5(16.9)

sbethre 1 6.9(6.7) 5.4(5.3) 3.8(3.8) 15.1(14.8) 8.1(8.1) 4.7(4.8) 12.7(122) 8.5(8.3) 5.8(5.7)

2 7.2(6.9) 5.4(5.4) 3.8(3.8) 15.8(15.5) 8.3(8.2) 4.8(5.0) 12.9(12.2) 8.4(8.2) 5.6(5.5)

3 7.6(7.0) 5.5(5.5) 3.9(3.9) 16.6(16.6) 8.6(8.5) 5.0(5.3) 13.2(12.3)  8.3(8.1) 5.4(5.4)

100 sthre 1 91.9(89.5) 46.8(469) 24.7(24.8) 133(136) 68.9(72.1) 35.9(37.6) 65.3(64.0) 37.4(37.1) 20.4(20.3)
2 107(104) 55.7(55.6) 285(28.5) 156(160)  82.1(85.4) 41.6(43.3) 73.9(72.1) 42.1(42.3) 22.6(22.4)

3 121(119) 64.8(64.8) 32.4(32.2) 179(183)  95.3(98.7) 47.3(49.0) 82.8(81.1) 47.0(47.7) 24.9(24.6)

Shethre 1 9,0(8.8) 5.8(5.8) 4.3(4.3) 19.8(21.4) 8.4(8.4) 5.2(5.3) 15.5(15.0)  9.7(9.6) 6.3(6.3)

2 9.9(9.9) 5.9(5.9) 4.4(4.4) 20.8(22.8) 8.5(8.5) 5.3(5.4) 16.1(15.5) 9.5(9.4) 6.2(6.1)

3 11.3(11.3) 6.1(6.1) 4.5(4.5) 22.0(24.2) 8.8(8.9) 5.5(5.6) 16.9(16.1)  9.5(9.3) 6.1(6.0)

200 St 1 119(121)  63.5(64.5) 31.2(31.4) 132(135) 69.8(71.6) 34.0(347) 81.1(82.0) 46.7(47.8) 24.5(24.5)
2 132(135)  72.6(732) 349(35.1) 149(152) 79.5(81.3) 38.1(38.8) 89.9(91.1) 51.7(52.7) 26.6(26.7)

3 147(150) 81.8(82.0) 38.7(38.8) 167(170)  89.3(91.1) 422(42.9) 99.5(101) 57.1(57.7) 28.9(28.9)

Shethre 1 143(14.3)  7.2(6.7) 5.1(4.9) 25.5(27.1)  9.7(9.7) 5.3(5.1) 18.9(18.9) 10.8(10.7) 6.9(6.8)

2 15.6(15.7) 7.4(6.8) 5.2(5.0) 27.2(289) 10.0(9.9)  5.5(5.2) 20.1(20.2) 10.8(10.7) 6.7(6.7)

3 17.1(17.1) 7.8(6.9) 5.4(5.1) 28.8(30.5) 10.4(10.2) 5.8(5.3) 21.4(21.7) 10.9(108) 6.7(6.7)

Sthre

different values for 25202 /5. However, the FPRs of X', when 25202/6% = 0.00252 are much higher than those when
252%2 /5% = 0.063, showing the impact from weaker signal. This again suggests that the bias-correction is very helpful,
especially for handling relatively weaker signals.

6.2. Real data analysis

We analyzed a real high-dimensional data set, studying the statistical properties of microstructure noises that
contaminate the trading prices (log-prices) of the constituent stocks of S&P 500. Intra-day tick-by-tick trading data on
two days, November 4 and 22, 2016, were downloaded from the TAQ database.

Besides the prices themselves, the Global Industry Classification Standard (GICS) codes are available to classify the
companies in S&P 500.> Based on the GICS codes, there are 36, 27, 71, 84, 36, 58, 64, 65, 5, 28, and 26 companies
respectively belonging to the 11 different sectors — Energy (E), Materials (M), Industrials (I), Consumer Discretionary
(D), Consumer Staples (S), Health Care (H), Financial (F), Information Technology (T), Telecommunication Services (C),
Utilities (U), and Real Estate (R). Since there are only 5 companies belonging to Telecommunication Services, we therefore
combined the companies belonging to the Information Technology and Telecommunication Services together and denoted
them as ‘T". Our analysis does not assume any information from the GICS classifications; we use it for validating and
interpreting the outcomes from applying the proposed method.

Upon applying the proposed methods, we report in Fig. 1 the magnitudes of the elements in the correlation matrices
of the microstructure noises estimated from E‘Emhre in (18), respectively, for November 4 and 22, 2016 with tuning
parameters suggested in Section 6.1.3. Here the companies are sorted by the categories defined by the GICS codes. The
red blocks along the diagonal in Fig. 1 represent the industrial classifications according to the digits 1-2 of GICS codes.
Hence, we can examine both the within- and between-block correlations as revealed by our estimator.

We remark with some interesting findings from Fig. 1. Overall, we can see that the estimated correlation matrices
are sparse with many components estimated as zero, indicating that our approach achieved the goal of parsimonious
covariance estimations that can (i) effectively identify nonzero components, and (ii) support providing meaningful
interpretations. More specifically, we see that the correlations differ substantially on these two days; and such difference
is related to the level of the Chicago Board Options Exchange Volatility Index (VIX), a popular measure of the stock
market’s expectation of volatility implied by S&P 500 index options. On November 4 when the VIX level was higher,
and the overall correlation level between different components of the microstructure noise is also found to be higher
than that on November 22. Upon examining the within- and between-category correlations with categories defined by
the GICS codes, we see that the correlations within each industrial sector are clear, especially for the Energy and Financial
sectors. In contrast, the correlations between different industrial sector are much weaker. Meanwhile, we observe that
the correlation estimations have no substantial difference between the cases with Ax = 1 and 3, an indication that our
method is not sensitive for the choice of Ag.

These findings suggest us that it is practically meaningful by studying the high-dimensional statistical properties of
the noises. For example, the between-day difference in correlations is helpful to understand the changes in the market
sentiment under different market conditions. Furthermore, an interesting feature is the pattern found in the within- and

3 The code is 8-digits and each company has its unique code. Digits 1-2 of the code describe the company’s sector; digits 3-4 describe the
industry group; digits 5-6 describe the industry; digits 7-8 describe the sub-industry.
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Table 2
The empirical true positive rates (x100) and false positive rates (x 100) with synchronous data when jumps exist and do not exist (in parentheses) based on 1000 repetitions.
Model 1 Model 2
TPR FPR TPR FPR
25202/G* p Estimators Ay A=3 A=2 A=1 A= A=2 A=1 A=3 A=2 A=1 A=3 A= A=1
0.063 50 Sithre 1 100(100) 100(100) 100(100)  0.5(0.5) 0.9(0.9) 0.6(0.5)  100(100) 100(100) 100(100)  0.5(0.5) 0.9(0.9) 0.5(0.5)
2 100(100)  100(100) 100(100)  0.8(0.8) 1.2(1.2) 0.8(0.8)  100(100) 100(100) 100(100)  0.8(0.8) 1.2(1.2) 0.8(0.8)
3 100(100)  100(100)  100(100)  1.2(1.2) 1.6(1.6) 1.2(1.2)  100(100) 100(100)  100(100)  1.2(1.2) 1.6(1.7) 1.2(1.2)
Sbe,thre 1 100(100)  100(100) 100(100)  0.5(0.6) 1.0(1.0) 0.6(0.6)  100(100) 100(100) 100(100)  0.5(0.6) 1.0(1.0) 0.6(0.6)
2 100(100)  100(100)  100(100)  0.8(0.9) 1.4(1.3) 0.9(0.9)  100(100) 100(100)  100(100)  0.8(0.9) 1.3(1.4) 0.9(0.9)
3 100(100) 100(100) 100(100) 1.3(1.3) 1.8(1.8) 1.4(1.4) 100(100) 100(100) 100(100) 1.3(1.4) 1.8(1.9) 1.4(1.4)
100  Sthre 1 100(100)  100(100) 100(100)  0.6(0.6) 0.5(0.4) 0.6(0.5)  100(100) 100(100) 100(100)  0.6(0.6) 0.5(0.5) 0.6(0.6)
2 100(100)  100(100) 100(100)  0.8(0.8) 0.6(0.6) 0.7(0.7)  100(100) 100(100) 100(100)  0.8(0.8) 0.7(0.6) 0.7(0.7)
3 100(100) 100(100) 100(100)  1.0(1.0) 0.9(0.9) 1.0(1.0) 100(100) 100(100) 100(100) 1.0(1.0) 0.9(0.9) 1.0(1.0)
Sbe.thre 1 100(100)  100(100) 100(100)  0.7(0.7) 0.5(0.5) 0.7(0.6)  100(100) 100(100) 100(100)  0.7(0.7) 0.5(0.5) 0.7(0.7)
2 100(100) 100(100) 100(100)  0.9(0.9) 0.7(0.7) 0.9(0.9) 100(100) 100(100) 100(100)  0.9(0.9) 0.7(0.7) 0.9(0.9)
3 100(100) 100(100) 100(100)  1.2(1.2) 1.1(1.1) 1.2(1.2)  100(100) 100(100) 100(100) 1.2(1.2) 1.1(1.1) 1.2(1.2)
200 Sthre 1 100(100)  100(100) 100(100)  0.5(0.5) 0.5(0.5) 0.5(0.5)  100(100) 100(100) 100(100)  0.5(0.5) 0.5(0.5) 0.5(0.5)
2 100(100)  100(100)  100(100)  0.6(0.6) 0.6(0.6) 0.6(0.6)  100(100) 100(100)  100(100)  0.6(0.6) 0.6(0.6) 0.6(0.6)
3 100(100) 100(100) 100(100)  0.7(0.7) 0.7(0.7) 0.7(0.7) 100(100) 100(100) 100(100)  0.7(0.7) 0.7(0.7) 0.7(0.7)
S3hethre 1 100(100)  100(100) ~ 100(100) ~ 0.6(0.6)  0.5(0.5) 0.6(0.6)  100(100)  100(100)  100(100)  0.6(0.6) 0.6(0.5) 0.6(0.6)
2 100(100) 100(100) 100(100)  0.7(0.8) 0.7(0.7) 0.8(0.8) 100(100) 100(100) 100(100)  0.8(0.8) 0.7(0.7) 0.8(0.8)
3 100(100)  100(100) 100(100)  0.9(0.9) 0.8(0.8) 0.9(0.9)  100(100) 100(100) 100(100)  0.9(0.9) 0.9(0.8) 0.9(0.9)
0.00252 50 5 thre 1 100(100)  100(100) 100(100)  5.6(4.4) 7.6(6.2) 4.0(3.0)  100(100) 100(100) 100(100) 11.0(9.8) 13.4(12.1)  8.3(7.0)
2 100(100) 100(100) 100(100)  8.2(6.8) 10.0(8.6) 5.8(4.5) 100(100) 100(100) 100(100) 14.2(13.1) 16.1(15.0) 10.9(9.5)
3 100(100) 100(100) 100(100)  10.9(9.7) 12.5(11.1)  8.0(6.6)  100(100) 100(100) 100(100) 17.2(16.4)  18.7(17.8) 13.6(12.4)
ig“hfe 1 100(100) 100(100) 100(100)  0.5(0.5) 0.8(0.8) 0.5(0.5) 100(100) 100(100) 100(100)  0.5(0.5) 0.8(0.8) 0.5(0.5)
2 100(100) 100(100) 100(100)  0.7(0.7) 1.1(1.1) 0.8(0.8)  100(100) 100(100) 100(100)  0.7(0.7) 1.0(1.1) 0.7(0.8)
3 100(100)  100(100) 100(100)  1.1(1.1) 1.5(1.5) 1.2(1.2)  100(100) 100(100) 100(100) 1.1(1.1) 1.5(1.5) 1.1(1.2)
100 ﬁ{}"e 1 100(100) 100(100) 100(100)  4.1(4.0) 3.0(2.8) 2.8(2.7)  100(100) 100(100) 100(100)  7.5(7.3) 6.0(5.8) 5.6(5.3)
2 100(100) 100(100) 100(100)  5.4(5.2) 4.2(4.0) 3.8(3.6) 100(99.9) 100(100) 100(100)  8.9(8.8) 7.5(7.2) 6.9(6.6)
3 100(100)  100(100) 100(100)  6.7(6.6) 5.5(5.3) 49(4.7)  99.9(99.8) 100(100) 100(100) 10.3(10.2)  9.0(8.7) 8.2(8.0)
Sibethre 1 100(100) 100(100) 100(100)  0.5(0.5) 0.4(0.4) 0.5(0.5) 100(100) 100(100) 100(100)  0.5(0.5) 0.4(0.4) 0.5(0.5)
2 100(100)  100(100) 100(100)  0.7(0.7) 0.6(0.6) 0.7(0.7)  100(100) 100(100) 100(100)  0.7(0.7) 0.6(0.6) 0.7(0.7)
3 100(100)  100(100) 100(100)  0.9(0.9) 0.8(0.8) 1.0(1.0)  100(100) 100(100) 100(100)  0.9(0.9) 0.8(0.8) 1.0(1.0)
200 ﬁf}“e 1 100(100) 100(100) 100(100)  2.8(2.8) 2.2(2.2) 2.0(2.0)  99.8(99.8) 100(100) 100(100)  4.6(4.7) 3.9(4.0) 3.6(3.6)
2 100(100)  100(100) 100(100)  3.3(3.4) 2.7(2.8) 2.4(2.5)  99.8(99.7) 100(100) 100(100)  5.2(5.3) 4.6(4.6) 4.1(4.2)
3 100(100)  100(100) 100(100)  3.9(3.9) 3.3(3.4) 2.9(3.0)  99.6(99.6) 100(99.9) 100(100)  5.8(5.8) 5.2(5.2) 4.7(4.7)
Sbethre 1 100(100) 100(100) 100(100)  0.5(0.5) 0.4(0.4) 0.5(0.5)  100(100) 100(100) 100(100)  0.5(0.5) 0.4(0.4) 0.5(0.5)
2 100(100)  100(100) 100(100)  0.6(0.6) 0.5(0.5) 0.6(0.6)  100(100) 100(100) 100(100)  0.6(0.6) 0.5(0.5) 0.6(0.6)
3 100(100) 100(100) 100(100)  0.7(0.7) 0.7(0.7) 0.8(0.8)  100(100) 100(100) 100(100)  0.7(0.7) 0.7(0.7) 0.8(0.8)
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Table 3
The empirical true positive rates (x100) and false positive rates (x100) in different settings with asynchronous data when jumps exist and do not exist (in parentheses) based on 1000 repetitions.
Model 1 Model 2
TPR FPR TPR FPR
25202/6% p Estimators Agx A =3 A=2 r=1 A= A=2 r=1 A=3 A=2 r=1 r=3 A=2 A=1

0.063 50 3 thre 1 100(100) 100(100) 100(100)  0.6(0.6) 0.9(0.9) 0.4(0.4) 99.3(98.9) 100(100) 100(100) 0.6(0.6) 0.9(0.9) 0.5(0.4)

2 100(100) 100(100) 100(100)  0.9(0.9) 1.2(1.2) 0.7(0.7)  99.7(99.5)  100(100) 100(100) 0.9(0.9) 1.3(1.2) 0.7(0.7)

3 100(100)  100(100)  100(100)  1.3(1.3) 1.6(1.6) 1.1(1.1)  99.8(99.7)  100(100)  100(100)  1.4(1.3) 1.7(1.7) 1.1(1.1)

Sbethre 1 100(100) 100(100) 100(100)  0.6(0.6) 1.0(1.0) 0.5(0.5) 99.3(98.9) 100(100) 100(100) 0.6(0.6) 1.0(1.0) 0.5(0.5)

2 100(100)  100(100)  100(100)  1.0(1.0) 1.4(1.4) 0.8(0.8) 99.7(99.4) 100(100)  100(100)  1.0(1.0) 1.4(1.4) 0.8(0.8)

3 100(100) 100(100) 100(100)  1.5(1.5) 1.9(1.9) 1.3(1.3)  99.8(99.7)  100(100) 100(100) 1.5(1.5) 1.9(1.9) 1.3(1.3)

100 sthre 1 100(100) 100(100) 100(100)  0.6(0.6) 0.4(0.4) 0.5(0.5) 99.4(99.1)  100(100) 100(100) 0.6(0.6) 0.4(0.4) 0.5(0.5)

2 100(100) 100(100) 100(100)  0.8(0.8) 0.6(0.6) 0.7(0.7)  99.7(99.5)  100(100) 100(100) 0.9(0.9) 0.7(0.7) 0.7(0.7)

3 100(100) 100(100) 100(100)  1.1(1.1) 0.9(0.9) 1.0(1.0)  99.8(99.7)  100(100) 100(100) 1.1(1.1) 0.9(0.9) 1.0(1.0)

Sbethre 1 100(100) 100(100) 100(100)  0.7(0.7) 0.5(0.5) 0.6(0.6)  99.4(99.0) 100(100) 100(100) 0.7(0.7) 0.5(0.5) 0.6(0.6)

2 100(100) 100(100) 100(100)  1.0(1.0) 0.8(0.8) 0.9(0.9) 99.7(99.4) 100(100) 100(100) 1.0(1.0) 0.8(0.8) 0.9(0.8)

3 100(100) 100(100) 100(100)  1.3(1.3) 1.1(1.1) 1.2(1.2) 99.8(99.6) 100(100) 100(100) 1.3(1.3) 1.1(1.1) 1.2(1.2)

200 Sthre 1 100(100) 100(100) 100(100)  0.5(0.5) 0.5(0.5) 0.5(0.5) 99.4(98.8)  100(100) 100(100) 0.5(0.5) 0.5(0.5) 0.5(0.5)

2 100(100)  100(100)  100(100)  0.6(0.6) 0.6(0.6) 0.6(0.6) 99.6(99.2) 100(100)  100(100)  0.6(0.6) 0.6(0.6) 0.6(0.6)

3 100(100) 100(100) 100(100)  0.7(0.7) 0.7(0.7) 0.7(0.7)  99.7(99.4)  100(100) 100(100) 0.7(0.7) 0.7(0.7) 0.7(0.7)

Sbethre 1 100(100) ~ 100(100) ~ 100(100)  0.6(0.6) 0.6(0.6) 0.6(0.6) 99.3(98.6) 100(100)  100(100)  0.6(0.6) 0.6(0.6) 0.6(0.6)

2 100(100) 100(100) 100(100)  0.8(0.8) 0.7(0.7) 0.8(0.8)  99.6(99.1)  100(100) 100(100) 0.8(0.8) 0.7(0.7) 0.8(0.8)

3 100(100) 100(100) 100(100)  1.0(1.0) 0.9(0.9) 0.9(0.9) 99.7(99.3)  100(100) 100(100) 1.0(1.0) 0.9(0.9) 0.9(0.9)

0.00252 50 Sthre 1 99.8(100) 100(100) 100(100)  6.6(5.6) 8.9(7.9) 47(3.6) 88.4(89.8) 97.0(97.9) 100(100) 12.7(12.0)  15.3(14.6) 9.8(8.5)
2 98.4(99.6)  100(100) 100(100)  9.3(8.4) 11.6(10.7) 7.1(5.7) 87.8(89.9) 96.6(97.4) 100(100) 15.8(15.4) 18.1(17.6)  12.9(11.7)
3 95.5(98.7)  100(100) 100(100)  11.8(11.2)  14.1(13.4) 9.8(8.4) 87.1(89.7) 96.3(97.0)  100(100) 18.4(18.3)  20.5(20.4)  15.9(14.9)

i',jcvt‘“e 1 100(100) 100(100) 100(100)  0.2(0.2) 0.5(0.5) 0.4(0.4) 91.8(92.9) 99.8(99.8) 100(100) 0.2(0.2) 0.4(0.5) 0.4(0.4)

2 100(100) 100(100) 100(100)  0.3(0.3) 0.6(0.6) 0.6(0.6) 91.2(92.7) 99.8(99.8)  100(100) 0.3(0.3) 0.6(0.6) 0.6(0.6)

3 99.9(100) 100(100) 100(100)  0.3(0.4) 0.7(0.8) 0.9(0.9) 90.0(92.3) 99.7(99.8)  100(100) 0.3(0.4) 0.7(0.8) 0.9(0.9)

100 sthre 1 96.2(97.4)  100(100) 100(100)  4.5(4.4) 3.6(3.5) 3.6(3.4) 86.1(80.9) 98.1(97.4) 100(100) 8.2(8.1) 7.0(6.9) 6.8(6.6)

2 93.4(94.8)  100(100) 100(100)  5.6(5.6) 5.0(4.9) 4.8(4.6) 85.4(80.2) 97.9(97.0) 100(100) 9.3(9.3) 8.6(8.4) 8.2(8.1)

3 89.9(91.8)  100(99.8) 100(100)  6.6(6.6) 6.3(6.2) 6.1(6.0) 84.3(79.3) 97.7(96.6)  100(100) 10.3(10.3)  10.0(9.9) 9.7(9.5)

$ibe,thre 1 99.9(99.9)  100(100) 100(100)  0.2(0.2) 0.2(0.2) 0.4(0.4) 87.5(84.5) 99.8(99.6)  100(100) 0.2(0.2) 0.2(0.2) 0.4(0.4)

2 99.8(99.8)  100(100) 100(100)  0.2(0.2) 0.3(0.3) 0.6(0.6) 86.5(83.4) 99.8(99.7)  100(100) 0.2(0.2) 0.3(0.3) 0.6(0.6)

3 99.5(99.5)  100(100) 100(100)  0.2(0.2) 0.4(0.4) 0.8(0.8)  85.1(82.0)  99.8(99.7)  100(100) 0.2(0.2) 0.4(0.4) 0.8(0.8)

200 i;‘"e 1 89.3(89.6)  100(99.9) 100(100)  2.7(2.8) 2.6(2.6) 2.5(2.6) 76.1(70.5) 98.0(97.0) 100(99.9) 4.7(4.7) 4.4(4.5) 4.3(4.4)

2 85.6(86.0)  99.9(99.8) 100(100) 3.1(3.2) 3.1(3.2) 3.0(3.1) 73.9(684) 97.9(96.9) 100(99.9) 5.0(5.1) 5.0(5.1) 4.9(5.0)

3 82.4(82.7)  99.5(99.7) 100(100)  3.5(3.5) 3.6(3.7) 3.6(3.7) 71.9(66.6) 97.7(96.7)  99.9(99.8) 5.4(5.5) 5.6(5.6) 5.5(5.6)

Sibeithre 1 99.1(99.1)  100(100) 100(100)  0.1(0.1) 0.2(0.2) 0.4(0.4) 76.1(70.9) 99.2(98.6)  100(100) 0.1(0.1) 0.2(0.2) 0.4(0.4)

2 98.4(98.3)  100(100) 100(100)  0.1(0.1) 0.2(0.2) 0.5(0.5) 73.7(68.5)  99.2(98.5)  100(100) 0.1(0.1) 0.2(0.2) 0.5(0.5)

3 97.4(97.3)  100(100) 100(100)  0.1(0.1) 0.3(0.3) 0.6(0.6) 71.4(66.3) 99.1(98.4) 100(100) 0.1(0.1) 0.3(0.3) 0.6(0.6)
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Fig. 1. Magnitudes of the elements in the estimated correlation matrix of the microstructure noises on November 4 and 22, 2016.

Note: The graph describes the magnitudes of the elements in the estimated correlation matrices of the microstructure noises. Different colors
denote different values of the pairwise correlations. The red squares along the diagonal denote the sectors—Energy (E), Materials (M), Industrials
(I), Consumer Discretionary (D), Consumer Staples (S), Health Care (H), Financial (F), Information Technology and Telecommunication Services (T),
Utilities (U), and Real Estate (R).

between-industrial sector correlations, which is seen interrelated to the market conditions. Broad questions include how
the correlations between noises vary associated with the prices and/or the volatility of different assets, how the sparse
covariance matrix of the noises can help in solving practical problems, and so on. Supported by our new methods, we
expect more future investigations along this line.

7. Discussion

In this paper, we consider estimating the covariance matrix of the high-dimensional noise in high-frequency data. We
propose an estimator with appropriate localization and thresholding to achieve the minimax optimal convergence rates
under two kinds of loss. Although all theoretical properties of the proposed estimator are derived under the continuous-
time model (1), the method developed in this paper could be applied to other types of process X;, such as the smooth ones
typically encountered in the functional data literature. The key property that makes our method work is the continuity
of the underlying process X, but the convergence rate of the proposed estimator depends on more specific assumptions,
such as those implied by the model (1). On the other hand, Assumption 2 can be replaced by a weaker assumption
that min; je;p; nij — 00 and max; jepp MaXe(n; ;—1] Alijk — 0 as n — oo. If we write nyin = min; jegp) N;; and assume
MaX; je[p) MaXke[n; ;—1] Abijk < n¢ for some € € (0, 1], with suitable selection of K, Theorems 1 and 3 in Section 3 still
hold with replacing n, by nﬁffn), where g(e) € (0, 1] is a function of €. More specifically, if ¢ = 1, then g(1) = 1. However,
whether such rates are minimax optimal under the associated losses or not is unclear.
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In the analysis of this study, we focus on noises with homoscedastic covariance matrix, so that our target is Cov(U;,) =
Y, for each k € [n]. As an interesting problem, our framework can be extensively developed to handle time-varying
heteroscedastic noise where the target covariance is time-dependent Cov(U,,) at a given time point ¢, instead. Denote
by o the Hadamard product. Assume Uy, = p;, o X, With ¥, = (Y14 ..., ¥pg)' and Xo = (X1 -+ )'(p,[k)T, where
Vit ---» ¥p,t are p nonnegative continuous-time processes, and each sequence {y;, }k=1 iS a-mixing. Without loss of
generality, we assume E(x;,) = 0 and E(Xﬁtk) = 1foreachj € [pl and k € [n]. Recall G; N G; = {tij1,..., ti’j’nu}
withtjj1 <--- < tijing, for any i, j € [p]. We outline a framework as follows.

Step 1. Given some & = o(1), define gs {tie €Gi:ltie— t5| < &} and n(s) |g($) N g(S |. For each t;j € g e g}s),

write ng)k = {tije € 69N gj( K < |¢—k| <K+ Ag} and Nu P = |51(j)k| We then deﬁne 6, )] in the same manner

as &, in (5) with replacing (n;j, Nij, Sijk) by (n (s) N,(])k, S,] ) Under the independence between the process y, and

1] ’
the sequence {x,, }x>1, following our current technical arguments, we have ‘715 1) = YieYis E( i, Xj,;) in probability with

suitable selection of &. ~
Step 2. Given some integers K > 1and h > 1, if E(¥, ¥, ) and E(x, Xj,q ) are both slowly varying with k, we know
Zb_—f( Afffjbh with N = |{s+bhe[n]:|bl < I~<}| will provide a consistent estimator for Cov(Uj s, U; ;) under
some regularlty conditions w1th suitable selections of K and h.
Clearly, this problem differs substantially from our current investigation. The technical analysis of such estimator would
require an extensive framework including additional assumptions on {y,, }>1 and {x, }k>1 which are beyond the scope
of this study. We plan to carefully investigate this problem in a future project.

8. Proofs
In the sequel, we use C to denote a generic positive finite universal constant that may be different in different uses.
8.1. Proof of Theorem 1

For any k € [n;;], let S, = {tij¢ : K < [€ — k| < K + Ag}. For any i, j € [p], we have that

nj j

Oyij — Oujij = 211 §
ij

E Ul[,J@ Ult”k)(l—’j[”[ L]]t”k) Uu,i,j

k=1 [lj (€Sijk
1(i.j)
1 &1
2 : (Xi,fi_j,z _Xiii,j,k)(xj,fi_j,z _Xj,fi_j,k)
2nij = Nijk
Y k=1 Tt e€Sijk
(i j)
niv'
1 & 1

Kirsy = Xio Uiy — Uiy
2ni,j o Ni,j k Z Ltije Ltijk Jitije Jotij k

"t e€Sijk

11(i.j)

1 & 1
Ut.., — Uit ) Xie,, —Xit. ) -

znjyj k=1 N,] v Z ( l,tu)g 1«[1,j.k)( J’tl-J,[ J~tl,j.k)

" tij e ESijk

1V(i.j)
Define £ = max; jefp MaXkepn; ;) MaXy,; jes;; 1tij.e — tijkl- To prove Theorem 1, we need the following three propositions
whose proofs are given in Sections 8.2-8.4, respectively.

Proposition 1. Under Assumptions 1-3, we have that

max P(I(i, /)| > v} S {14 n,(K + L) p~'0*) 77 v exp{=Cn, Ly o™ )T} + vl exp(=Cnk o7 10)
LJElp.

for any v > exp(—CL,“K?) and p > 1. Furthermore, it holds that max; ;c;,) E{|I(i, j)|™} < 1 for any fixed positive integer m.
Jelp]

Remark 5. As shown in Section 8.2, the upper bound stated in Proposition 1 holds for any v >> § := max; je[p |”Ej] Zzzl
]E(N[j,]kUi,r,-,j_k 2 seesiy Uitige)l- Since & 5 exp(—CL,“K¥), by Davydov’s inequality, we need the restriction v >
exp(—CL,“K?) in general settings.

18



J. Chang, Q. Hu, C. Liu et al. Journal of Econometrics 239 (2024) 105329

(i) If {Uy, } is an independent sequence, we can select L, = 1/2 and ¢ = oo in Assumption 1. Then we have § = 0 in this
setting, and the upper bound stated in Proposition 1 can be refined as {1+n.(K+L,)~'p~"v?}=*/2+v~Texp(—Cn.K 1 p~1v)
which holds for any v > 0 and p > 1.

(ii) If {Uy, } is an L,-dependent sequence, we can select ¢ = oo in Assumption 1. If K > L;, we have & = 0in this setting,
and the upper bound stated in Proposition 1 can be refined as {1 4+ n.(K + L,)"'p~"v?}=/2 + v Texp(—Cn. K~ 1p~v)
which holds for any v > 0 and p > 1.

Proposition 2. Under Assumptions 2, 4 and 5, we have that

max P{|II(i, j)| > v} < exp(—Cn, K~ 'v?) 4 exp{—C(n,K 1)/}

ije
for any v = o{(n'K)¥*9}, where y is specified in Assumption 5. Furthermore, it holds that max; jep) E{|II(i, )|} < n;™K™
for any fixed positive integer m.

Proposition 3. Under Assumptions 1-5, if K(log n,)'*?/Y = o(n,) and K > L,, we have that

max P{|I(i, j)| > v} S exp(—Cn,L; 'v?) + exp{—C(n.L, 'v)*/®* TV} + exp{—C(n, K1)/ +2)}

i,jelpl

—m/2
*m/ Km/2

for any v > 0, where y is specified in Assumption 5. Furthermore, it holds that max; je(p) E{|III(i, )|} < n for any

fixed positive integer m. The same results also hold for 1V(i, j).

Remark 6. If ¢ = oo, the upper bound stated in Proposition 3 can be refined as exp(—Cn,.L, 1v?)+ exp{—C(n.L,; 'v)/?} +
exp{—C(n K~1)yr/(r+2)},

Write X = (n;'K logp)!/2. We first consider the case with ¢ < oco. Notice that (1+ cx~')™ > e~¢ for any x > 0 and
¢ > 0. By Propositions 1-3, if K(logn,)'™?/* = o(n,) and K > L,, we have

me{lXIP(|Uulj—Uu”| >v) S {14+ (K + L) ' p w2 + v exp{—C(n,L, ' p~'v)/ @t} (19)
i,jelp

+ v exp(—Cn, K~ o~ ) + exp{—C(n, K1)/} 4 exp{—C(n,L, 'v)*/(2¢+ 1)}
for any v > exp(—CL,“K?), v = o{(n;'K)>"*¥} and p > 1. Since K?L{ log{n,(K logp)™'} = o(1) and logp =

o{(n,K~1y/r+} then exp(—CL,’K?) = o(R) and R = of(n;'K)>**4}. Given a sufficiently large constant @ > 0, it
holds that

E(1Zy — Buls) < {max 16u.ij = owijl (16uij — ouijl < OIN)} + E{glea[;g 16uij — owijll (16uij — Ouijl > aN)}

i.jelp]

=:A1+A;.

It is easy to see that A; < a®. By Cauchy-Schwarz inequality, we have

p
Ay < ZE{|5u,i,j - Uu,i,j|1(|6u,i,j — ouijl > aN)}

ij=1
< p?max{E(6ui; — 0wV - max{P(16ui; — ouijl > av)}'2.
=D i,jelpl{ (| u,i,j i jl )} i,je[pj{ (| u,i,j wijl )}
Let p < logp > 1. Since K logp = o(n,), then it follows from (19) that

max (|61 = ouigl > @) £ p~*" + exp{—C(n.KL,* log p)"/*™*)} + expl[—C{n.K"(logp) ™} "*]
1,jelp

+ exp{—C(n K1Y/} 4 exp[—C{n,KL, *(log p)~ " }#/*¢+2)]
< 1, if logp =

~

with some sufficiently large w > 0, where w — oo as @ — oo. Due to max;jepy B(|6yij — ouijl?)
o[min{(n,L, 2K )*/G¢*+2) (n,K~1)¥}] with x = min{y/(y + 4), 1/3}, then
Ay S P77 + p? exp{—C(n.KL, * log p)*/**?} + p? exp[—C{n.K~'(logp)~"}/*]
+ p? exp{—C(n. K"/} 4 p? exp[—C{n.KL,*(log p)~"}¥/*¢+2)]
< PP 4 exp{—C(n.KL, log p)*/**?} + exp[—C{n.K~'(log p)~'}"/*]
+ exp{—C(n K1)/} + exp[—C{n,.KL,*(log p)~'}*/2¥*2)]
= o{(n, 'K logp)*}.
Hence, supp, E E(X, — Zul) < (n Z1K log p)V/? provided that K(logn,)'*” = o(n,), K > L,, K=¢Lf log{n.(K logp)~'} =
o(1) and logp = o[min{(n,L 21()‘/’/(3‘?+2 (n K1)
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Now we consider the case with ¢ = oco. As we discussed in Remark 5(i), if {U,} is an independent sequence, we can
select L, = 1/2.Due to K > 1, we have K > L, in this case. Without loss of generality, we can always assume K > L, when
¢ = 0o. Based on Remark 5, it holds that {1+ n,(K +L,)"'p~1v?}7/2 + v~ exp(—Cn.K~'p~'v) forany v > 0 and p > 1
under either of the scenarios: (i) {Uy, } is an 1ndeper1der1t sequence, and (ii) {U} is an L, dependent sequence. Repeating
the arguments for ¢ < oo, we have sup,, E(| X, — Zulo) < (07K log p)'/2 provided that K(logn,)"*2/” = o(n,), K > L,
and logp = o{(n.K~1)X}. We complete the proof of Theorem 1. O

8.2. Proof of Proposition 1

To prove Proposition 1, we need the following lemma whose proof is given in Section 8.16.
Lemma 1. Let {zt}[ﬁ:l be an a-mixing sequence of real-valued and centered random variables with «-mixing coefficients
{a(k)}k=1. Assume there exist some universal constants a; > 1, ap, by, b > 0, 7 € (0,2] and ¢ > 0 such that (i)
MaXrei P(|z;| > u) < byexp(—byu") for any u > 0, (") a(k) < ayexp(— azL_¢|I<—m|“’)for any integer k > 1, where
Li > 0 and m = o(f1) > 0 may diverge with fi. Let s~ = Zt =1 |Cov(zt,, 2, )| and 1, =1 /(r + ¢). It holds that

k
P( sup Z;
(ke{ﬁl Z

t=1
for any x > 0 and p > 1, where we adopt the convention exp(—CO0~"x") = 0 for any x > 0.

) (1+ 22 p s 2) 7% + X~ exp(—CA™X™ p L") + x " exp(—Cm"iA'X p ")

Remark 7 Hy-rl2 4

x exp{—

. If ¢ = oo, we have r, = r. Then the upper bound in Lemma 1 can be refined as (1 + ﬁzxzp”s’;
Cn"x" p~"(m+ Lz)~"}.

Now we begin to prove Proposition 1. Recall that

1 ¢4 /1 1 1
n,~2<2+2 2 %

1, ij.k
=1 ti jkESi j Ji

1(i,)) = )(Uz tqujt,N Gu,i,j)

11(.j)

1 anJUlt”k
an‘]

Y k=1

l]k

Z thu/_

tij e €Sij.k

n;j

;Z(J][’]k Z U,tU[,
l ij.k

J k=1 G j.e€Sijk

(20)

Ip(i.7)

In the sequel, we will bound the tail probabilities of 11(i 7). (i, j) and I5(i,
1+Zt”kesuz I ~1 (U tij.0 Uitij.e — Ou,ij)- Then we have I1(i, j) = n;;

For each £ € [n;j], let &jj o = 2~

I3(i.j)

Jj), respectively.
Z[ ' Cijo- Recall

that Nijx = [Sijk] with S;jx = {tij e : K < |€ — k| < K 4 Ag}. Since K < K 4+ Ag = o(n,) and n;; < n* — oo asn— oo,
we then have 2(K + Ak) < n;; for sufficiently large n. Thus for sufficiently large n, it holds that

Ag +1,

Ak —K+k+1,
20 + 2,
ni’j+AK—K—k+2,
Ag + 1,

Nijx =

which implies that minke[,,ij] Nijx =
Zt,‘_jykES,‘.] ¢ Nl] k

fl<k<K,

ifK+1<k<K+ Ag,

ifK+ Ax+1<k<nj—K— Ag, (21)
ifn;—K—-—Ax+1<k<n;—K,

ifn; —K+1=<k<n;,

Ag + 1 and MaXkepn; ;1 Nijrk = 2Ax + 2. Therefore, we have that C™! <

< C holds uniformly over £ € [n;;] and i,j € [p]. By Lemma 2 of Chang et al. (2013), Assumption 3

yields MaXi je[p], eeln; ;1 P(|Zij.e]l > v) < Cexp(—Cv) for any v > 0, which implies MaX; je[p], eeln; ;] E(l{,-,j,gl“) < C. It follows
R . nj j nj nj nj j —

from Davydov's inequality that Dt b= 1CoVGigers Gl S 2oy 1+ 200ty 2oy, 41 €XP(—CLy 181 — £5]%) S nuLn.

By Lemma 1 with m = 0 and Lz = L,, we have

max P{|L;(i. j)l = v} < (1+n,L;
i,jelpl

forany v > 0 and p > 1.
Define 7k = (2N 1)~ 'U

1p—1v2)—p/2 +om

Vexp{—C(n,L, ' p~ v)?/¥ 1)} (22)

1
Uit Zt,ﬂes,]k Uj.g5,- Then I(i, j) = nj Zk 1 NMijik- SINCE MAX; je(p] kefn; ;) Nijk < 24k + 2 for

sufficiently large n, we know max; jefp, keln; 1 Nijik is uniformly bounded away from infinity due to the fact Ay is a fixed
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constant. It follows from Assumption 3 that

Z UJ[le

tij e €Sijk

< max Y P(Uig,l = VX 4+ max  P(|Uig,l > 2v%)

i.jelpl.keln; j] i.jelpl.keln; j]
tij ¢ €Sij.k

= R) e P10l = 28

max  P(|nijk| = x) < max
ijelpl.keln; 1

i.jelpl.keln; j] i.jelpl.keln; ,1 N, Jk

< exp(—Cx)

for any x > 0. By Davydov’s inequality, we have ZZ;‘{,Q:] [COV(Mijky> Mijiky)|l S (K + Ly). Write 05 = nijx — Mijk
with MHijk = E(’h;k) By Lemma 1 with m = (K + AK) and Ly = Ly, max; je[p P('”{le ZZ!] ﬁi,j,k' = X) S {1 +
(K + L) o~ 1x2} 772 + x Vexp{—C(n,L; 1 p~'x)?/@+V} + xTexp(—Cn,K1p~'x) for any x > 0 and p > 1. Let
Sl,],k,l = {tt,],l € Sl,],k ¢ < k} and 5:,],k,2 = {tl,j,l € Si,j,k : £ > k}. Then Mijk = (2Ni,j,k)7]{IE(Ui.t,-,j_k Zfi,j.ZESi,j,k.l Uj,tivj,g) +

E(U;, ik qu Stk j[ljl)} By Davydov’s inelzqzuality and Jensen’s inequality, it holds that |E(U;, ik Zt”zesu . U, o N <
(B U I HEN s Ui 1) a2 (K) < exp(—CLy *K#). Similarly, we have [B(U; s Zagesg ) %
exp(—CL, “K?). Thus, it holds that max;jepp) kein;;1 [14ijkl S exp(—CL,“K¢), which implies max; je(p) |n” S ikl S
exp(—CL,“K?). For any v > exp(—CL,“K¥) and p > 1, we have

.
1 — v
max P{|I,(i, j)| > v} < maxP >y —|— < maxP||— fiikl > =
max P{|Ix(i,j)| = v} < max (n”k s Ukzlmk) max (nu;nw 2)
S {4 nu(K + L) o 2 4 v exp{—C(n.Ly T~ )@t} 4 v exp(—Cn K o).

Analogously,
maxP{|I3(l D=} S +nK+ L) o w2 v Texp(—C(n, L, o~ ')/} 4 v~V exp(—Cn, K~ p~1v)

for any v > exp(—CL, “K¥) and p > 1. Note that I(i, j) = I1(i, j) + L,(i, j) + Is(i, j). Together with (22), it holds that
max P10, /)] = v} S {1+ (K + L) ""p~ 10" 77 v exp{=Cn,Ly o™ )0} + vl exp(=Cn.K o7 0)
i,jelp
for any v > exp(—CL,“K¢) and p > 1.
By (20) [, D™ < D™ + 113, )™ + 1334, j)|™ for any fixed positive integer m. By Assumption 3, E{|I;(i, j)|™} <

Y B (Ui Uiy — 0uigl™ < 1 and E{L(i. )™} < nj' Y00 Nl 2t eesiyu BVt Ui I™) < 1. Analogously,
we also have E{|I5(i, j)|"} < 1. Thus, max; jeip) E{|I(i, )I™} < 1. We complete the proof of Proposition 1. O

8.3. Proof of Proposition 2

Notice that dX;; = p; dt + o dB; ;. Then

nij

1 Z 1 Z tij.e d lij.e
1, j) = (/ . s) (/ o ds)
2n; =1 Nijk tijk b tijk s

Gij, ¢ €Sijk

13(i.7)

J 1 lij.e tij.e
' ([ ) ([ e
211,-,]' I{:Z] Ni,j,k Z tijk . " tijik S

tij ¢ €Sij.k

1I5(i.j)

1 i 1 lij.e lij.e
+ / i, ds) (f 0js dB;, ) (23)
2ni,j kg Ni,j:,k Z ( tij k b tijk P

ti j e €Sij.k

113(i.j)

lij.e lije
</ Oijs dB,‘qs) (/ /,Lj.S dS) .
Gijk tij.k

114(i.j)
Recall that & = max;jepp MaXge(n; ) MAX¢;; ;) |tije — tijkl. In the sequel, we will bound the tail probabilities of
max; jerp 11111, j)I, Max; jerpy 21, j)|, Max; jerpy (i, j)| and max; jegp 14(i, j)I, respectively.

2n,] Zl

l
tuéesuk
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For any k = [n;;], define ¢, = N Zqﬂesuk(ftl’” His ds)(ft'” 11;.s ds). Then we have Il4(i, j) = (2n;;)" Y17, &g
We will first bound E{exp(@gﬁ‘jyk)} for any |8| € (0, Cs£ 2], where C5 is specified in Assumption 4. By Jensen’s inequality
and Cauchy-Schwarz inequality,

1 tij.e tij.e
Elexp(047,0l < 17— D E[exp{9< f is ds) ( / s cls) ”
ik eSSk tijk tijk
1 tijkVEije LijkViije
=N Z / / E{exp(0|tijc — tijkl*Lis, Wis,)} ds1dsy (24)
S klue—fukl GjkAtije It rAtie
1 tijkViije 172
sv— X T / [Etexp(161tij.c — tijul* i, )] dsy
WK b eesiji It = tagul? kNG e
tt,),k\/tl,},l 1
/2
X/ [Efexp(16]]tij.e — tijkl*uis,)}] " ds
G j, kAL j e
< max sup E{exp(|0|&°u7,)}.

i€lp] o<s<T

Recall that & < Kn; ' = o(1). By Assumption 4, maXie(p) SUPg<s<r E{exp(|05%17,)} < exp(CsCy) - exp(Ce§?6?) < exp(CE6%)
for any |0| € (0, Cs& ~2]. Therefore, by (24), max; jefp) kern; ) E{eXp(0¢ )} < exp(C£6?) for any 0] € (0, Cs& ~2]. By Lemma
2 of Fan et al. (2012), it holds that

max P{|Il; (i, j)| > v} < exp(—Cv*¢~") (25)
i.je[p]
for any v = o(¢71).

Forany k € [n;;], define ¢, = N;; kax][ESuk( r’” 015 dBis) ft 7% 0; s dB; 5). Then we have Ily(i, j) = (2n;;)~ Zk”l &

For any constant d € (0, £~'/?], define a stopping tlme Tg= T/\mf{t > 0: supgs- 0is > d}. Forany || € (0, d %&£~ 1/4],
by Jensen'’s inequality and Cauchy-Schwarz inequality, it holds that

E{exp(0¢7)I(Iia = IGa =T)}

1 Gije fuz
< > E[exp{&([ ai,SdBl-,s)< a]sd3”>}1rd_ ] _T)] (26)
Nijik o tijk tijk
1 Gije
< E| exp |6|(/ ois dB;, ) }I ])

tij ¢€Sijk

tl]i 1/2
X <E[exp{|9|</ Ojs dBj.S) }I(I'},d = T):|) .

Restricted on the event {I54 = T}, we have sup,_,.r ;s < d. For any |0] € (0, d=2g71/4], it holds that

tije 2
exp{|9|</ Ui,sdBi,s> }I(Ff,d =T)
tijk
tij.eViijk 2 tij.eVtijk
< exp[lﬂ{(/ Ois dBi,s) - / ol dSHI(Ff,d =T) (27)
LijeNijk Lij e NGijk
Gij.eVtijk
X exp<|9| / ol ds)I(Fi,d =T)
Gij e NG j ke

tijeViijk 2 tijeViijk
< Cexp[l@l{(/ O',',sdBi’5> — / O'i,zsds}:|1(ﬂ,d = T).
Gij,eNijk Lij e Nijjk

Recall d < £71/2, Following the arguments of Equation (A.5) in Fan et al. (2012), we have that

tij.eVtijk 2 tijeViijk ,
E{exp[|9|{</ O'i’SdBiJ) —/ Gi,sd }:|I(Fd —T) 'tul“uk}
tij, z/\fu k L j e NGijk

< Elexp{I01(B i, — @ ltise = G} = Elexp{161d” e — tijil(Z* = 1)}
< exp(Cd*£%6°) < exp{C(d§"/*)*"76%} (28)
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for any 7 € [0, 4), where Z ~ N(0, 1) and 7}, is the o-field generated by (ois, B s)o<s<t- Thus, by (26) and (27), we have
MaXxi jeppl kefn; ;| EAXPOGTI(Iia = ;g =T)} S exp{C(dg/?)*=79?} for any |0| € (0, d~2£~1/4]. By Lemma 2 of Fan et al.
(2012), it holds that max;jep P{|1L(i,j)| > v, [1q = [}q = T} < exp{—Cv?(d§/2)*=4} for any v = o{(d&'/?)*>~"}. Note
that

P{I30, ) > v} < P{ILE ) > v, a=a =T+ P(Llig #T)+ P(1jq #T).
Since I3 4 =T Ainf{t > 0 : supys, 0js > d}, by Assumption 5, we have maxie(p) P(/74 # T) < maXiepp P(SUpg<s<1 0i s >
d) < exp(—Cd”). Then

max P(|llz(i. )| > v} exp{—Cv*(d&"?)"*} + exp(—Cd") (29)
LJELp

for any v = o{(d£/2)*~7} with d < £~1/2,
Due to xy < 27 '(x*> + y?) for any x, y > 0, we have

M tij.e 2 Mg tije 2
2l < 5= D (/ Mf,st) D D liD S (f aj,sdBj,s> :
nl'j k=1 1k tij ¢€Sijk lijk nl’j k=1 ik tije€Sijk lij.k

Identical to deriving (25) and (29), it holds that
max P{{ll;(i. /)| > v} 5 exp(—Cv*E ") + exp{—Cv*(d& /)" ~*} + exp(—Cd”)
ije

for any v = o{(d£'/?)2~7} with d < £~V2. Such upper bound also holds for max; jey; P{|1l4(i, j)| > v}. Together with (25)
and (29), we have

max P{|II(i, )| > v} 5 exp(—Cv*€ ") + exp{—Cv*(d&"*)"~*} + exp(—Cd") (30)
1,jelp

for any v = o{(dV2>" A £} with d < & Y2 To make max;jcpp |I(i,j)] = Op(ny />K'/2log"/?p), it suffices to
require d>* 47" llogp = o(1), £3logp = o(1), d®%E>* = 0O(1), d’¢ < 1 and logp = o(d”). Due to T € [0, 4),
= o(1)and d — oo, d®27£2"T — oo when T € [2,4). Thus, we need to restrict T € [0,2), which leads to
g(r—U/(Z—f)([ogp)l/(Z—f) < d? « g(r—Z)/(‘l—r) and logp = o(d” /\5—3)_ It follows from g(f—l)/(2—r)(10gp)1/(2—f) < 5(1—2)/(4—r)
that £7/¢4=9) Jog p = o(1). Selecting d sufficiently close to £(7=2/(=27) e have logp = o[min{g ~*/(4~) g¥(r=2)/(8-27))] To
make p diverge as fast as possible, we can choose t = 2y /(y + 2) and d = £~ /*+¥)_ Note that £~! =< n, K. It follows
from (30) that
max P{|1I(i, j)| > v} < exp(—Cn, K~ 'w?) + exp{—C(n, K~ 1)/r+4)
ije
for any v = of(n; 1K)2/(r+4},
By (23), 1I(i,j) = I4(i,j) + (i, j) 4+ 15(i, j) + 14(i, j). Notice that for sufficiently large n, minke[nivﬂ Nijx = Ag + 1
and MaXken; ;1 Nijk = 2Ag + 2. Since Ay is a fixed constant, by Assumption 4, for any fixed positive integer m, Jensen’s
inequality implies that

tije 2m tij.e 2m
maxIE{l[h(l A S max max max E / Wisds + f Wj.s ds
et LjelpT kelnijl bij.e €Sij Gijk lijk

tijkViije
< 2™ 1max max max / sup E(|uis)®™)ds < 2™, (31)
']E[P]ke["xj]tljlesuk tij kAL j e 0<s<T

Meanwhile, by Assumption 4 and Burkholder-Davis-Gundy inequality, it holds that

tij.e 2m
max E{|Il,(i, j)|™} < max max max IE{ (/ Ois dB,;s> } <EM. (32)
ijelp] i.jelp] kelnijl tij ¢ €Si jk ik :
Due to max; jepp) E{[U3(i, /)" +[Ia(i, )™} < Maxi jerp) MaXke(n; ;) MKy es; IE{( /L ds)?™+( f” “ 0 dB; s)*™}, together

with (31) and (32), max; jep; E{|1I5(1, j)I™ + 1431, j)I™} < ™. Hence, max; je[p IE{|II(1 DMy <E™ We complete the proof of
Proposition 2. O

8.4. Proof of Proposition 3
To prove Proposition 3, we need the following lemma whose proof is given in Section 8.17.

Lemma 2. Let {z[}?:l be an a-mixing sequence of real-valued and centered random variables with «a-mixing coefficients
{a(k)}i>1. Assume there exist some universal constants a; > 1, a; > 0,7 > 0 and ¢ > 0 such that (i) maX;c[s E(|z %) <
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(k!)”FH,%< for any integer k > 2, where Hy > 0 may diverge with 1, (ii) a(k) < a; exp{—az(iglk)("} for any integer k > 1,
where L; > 0 may diverge with n. Let S; = Z?:] z¢. It holds that

P(|S;| > fix) < exp(—CAL; "H-2x*) + exp{—C(fL- 'H; 'x)"/(1+7}
for any x > 0, where f = 1+7 + ¢\,
Remark 8. If ¢ = oo, the upper bound in Lemma 2 holds with 7 = 1+ T,
By the definition of III(i, j), we can reformulate it as

n; j
H[ l .] Z Z ( k>(Xi7ti’j’k - Xi,[i.j,/z )Ujvfi,j,k .
1]

l
J k= 1t,”65”,(

For each i, j € [p] and k € [n;;], define
1 1
Gi,j,k = Z (r + N )(Xi,ti)j,k - Xl‘,[,‘.j‘[)
£ j e €Sijk Lk

and Di‘j = MaXke[n; ] |G,',jyk|. Recall £ = MaX; jefp) MaXke[n; ;) MAXy;; e i |fi’j_g — f,',j,k|.
We will first consider the tail probability P(D;; > v). By Bonferroni inequality, we have

nj j
1 1
P(D;j > v) < ZP{ > (NW +N”k)(x,t,jk Xitijo)| > v}

k=1 tij,0€Sij k
njj 1 1 ik ,
< P + / pisds| > } 33
; { [Z (Ni,j,ﬁ Ni.j,k) Wy 2
= ij, €Sijk s
HIZ} Z 1 1 tijk v
* P{ ( + ) / oisdB;s| > } .
k=1 £ij.€Sijik Nije o Niji/ o 2

For any 6 > 0, by Triangle inequality and Jensen’s inequality, similar to (24), it holds that

< 1 1 > f[i,j.k
+ Wi ds
2 Nije N/ Jo., ™7

ij,e €Sijk .

max Efexp {6
ke[n; j]

” < sup E{exp(CO&|wmicl)}

0<t<T

It follows from Assumption 4 that supy...r E{exp(CO&|u;,|)} < C exp(C£262). Selecting # =< £~ and applying Markov’s

inequality, we have
tijk v
f Misds| > = }
tije 2

1 1
Z (Ni,j.z - NL;:k)
1 1
2 (Ni.f,e " Nz:fk)

max P
kelnj ;]

ti j, €S jk

< exp(—6Hv) max E[exp{ze

e[n,J

tijk
/ Wi ds
t;

INR4

]
< exp(—C&~'v)

for any v > 0. For any constant d € (0, £~'/?], define a stopping time I}y = T A inf{t > 0 : SUPg<s< Oi,s > d}. By

Cauchy-Schwarz inequality,
2 t: s 2
1 ij.k
< o s dB; R
~ Nijik Z </r " "S>
L), ik

> () [ o
+ O-'. .’
Nije N/ Jo, 707 "

lij e €Sijik ij.e
which implies that for any 6 > 0,

| () [
P + oi s dB;
Ni_]'_[ Nl',j,k . LS 1S

INR4

v
>5,Fi,d=T

tijk 2
(/ Ois dBi,s) }I(Fi.d = T)] )

24

tij, ¢ €Si j.k

(35)

< exp(—COv?)E [exp {
Lk tij ¢€Sijk
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By Jensen's inequality, E[exp{6N; , Zt,ﬂes,]k ﬁ,”" 0isdBisPY(Tia = T) < N, Zmesuk E[exp{6 (ff}’[’ 0is dBis) (1 q
T)]. Same as (27) and (28), for any 8 € (0, d~2&~"1/4], E[exp{6( ft‘%k 0isdBi )} (g = T)] < exp(Cd*e20%) < 1.

Selecting 6 = d~*£~"/4, together with (35), we have maxycpy,; P{| Zruzesuk(Nué + N k)ft”" 0isdBis| > v/2, T4 =
T} < exp(—Cd—2&~1v?) for any v > 0. It follows from Assumption 5 that

1 1 tijik v
max IP{ ( + ) / 0isdBis| > f}
keln; j] . N,‘.j.( Ni,j,k tije 2
1 1 lijik v
< max P 0isdBis| > =, 1qg=T T
= kel 1 { Z (Ni,j,( + Ni,j,k> /[i.}.yg is i,s 2 id } ( id 7é )

tij, e €Sijk
< exp(—Cd”) + exp(—Cd 2~ 1v?)

for any v > 0. Letting d — o0, together with (34), (33) implies that

max P(D;j > v) S n, exp(—Cd”) + n, exp(—Cd 2~ "v?) (36)

i.jelpl
for any 0 < v < C. Write E(:) = E{- | (X¢)reqo.11}. For any integer s > 2, we have I_E(|Gi,j,kL]j’[ivjvk|s) < Dj; - E(JUjg,, [*) <
Df; - CSsH1/2 < 5! (CDy ). Applying Lemma 2 with L = Ly, P{|I(i,j)| = x | X)epor} S exp(—Cn.L;'D;?x*) +
exp{ C(niL, 1D,J x)?/2#+1) for any x > 0, which implies that

o Cn*L;]xz n*L,j]x ¢/(2p+1)
P{II(E, j)l > x} SEjexp| ———— ) + E|exp1—C| ——
D D;

for any x > 0. Therefore, from (36) with v < 1, it holds that

Cn, L7 1x%
E{exp(—D;)} < exp(—Cv2n,L, 'x*) + P(D;; > v)
ij

< exp(—Cn.L; 'x?) + n, exp(—Cd” ) + n, exp(—Cd 27 1).

Analogously, we also have

nL-1x /(29+1)
E[EXP{—C<*D"> ” < exp{—C(n,L, 'x)?/ TV} 4 n, exp(—Cd”) + n, exp(—Cd2&71).
i.j
Thus, max; jegp P{III(, j) > x} < exp(—Cn.L,'x?) + exp{—C(n.L, x)?/?**1} + n, exp(—Cd”) + n, exp(—Cd—2&~1) for
any x > 0. Recall that & = KnJ'. To make max; ey [I(i, )] = Op(n; /*K'/2log'/? p), it suffices to require K > Ly,
logp = o[min{d”, d%n,.K~ i L (n, L 2K)#/Ge+21] and logn, = o[mm{dy d—2n,K~1}]. In order to make p diverge as fast as
possible, we can select d = (n K~ 1)1/ 28 1f K(log n.)'*2/7 = o(n,.), then max; jerp; P{|IN(i, j)| > v} < exp(—Cn,L; v?) +
exp{—C(n,L; 'v)*/2¥*} 4 exp{—C(n.K~ )V/(2+V } for any v > 0.
By Jensen’s inequality and Cauchy-Schwarz inequality, it holds that

E{|II(i,j)|"} < max max E(|X;
m
|Uj,t,'.j,k|m>

m m
[lj.k_xivfi,jj' |Ufsti‘j,k| )

lijik tijik
/ Mis ds + / 0is dBis
t 4

€ln; jltij e €5ijk

max max [E
keln;j1tije€Sijk

INR4 INR4
[lj-k 2m [Uyk 2m 1/2
< max max { ( s ds ‘ oi.sdBis )} {E(UFT Y7
keln;j1tij e€Sijk tije tije o
By Assumption 3, maXkepn, ;] IE( t. ) < 1. Together with (31) and (32), max ey E{|I(i, )™} < £™/2, Analogously, we can

show the same results hold for IV( ,J). We complete the proof of Proposition 3. O
8.5. Proof of Theorem 2

To prove Theorem 2, we need the Le Cam’s lemma as stated in Lemma 3. Its proof can be found in Le Cam (1973)
and Donoho and Liu (1991). Let Z be an observation from a distribution P, where 6 belongs to a parameter space ©.
For two distributions Qp and Q; with densities qg and q; with respect to any common dominating measure wu, the total
variation affinity is given by ||Qo A Q4] = f Qo Aqrdu. Let @ = {6y, 04, ..., 6p} and denote by L the loss function. Define

lmin = Mingeppy inf {L(t, 6o) + L(t, 64)} and denote P =D~' Y2 | P,

Lemma 3 (Le Cam’s lemma). Let T be any estimator of 6 based on an observation Z from a distribution Py with 6 € © =
{69, 61, ..., 6p}, then SUPgcp ]EZ‘(){L(T, 9)} > 27]1min||[P<90 A ]P’H
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For each k € [n], define ¢, = {i € [p] : tx € Gi} where G; is the grid of time points where we observe the
noisy data of the ith component process. For any s-dimensional vector a and an index set C C [s], denote by as the
subvector of a with components indexed by C. The data we have is Z = {Y; ¢,...., Yg,c,}. Select the loss function
L(T, 6) = max;jepp) |wij — 05| for any T = (w;jj)pxp and 6 = (0;j)pxp € O. Select D =p, 6y = X, o =1, and

0y = Xya =1, + (v"?n;"?log"? D)diag(0, ..., 0,1,0,...,0),
—— ————
d—1 p—d
for any d € [D], where v > 0 is a sufficiently small constant. For eachd =0, 1, ..., D, we write 63 = X, ¢ = (0u,ijd)pxp-
Then
Imin = min il‘lf{L(t, 90) + L(t, ed)}

de[D] t

vlogp logp (37)
> min max |oyij,0 — Ouijdl = =) —.
de[D]i,jelp] Ny Ny

To prove the lower bound stated in Theorem 2, it suffices to construct a specific model which makes the stated lower
bound be achievable. To do this, we select u;; = 0 and o;; = O for any ¢ € [0, T]. Then the associated X; = 0 for any
t € [0, T]. In this special case, Ytk = Utk Given (n, n,)withn > n,,and0 <t; <--- < t, =T, we define G, = {f1, ..., fn*}
with each tj e {t1,...,t;} and t] < t]H For each t; € G,, we assume all p component processes are observed. For any
ti ¢ G, we assume only one component process are observed. Without loss of generality, we assume G, = {t1, ..., ty,}.
Let n — n, = ap + q. where a > 0 and 0 < g, < p are two integers. We assume the ith component process is observed
at ty, 4ip+i’ s w1th] =0,...,aandi e [p]. Then G; = G, U {tn,+is - - - » tnytapti)-

Let Utk N(O X d) and denote the joint density of Uy, ¢,, ..., Uy, c, by fa. Denote by ¢, the density of N(O, o).
Write 02 = 1+ v'2n;"*log"?D. Then f, = [}_, [Tjce, #1(uk)) and fo = Teer Tieepya @1(uk) - TTiz 1 [oce, @0 (tca)
for each d € [D]. Here we adopt the convention ]‘[deck ¢, (Urq) = 1if d ¢ Cr. We will show |[Pg; A P|| > ¢ for some
universal constant ¢ > 0.

For any two densities qo and q;, by Cauchy-Schwarz inequality, we have ( f |q0 —qqldp)? < f qo — q1)*/q1dp =
[ q3/q1 di — 1, which implies that [go Aqidu =1—2""[|qo — g1/ dpw > 1—27"([ q3/q1 d — 1)"/2. In order to show
P4, A Bl > c for some universal constant ¢ > 0, it suffices to show that [(D~' Y h_, fa2fy ' du — 1 — 0, that is,

D
Diz(ffdd ) (ff‘“ded >—>o. (38)
d;éd

since fa,fo, /fo = [Tizr [T T4, e, @o-(kar) - Tlaec, Bou (Whta) - Ticyay.ay) 1(urs)] for any dy 5 da, then [ fufa, /fo d = 1,
which implies D2 Zdl#dz(ffdlfdz/fo du — 1) = 0. For any d € [D], we have

(2 _ o*z)u% I(deCy)
~TT T e n[r 2""‘"{‘ 202 H ’

k=1 jeC\{d}

which implies

1 Y=t I(decy) n
/* M_( 2) {/¢1 Uy, j duk]}
2 - Oy k= 1]eck\{d
1_[[ / m { — o2, } : }“deck)
X Uy,d
k=1 V £TT O 26*2

B ( 1 >zg1 I(deCy) B (1 v logD>‘Zﬁ1 I(decy)/2
N Ox\/2 — 02 N My '

Notice that Y ,_,I(d € ¢) < n, +a+ 1 for each d € [D]. Therefore, [ f?/fodu < (1 — vn;!logD)~™+4+1/2 for each
d € [D]. Due to n/n, < p, we know a < n,. Applying the inequality log(1 — x) > —2x for any 0 < x < 1/2, we have

D
Dl (/fd d,u—l)<exp|: :1—v<l+ar—£l>}logD]—>O

for sufficiently small v > 0. Then (38) holds. Hence ||Pg, A PP|| > ¢ for some universal constant ¢ > 0. Together with (37),
we can obtain Theorem 2 by Lemma 3. O
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8.6. Proof of Theorem 3

We first consider the case with ¢ < oo. Write X = (n;'Klogp)'/2. For each i,j € [p], we define the event
Aij = (|6 — ouijl < 4min(joyijl, @X)} with some o > 0, and d;; = (G\* — 0y, )I(A;). Write D = (d;)pxp. Due
to ||[W||; < ||W| s for any p x p symmetric matrix W, it holds that

2
- thre 2
1, —2ull; < {max E |64 — Uu,i,j|}

i€[p]
p 2 2 (39)
<2(max) |dijl ) +2imax ) |6 — oy ll(Aiy) ¢} -
< <,-e[p] ; .,]|) {ie[p] Z| s = ouigll(Ay)
For the second term on the right- hand side of (39), we have that Zp A,Eh,rf ouijll(Aij) < 42}3 1aRI(Joyij| > aR)+
425,:1 |Uu,1,]|1(|0u,1.]| < aR). Due to :1 |(7u,1,]| = Cp, We then have Z} 1 |Uuzj|1(|f7u l]| <aR) < Z] 1 |‘37L111|q(05R)1 1<

a0 and P | aRI(|oy,ij| > aN) < Y7 louilf@R)™9 < a'"9c,R79. Therefore, we have that Y 7, |61 —
ouijll(Aij) < 8a'~9¢,R1~9 holds uniformly over i € [p]. It follows from (39) that

p 2
thre 2 B 242(1—-q)
(||2 - Xul3) §]E{(1;1;IS))]( § 1 |d1,,|> }+cp>< a0 (40)
]=

Recall 6, ;; is defined as (5). It holds that

p 2 p
o (g ) | = et -t
j=

p
= Z |6 — 615 PITAS; N (G107 = 0}]) (41)
1
p
+p Y E(I6NE — 0 TIAT NGRS = 645)1) -
ij=1

1

Recall 6 = 6,,ijl(|6y.ij] > BR) for any i, j € [p]. Then

J [{|Gu lj| > 4aR} N {|f7u 1]| < ﬂN}]
Plowijl = 4R} N {low il — 16uij — ouijl < BRY] (42)
{

’»’jIP |&u'i,j — Uu,,',j| > (4o — ,B)N} .

b
I=p § : Oui
ij=1
p
2
=p § :Gu,i,
ij=1
p
E 2
ij=1

Selecting « = B/2 and B being sufficiently large, identical to the arguments used in Section 8.1 for bounding the
convergence rate of A,, we have I < o(R8*) provided that K(logn,)!™/? = o(n,), K > L,, K~“L? log{n.(K logp)~'} = o(1),
logp = o[min{(n,L;2K)*/®¥*+2) (n,K=1)*}] with x = min{y /(y + 4), 1/3}. Also, by Cauchy-Schwarz inequality, it holds
that

p
II= p ZE{l&u’i’j — Uu,i,j|21(|&u,i,j — O'u.,‘,j| > 4aN)I(|Uu,i,j| > aN)I(|&u,,-J| > ﬂN)}
ij=

1
p

+p Y E{l6uij — 0uijl*1(16uij — owijl > 4lowiiDI(lowijl < a)(164:5 > BR)}
=1

p
Z |Uu ij — Ou,ijl )}l/z{PU&u,i,j — ouijl > 40‘&)}1/2
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p

+9 Y {E(6uss — 0w} *[PUGwis — 0uijl > (B — )]

ij=1

1/2

Notice that max; jefp) E(|6y,ij — au,,;j|4) < 1. Since @ = /2, repeating the arguments used in Section 8.1 for bounding the
convergence rate of A, again, we have

172 172
p {gla[XPuGuu_Uuzﬂ >4“N)} <p [Hla[XP”Uuz]_Uutﬂ >(/3_05)N}i| 50(82)

prov1ded that K(logn,)' ™%/ = o(n,), K > L, K~?L?log{n.(Klogp)~'} = o(1) and logp = o[min{(n,L; ZK)‘/’/““’*Z)
(n,K~1)*}]. With sufficiently large 8, we have < o(&z) Together with I < o(X*), we have E{(maXiepp Z] 1 |d,]|) } <
I+ 11 < o(¥?). It follows from (40) that supp, E (||2:thre =ul12) < c2(n; 'K logp)1 4, Analogously, in the case with ¢ = oo,

we have supp, E(|Ehe—5,]2) < c2(n; 'K log p)'~% provided that K(logn,)'**” = o(n,),K > L, and logp = o{(n,K~")*}.
We complete the proof of Theorem 3. O

8.7. Proof of Theorem 4

Same as the proof of Theorem 2, we also select u;; = 0 and o;; = 0 for any t € [0, T]. Then the associated X; = 0

for any t € [0,T]. In this spec1al case, Y, = Uy. Given (n,n,) withn > n,,and 0 < t; < --- < t, = T, we define
G, = {t1,.. tn*} with each tj € {t1,...,t;} and tj < th For each t; € G,, we assume all p component processes are
observed. For any tj ¢ G, we assume only one component process are observed. Without loss of generality, we assume
G. = {t1,...,ts,}. Let n —n, = ap + q, wherea > 0 and 0 < g, < p are two integers. We assume the ith component
process is observed at t;, yjp+i's With j = 0,...,a and i € [p]. Then G; = G, U {tn,+i, - .., tn,+ap+i}. The data we have is
Z={Y.cys---» Yio.co} Where ¢ = {i € [p] : t € Gi}.

Letr = |p/2], where | x| denotes the largest integer less than or equal to x. Let B be the collection of all p-dimensional
row vectors v = (vy, ..., vp) such thatv; =0for 1 <j<p—rand vy=0o0r 1for p—r+41 <j < p under the restriction
Z _1 vl = K. We Wlll spec1fy K, later. If each A; € B, we say A = (A1,...,A;) € B.Set I' = {0, 1}" and A C B'. For
each A= (r1,...,A) € A, we define p x p symmetric matrices Aj(A1), ..., Ar(A;) where Ap(Ap) is a matrix with the

mth row and mth column being A, and XT respectively, and the rest of the entries being 0. Define ® = I' ® A. For each
6 € ©, we write 8 = {y(6), A(0)} with y(@) = {y10),...,y(0)} € I' and A(0) = {r1(0), ..., A ()} € A. We select
K, = [cp(n,/ log p)¥/?] and define a collection M(«a, v) of covariance matrices as

Ma, v)_{ (0): 3(0) = o, /“logpz {Am(e)},ﬁe@},

where ¢ > 0 and v > 0 are two constants. Notice that each ¥ € M(«a, v) has value « along the main diagonal, and
contains an r x r submatrix, say A, at the upper right corner, AT at the lower left corner and zero elsewhere. Write
3(0) = {0ij(0)}pxp- It holds that maxseo MaXicp) 0ii(0) = o« and Maxpcp MaXicp) ZJ 110ij(0)* < af + c,v9/2. For
sufficiently small « and v, we have M(a,v) C H(q, ¢,, M) for H(q, c,, M) defined as (7). Without loss of generality,
we assume « = 1 in the sequel and write M(1, v) as M for simplification.

Let Uy, ~ N{0, X'(0)} with X(0) € M. When U, ~ N{0, X'(6)}, we write the distribution of Z as IPs. More specifically,
the joint density of Z is

Ny 2
1 1 U
fo= _ exp{ —u »1 } { >
,E Qr P21 B 2 < 111 \/2nok e 201,(0)
Ny n
1 1+ 1 Uik )
= —————expy—=u, X (O)ugp x ——exp| ——=
E(zn)p/zwwn“z p{ 2t )"} k,H Ners p( 2
— —ny+1
where u, = (ug1, ..., ukﬁp)T. It follows from Lemma 3 of Cai and Zhou (2012b) with s = 2 and d being the matrix spectral

norm || - || that
X(0)— (0|3
infmaxEo (15— 2O} > min 12O 2O T
z 0e0 @0 HyELyE)=1 H{y(0),y(0)} 8

where H(-, -) is the Hamming distance, and B;q = 270" V| A|™" 32y 50,9120 Po for each a € {0, 1}. In the sequel, we
will show the following two results:

mnIIIP’Io APiall,
ielr]

XO)— XO)? /1 ?
min |1 X2(6) — X( )Ilzzi(ogp> (44)
0.0"):Hiy©).v0 =1 H{y(6), y(0")} p\ n
and
min [|Pio APl 2 1. (45)
ielr]
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Recall r = |p/2]. Then we will have Theorem 4. The proofs of (44) and (45) are identical to that for Lemmas 5 and 6
in Cai and Zhou (2012b), respectively. Hence, we omit here. O

8.8. Proof of Theorem 5

As shown in (23), (i, j) = 4(i, j) + 1I5(i, j) + 1s(i, j) + 4(i, j). Notice that Ak is a fixed integer. By Jensen’s inequality,

tij, f'y'. \/f‘,'{ 2 . . .
E{( ti:f Mis s} < |tije — tijxl fti_lj{fm_'j{kk E(u?,)ds < |tije — tijkl® MaXo<s<r E(u7,), which implies

tij.e 2
max max max E wisds | t <K*n;?.
ijelp] keln;j] €: K<|e—k|<K+Ag ¢

ij,k

0 v
Due to E{( [, 0js dB;s)*} = E(f, 7'\ 0 ds) < |tij.e — tijil maXo<s<r E(0};), we have

tije 2
max max max E 0jsdBjs | t SKn'.
i.jelp] keln;j1 €: K <|¢—k| <K+Ag ;

ij,k

By Cauchy-Schwarz inequality, max; jeppy [E{II1(i, j)}| < K?n;2, max; e B30, )} < K3/2n;3

K3/2n;>/?. Notice that

o 1 <41 GijkVeije
st = 5> X 5[ ae.as)
P S S i kAt

5 .
/2 and max; jepp; [E{Il4(i, )} <

njj—1 1=K .
1 [ Z min{k + K + Ag, n;j} — ¢
2nij k=t—K—Ag+1 Niju
N 2‘: |min{k + K + Ag, nij} —k—K + 1|,
k=t—K+1 Nijk
N ‘i’f lk — K + 1 — max{k — K — Ag, 1}],
k=t+1 Nijk
O £+ 1 — maxtk — K — Ay, 1) fijee
+ Z N E 0is0j sPijs ds
k=E+K+1 ok tije
nji—1
1 L Lije+1
= Z Qijie E([ 0i,50j,sPij.s ds) ,
2nj = ije

where we adopt the convention N;j, = oo if k > n;; or k < 0. For sufficiently large n, N;;x follows the formula (21).
Since K = o(n, ) and Ay is a fixed integer, for sufficiently large n, we have
<K, if1<e<2K+ A¢)—1,

2K + A .
Qijie =%, if 2(K 4+ Ax) < £ < mij — 2(K + Ag),

SK, ifn,-,j—Z(K—}—AK)—}—]gégnu—l,
which implies that

nj j—2(K+Ag)

P ti,j,IH»l ..
E{lL(i ) = ——F > E(/ 0is0j.sPijis d5> + Ry(i, J)

£=2(K+Ag) lij.e

2K + A fijonij .
= KE(/ 0i s0j,sPi,j,s dS) + Ry(i, j),
4ni_j tiji

where max; jeip) [R1(i, )] = O(K?n;?) and max; jeip) |R2(i, j)| = O(K?n;2). Therefore, it follows from (23) that

2K + Ag /fw'-nf,j K3/2

max < — .
4Tl,',j ni/z

i.jelp]

E{I[(i, i) —

0i,s0j,sPi,j,s dS}

Gij1
We complete the proof of Theorem 5. O
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8.9. Proof of Theorem 6

Write & = (n;!K log p)'/2. For Part (i), Theorem 1 implies Maxi jep) |6u.ij — ouijl = Op(R). Due to max; jepp |l?f,"j| =
Op(logp) and R = o(1), by Triangle inequality, max; jepp |ou ij — Ouijl < MaXxijepp |6u.ij — owijl + maxl]dp](4n,])* (2K +
AK)|1Ap,-,j| = Op(R). Then Part (i) holds. To prove Part (ii), we define an event £ = {maxi,j€lp1(4n,]) 12K + AK)ll//”l < €N}
for some constant € > 0. Since max; jefp| |1/A/i,j| = Op(logp) and R = o(1), then max; jerp;(4n;;)~ 12K + AK)W,Jl = Op(&z)

which implies P(£°) = o(1). For any C > 0, by Markov’s inequality, we have

BIZ, ™ = Bl = CoN') < BOIZ,™ — Byl =GR £) + B(e)
< 26 2R VE( B — B 1310)) + P,
In the sequel, we will show IE{||23‘bc thre _ DIMIEI (CHIBS cgNz“*‘”. Based on this result, we know Part (ii) holds.

For each i,j € [p], we define the event A;; = {|&£§:}hre —ouijl < 4min(|oy |, «R)} with some constant & > 0,
and di; = (&;ﬁjme - u,]) (Af;). Write D = (d;;)pxp- Identical to (39) and the arguments below it, ||2bc thee _
Zull3 < (MaXiep Y7y 1dij)? + {maXiep Y7 |&L',’f;hre — oA} S (MaXicrp) Y by |dij])* + ¢z82(179, which implies

E( 2™ — Zu1216)) < EA(maxie Y0, [dij21()) + 28219, Identical to (41), we have
{(maxziw) 161} = p 3 (5™ — s PHENA 0 525 =01
ij=1
I
p
+p Y E(16,5M — 0w PIENIAL N {6,751 = 625 1) -
ij=1
11

Recall Abc;hre = Aff11(|a | > ,BN) and max; je(p] |ou,] 6u.ijl < €N restricted on €. Then | = pz,] ) ulj]P’(lau,i,jl >
4R, |cru”| < BR,E) < pZ” , uu P{|6yij — ouijl = (4o — B — €)R}. Notice that maxl]dp] IE{|ou,J ouijl(E)} <

Max; je(p] IE(|ou,] — ouijl*) + ¥* < 1. Identical to (43), we have that Il < pY 7 {P(162; — ouijl > 4aR, &) +
PZ 1[P |Uu ij 0Ll.i,j| > (B —a)R, g}]l/z = piJ:][P“Uu,L;’ - 0u,i,j| > (40[ - E)N 5}]1/2 +p2ﬁj:1[[@{|&u,i,j - UUJJ' >
(B—a—e)N, 5}]1/2. Selecting « = 2¢ = /2 for some sufficiently large § > 0, applying the same arguments for bounding
I and II there in Section 8.6, we have I+ Il < o(R?), which implies E{|| =™ — 5,[31(£)} < ¢28*1~9. We complete the
proof of Theorem 6. O

8.10. Proof of Part (i) in Theorem 7

For any k € [n;;], let S, = {tij¢ : K < |€ — k| < K + Ag}. For any i, j € [p], we have that

n,-‘j

R 1

Ou,ij — Ou,ij = 5
2nij 4= Nijk

1

Z (Ui.tiij( - Uivti,j,k)(uj-ti,jjé - Uj,ti’j’k) - O-Llﬂi,j

tij e €Sijk

1(.7)
ni,j

1 1
Z (Xisti.j.l _Xisti,j.k)(xjsti,j.l _Xf-fi.j,k)
2 1= Nijie, “= ' ' '
= ij,€Sijk
1'(i.j)
nj i
1 & 1

Xty —Xiti: ) U, , — Ui .
2ni,j = Ni,jk Z ( Ltije lstt,j,k)( Jitije J»tu,k)

i e€Sijk

(i)

Z U'[UZ Ultl]k)( ]tul_)g»ti,j,k)'

[ljlesxjk

n; j

2n,] Z

V(i)
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Based on Proposition 1, we can obtain the convergence rate of max; jep |I(, j)|. Notice that dX;; = u;.dt 4+ o dB;: +
Ji.t dM; ;. In comparison to II(i, j) specified in (23), we have

PO 1 il 1 lij.e tij.e
(i, j) — T ZN” Z (/ Jis dMi_s>( Jis de,s)
n;; k=1 i.j.k .0 SSijik tijk ik
n
. 1 <& 1 tijie tije
=00+ g 3 ([ s ) (oo
n; k=1 ij,k tj.0€Siik tijk tijk
15 (i.j)
0
1 < 1 tije tije
+ oy g, ([ 7 dB“)( bs dM”) (46)
nij k1 bk 6.0ESiik tijk tijk
g (i.j)
n
1 < 1 lij.e tij.e
o Z N.. Z (/ Jiss dMi,s) </ s dBj,$>
L Gmp Pk tijoeSiju N ik ik
117(i.j)
n
1 < 1 tij. tije
o Z N.. Z (/ Jis dMi,s) </ Wis ds) .
n; j k=1 ij,k .0 S ik tijk

lIg (i.j)

For 1II(i, ) specified in Section 8.1, we have II'(i, j) = (i, j) + (2n;;)~! n” Zt,,zesuk( N+ N Pt tt”"jl sAMis)Ujg ;-

Propositions 2 and 3 give the convergence rates of max; jepp [1I(i, j)| and max, jerpr 10(E, )1 respectlvely Write I1I"(i, j) =
1I'(i, j) — (i, j) — @y and "(i, j) = 1I'(i, j) — HI(i, j). To prove Theorem 7, we need the following two propositions whose
proofs are given in Sections 8.11 and 8.12, respectively.

Proposition 4. Under Assumptions 2 and 4-7, if K(log n, )#+2v+w)/(tv) = o(n,), we have that

max P{II"(i, j)| > v} < exp(—Cn, K~ 'v) 4 exp{—C(n,K~1)¥/(2+2r+)y
LJELP

for any v > n;‘l(k*, where y and ¢ are specified in Assumptions 5 and 7, respectively. Furthermore, it holds that
max; je(p] E{I"G, )™ < n(l m/2gem/2 for any fixed positive integer m provided that n; 'K\, = o(1).

Proposition 5. Under Assumptions 2-7, if K(log n,)**?/* = o(n,.), we have that

m% P (i, )| > v} < exp{_c(n*1<—1)(3L+2)/(4L+4)v} + exp{_c(n*1<—l)t/(2t+2)}
ije

forany v > (n;1K)CH2/@+D) where ¢ is specified in Assumption 7. Furthermore, it holds that max; jep) E{|I1"(i, )|} < ny/?
for any fixed positive integer m provzded that n;'Kx, = o(1).

Recall that aJ“”‘P = 6yij — wij = ouij + 101, §) + Ui, §) + 107(6, §) + UU(, ) + IV/(D, ). Write R = (n] K log p)!/2. We first
consider the case w1th ¢ < oco. Notice that (14 cx~')™ > e~ for any x > 0 and ¢ > 0, and III'(i, j) = 11I(i, j) + HI"(i, j).
Since the tail probability of max; je(y) [IV'(i, j)| is the same as that of max; jejp [1II'(, j)|, by Propositions 1-5, if K > L, and
K(logn,)*1 = o(n,) with y; = max{(2t 4+ 2y 4+ ty)/(ty),2 +2/t, 1 + 2/y}, we have

me[lx]P(lcrL’,”mp ouijl > v) S {14+ n(K + L) o~ w72 + v T exp{—C(n,L, ' p~ o)W}
ijelp
+ v~ exp(—Cn, K~ p~v) + exp{—C(n,L, 'v)*/2¢+1}

+ exp{—C(n*K—l)“‘“)/(“‘H)v} + exp{—C(n.K~")") (47)
for any p > 1 and (n;'K)>*% > v » max{exp(—CL, *K¥), (n;'K)C+2/@+9) 1 where n = min{y /(y + 4), ty /(2t +

2y +1y), /(2 +2)}. Since KLY log{n.(K logp)~'} = o(1), A2(n; 'K)®*2)(logp)~! = o(1) and logp = of(n,K~1)yr/r+4},
then (n;'K)¥ 4 > R > max{exp(—CL, “K¥), (n;'K)*+2/(4+49)),}. Given a sufficiently large constant & > 0, we have

Sjump
(|2 -3 | ) < IIE{I‘Haxue[p] |O'du,r? — Oy, l]|1(|0111u;n;p Oy, 11| < afN)} + ]E{maxlje[p] |0u ij — Ou, 1]|I(|0'leu,r?p Oy, 1]| >
aR)} =: A%+A3. Itis easy to see that A% < aX. By Cauchy-Schwarz mequallty, we have A < 7. E(|6,;)" — o, ,j|1(|afluf?p

— ouijl > aR)} < p maxue[p]{E“AJump — Ou,ijl )}]/2 - MaX; je[p) ]P("j —ouijl > aN)}UZ- Let p < logp > 1.

ut] uz]
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Since Klogp = o(n,), (47) implies max; jepy IP’(lau” —oyijl > a®) < p~ + exp[—C{n,.KL,*(logp)~! }“’/(2‘”2)] +

exp[—C{n.K~'(log p)~"}"/2] + exp{—C(n.KL;? log p)*/**+2)} + exp{—C(n,K~")/“+ ) (logp)'/?} + exp{—C(n,K~')"} with

some sufficiently large w > 0, where w — 00 as @ — oo. Due to max; jepp E(lau” ou,,,,| ) < n/? < p*% with
¢, = 1/(4k), where k is specified in the beginning of Section 3, if logp = o[min{(n,L nZK)‘ﬂ/“‘/’Jr2 , (nK~1)%2}] with

X2 = minf{ty /(20 + 2y + ), 1/(2t + 2), ¥ /(y + 4),1/3}, then A} < p*"“~" + exp[—C{n.KL;*(logp)”"}*/*¢*2)] +
exp[—C{n.K~'(logp)~'}"/?] + exp{—C(n.KL,*logp)*/*+?} 4 exp{—C(n.K~")/**¥(logp)'?} + exp{—C(n.K~")} =
o{(n; 'K logp)*}. Hence sup73 (|2Jump—2u|oo) < (n;'Klogp)'/? provided that K—¢Lf log{n.(Klogp)~'} = o(1),
A *‘K)‘/(Z‘“ (logp)~! = o(1), K > L, and K(logn,)** = o(n,) with x; = max{(2t + 2y +1y)/(ty), 2 +2/1, 1 +2/y},
and logp = o[min{(n,L; 2I()‘/’/(3‘/’+2), (n,K~1)2}] with x, = min{ty /(20 + 2y +1y), t/(2t +2), y /(y +4), 1/3}.

Now we consider the case with ¢ = oo. As we discussed in Remark 5(i), if {U,} is an independent sequence, we
can select L, = 1/2. Due to K > 1, we have K > L, in this case. Without loss of generality, we can always assume
K > L, when ¢ = oo. Based on Remark 5, it holds that {1 + n.(K + L,)"'p~"w?}7?/2 + vl exp(—Cn, K~ 1p~v) for
any v > 0 and p > 1 under either of the scenarios: (i) {U} is an mdependent sequence, and (ii) {U,} is an L;-
dependent sequence. Repeating the arguments for ¢ < oo, we have supp, E (|2Jump — Yuly) £ (n;'K log p)'/? provided
that A2(n;'K)/+2(logp)~! = o(1), K(logn,)*' = o(n,) with x; = max{(2t + 2y + ty)/(ty),2 + 2/1,1+ 2/y} and
logp = o{(n.K~1)y2} with x, = min{ty/(2t + 2y + ty), 1/(2t + 2), y /(y + 4), 1/3}. We complete the proof of part (i) in
Theorem 7. O

8.11. Proof of Proposition 4

Recall that & = Max; je[p) MaXke[n; ;) MAXy; ; pe5;; |ti,j,£ — ti,j,k| = Tl;]K, S,',j,k = {ti,j,l : K < |-kl < K+ Ak} and
Nijr = |Sijkl. In the sequel, we will bound the tail probabilities of max; jeip) |1ls(i, j)I, max; jerp) Mes(i, j)|, Max;jep M7(i, j)I
and max; jep) |s(i, j)|, respectively.

We first bound the tail probabilities of max;jcp) [I5(i,j)] and max;jep) [llg(i, j)|. Notice that for sufficiently large n,
minke[ni‘j] Nijx= Ax +1and MaXgen; ;] Nijk = 2Ag + 2. Since Ag is a fixed constant, it holds that

Gij,kVtije tijkVEije
|Mi,s| ds Uj,s| dNIj,s
K<|0—k|<K+Ag Lij kAL je Gij kAL je

tijkVEije
max max / |1is| ds
ke[n,-,j] tij.e Esijyk tij kAL

1 &

s (i, I <
2nij += Nijk

IA

nij—1 K .
1 |: Z m]n{k + K+ AK’ ni,j} —/
X
2nij =1 bk=t—K—Ag+1 Nijk
¢ .
|min{k + K + Ak, n;j} —k— K+ 1|
+ = - (48)
k=t—K+1 Nijk
N %’E lk — K + 1 — max{k — K — Ag, 1}|,
k=t+1 Nijk
4+K+Ag .
€41 —max{k — K — Ak, 1} i.e+1
+ 2 - sl AV
k=C+K-+1 i,k tij.e

tij kM, 1 Ml e
< (max max / K|u,-,s|ds> X Z[ Uj,s| dM;

ke[n,-,jj tij.e eS,-,j,k

tij kAt 215 4= Jue
-1
w1 i fij,e+1
=0l 5 Y TRE
Lg=1 Ylije

where we adopt the convention N;j; = oo if k > n;; or k < 0. For any constant d; € (0, K~'£71], define Ed, =
{supg<s<1 Uj;s| > d1}. Recall (AM;.);; = M; tijmg — My, for any i, j € [p]. By Assumption 7, for any v > 0, we have

njj—

(QtM an Zv/t”prl U]s dIVI]sEU)E <QIIJ« zn! Z/t:

14,0

tlj £+1

U]s dIVI]s = Ungd ) +P(gj,d1)

NR4

de,] (AM;.);i = 2n;jv} + Cexp(—Cdy).
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It follows from Bonferroni inequality that P(diQ; > v) < . MaXern;;) MaXy; ,es;;, P( f;"’j‘kw"’j‘e Kdq|pis|ds > v) for any

i kNLije
v > 0. For any @ € (0, Csd; 'K~'£7'], by Jensen’s inequality, Assumption 4 implies that E{exp(¢ f[”k"Avf”; Kdq|pis| ds)} <
Itij.e — tijul ™ f[l[ij‘ijv[[i‘jf E{exp(0Kd: |tij.e — tijxllpis))}ds < supos—r E{exp(0Kdi&|uis| )} < exp(CK*di§%62). Selecting

0 =< K~'d;'¢~1, by Markov's inequality, MaXepn, ;] maxwesukP(f:’JJk"Av:”f Kdi|pislds > v) < exp(—CK~'d; '€~ 1) for
any v > 0, which implies that
me%x]IP’ d1Q/; = v) < n, exp(— CK~'d; e ) (49)
ijelp
for any v > 0. By Assumption 6, applying Proposition 2.9 of Wainwright (2019), we have P[|(AM;.);; — E{(AM;.);i}| >
v] < Zexp[—vz/{4kj(tj,i,njwi — ti,0}] + 2exp{—v/(2Cyo)} for any v > 0. By Assumption 2 and (4), (in; — &i1) < 1
and n;; < n,, which implies that ]P’[|(AM i — E{(AM;.)j.i}] > nijv] < exp(—Cn2v?/A;) + exp(—Cn,v) for any v > 0. By
Assumption 6(ii), we have max; e n;; IE{(AM Jiitl £ n; .. Then for any v > n !A,, it holds that

&?;P{I(AIVIJ Jiil = nijv} < m?;(IP’[I(AM i — E{(AM;.)i} = nijv — [E{(AM,;,.);i}]

N

Urrlea[;glP[l(AM Dii — E{(AM; )i} = nijv/2] (50)

exp(—CA; 'n?v?) + exp(—Cn,v) < exp(—Cn,v).

N

Combining (49) and (50), we have that P{ d1Q1“(AM‘ yii = 2nmjv} < IP(d1Qi’j > K) + P{|(AM;. )il > 2K~ 'n; v}

n,.exp(—Cd; '€71) + exp(—Cn.K~'v) for any v > n;'Kh.. Then IP{Q,” (2nij)~ n” lftt‘”“ Uisl dMjs > v}

INR4
n,.exp(—Cd;'€71) + exp(—Cn,.K~'v) + exp(—Cd}) for any v > n;'Kx.. Notice that &€ x n;'K. Thus, by (48),
max; jerp) P{I1Is(i,j)| > v} < exp(—Cn,K~v) + n, exp(—Cdl’ln*K‘l) + exp(—Cd}) for any v > n; KX, In order to
make max; jepp) |15 (i ( DI = 0p(ny S22 log'/? p) and p diverge as fast as possible, we require logp = o(n,.K~1!) and select
d; =< (n K="+ Then if K(logn Y1+0/t = o(n,,), it holds that

IZANRZAN

max P{|lls(i, j)| > v} < exp(—Cn, K~ v) + exp{—C(n K~ 1)/+1} (51)

ijelp
for any v >> n_'KA,. Identically, if K(log n,)"+/* = o(n,.), we also have

max P{|llg(i, )| = v} 5 exp(—Cn.K~'v) + exp{—C(n, K ~")/+1)} (52)
1,jelp

for any v > n_KA,.
Now we consider Ilg(i, j) and II;(i, j). Analogously to (48), we have

1 i 1 lijkeVeij.e lijkViij.e
|HG(i7j)| =< 5 Z / Ois dBi,s </ UJS| dles)
M 1 Nij K<|0—k|<K+Ag | ¥ i kA tij kAbijie
ik Vtije 1 "N et
< <max max K / 0is dBj s > X Z / Uj.s| dM; s (53)
ke[n,’{j] tije ES,'J'Y’( i j kAL znj,]' =1 Jtie

1 mij—1 tije+1
= o U', |dM, .
For any constant d, € (0, K~'&£~1], define the event &j.d, = {SUPg<s<t lj;s| > d2}. By Assumption 7,

n;j—

1 nij—1 Gije+1
P05 5 2 [ wstaw, =) <P(oﬂ >
2Tl,'.j = Yt 21’1 ij =

Jit

[11 41

Uj,s| dIVIj,s >, 51st> + P(gj,dz)

fl][

P{d>Q/ - (AM;.)ji > 2n;jv} + C exp(—Cdy)

for any v > 0. By Bonferroni inequality, we have
M j tiﬁjvkvt,"j,g
PdQ =)< Y Y IP’(Kdz / 05 dB;g| > v)
tij kNGije

k=1 ti j,e €Sij,k
tijkVeije
/ Ois dBi,s =
Gij kNG j,e

33

<n, max max P(d,K
kE[n,‘J] tij.e Esiyj’k

v) (54)
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for any v > 0. For any constant d € (0, d, 172

Then it holds that

K~1/2£-1/2], define a stopping time I3 4 = T Ainf{t > 0 : sup,_s o5 > d}.

GijkViije
P(de / oisdBis| > v, Ii4 = T)
L j kNGij e
GijkVitije 2
< exlD(—Csz)IE[exP{Od%K2 (/ Ois dBi,s) }I(Fi,d = T)] (55)
GijkAtij,e

for any 6 > 0. Identical to (27) and (28), E[exp{0d5K*( tti'jkkAvrtinze 0is dBisPH(Iia = T)] < 1. With 6 = d;*d K2 7"/4,
(55) implies P(dK]| [, t”kkAvf”f 0isdBis| = v, Ig = T) S exp(—Cd; *d 2K 2 ~"v?). By Assumption 5, MaXgern; ) MaXe;; pes;)
P(dyK| ftt”kkAvtt”; 015 dBi | > v) < exp(—Cd,*d2K 26~ "v?) + exp(—Cd”) for any v > 0. Then (54) implies that P( (d2Qf =

v) < n, exp(—Cd; 242K -2-192) 4 n, exp(—Cd? ) for any v > 0. Together with (50), we have P{ szf’ AM; )i = 2n; v} <
P(d2Q7 = K)+P{|(AM;. )l = 2K~"n;jv} < n, exp(—Cd;*d=26~1)+n, exp(—Cd” )+ exp(—Cn,K~'v) for any v > n*‘K)»*,
which implies max; je(p; P{|1s(i, j)] > v} < n, exp(—Cdz_zd”s*]) + n,exp(—Cd”) + exp(—Cd,) + exp(— Cn,.K~v) for
any v > n;'Kx,. To make maxijcp |lls(i,j)] = Op(ny />K'/2log"/? p) and p diverge as fast as possible, we require
logp = o(n.K~1"), and select d, =< (n,K~")/+2r+) and d < (d,*n,K~")/7*2), Then if K(log n, )22/ +7)/@) = o(n,),
we have

max P{|l5(i. )] = v} < exp(~Cr.K~"v) + expl—Cln.k /252717 (56)
LJElp

for any v > n; 'K\,. Analogously, if K(log n, )2+2y+2)/(&) — o(n,), it holds that

max P{|1l7(i. )l = v} S exp(—Cn.K~"v) + exp{—Cln. K1)/ ) (57)
Ljelp
for any v > n_'KA,. Notice that 1y /(2t4+2y 41y) < t/(14+). Combining (51), (52), (56) and (57), if K(log n,, )@ +2r+)/w) =

o(n,), it holds that max; jegy P{|1"(i, j)| > v} < exp(—Cn.K~'v) + exp{—C(n, K ~1)7/@+2r+)} for any v > n; KA.
By (48) and Cauchy-Schwarz inequality, for any positive integer m, we have E{|ll5(i,j)|™} < [LE{(K”Q,-{;)2’"}]‘/2 .

K S ! f[” L sl dM; s )P™Y2 =: E;jq - Eij . By Assumption 4 and Jensen’s inequality, it holds that

tijkVitij.e 2m
E,] 1 Sn, max max E f | i s ds
keln; j1ti j e €Sij,k tij kAL j e

p—_ tijkViije ) )
< mE™ max  max sup E(|puis|™™)ds < n, 7M.
keln;jl tije€Sijk tijkAtije 0<S<T

If A,n; 'K = o(1), it follows from Assumptions 6 and 7 that

Eij |:< sup Urs|2m){Kn (AM;.)3¥ ]

0<s<T

1/2
S {E( sup M‘*’“)} - (E{Kn; (AM;, )™)Y (58)

0<s<T

< (E[exp{Kn; ' (AM; )" < 1.

Thus, max; jepp; E{|1Is(i, j)I™} < 1/2“;"" Analogously, we have max; jepy) E{“[g(l DM < nl/zsm By (53) and Cauchy-Schwarz
inequality, it holds that E{|Ils(i, j)I™} < [E{(K~'Q;)*™}]"/? - [E{( ’1K an] ft[’”“ sl dM; 5 )*™}1Y/2 =: E;j 3 - Eij » for any
positive integer m. By Assumptions 4 and 5, Burkholder-Davis- Gundy 1nequa11ty implies

lij e Vijie 2m
m
EU3 <n, max max E / 0is dBj s <n.EM.
t;

ke[nu]tulesuk 1J kAL e

Together with (58), max; je(p E{[Us(i, )™} < ny/2£m2, Analogously, max; jerp E{|17(i, )™} < ny/26m/2 Hence, we have
maxi jepp] E{I"(, )™} < nl/z.f,-‘"’/z for any positive integer m provided that A,n;'K = o(1). We complete the proof of
Proposition 4. O
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8.12. Proof of Proposition 5

Notice that for sufficiently large n, minks[nu] Nijx = Ax + 1 and Maxken; ) Nijk = 24k + 2. Analogously to (48), we
have that

// i j tij K Vi,
', j)| Z > ( / Uis| dMi,s> U
t;

Mij K<|0—k|<K+Ag Y GijkAGij.e
1
Mg~ [1jl+1
K max Uy, § / Uis| M5 . (59)
keln; ;] 2 n; j —

For any constant d3 > 0, define the event & g, = {supgs<r li,s| > ds}. By Assumption 7, it holds that

Tl”

Gije+1
p{ <1< max |u,,t,.j,k|> . / sl M > v}
keln; j] n; j =1 Ytije
n” t:] 41
< IP’{ (K max |Uj g kl) : / Visl dMis = v, Eifd3} + P(&i45) (60)
ke(n; j] b nj =1 Yt

< IP’{ (d3K kn}ax] |Uj_rijk|>(AM, )ij = 2nijv } + Cexp(—Cdy)
€[n; ks

for any v > 0. By Bonferroni inequality and Assumption 3, P(dsK maXgeqn, 1 [Uj.q;, | = v) < S P(|Uj | = d5'K'0) €
My MaXgepn ;) P(|Ujg | = d;'K~"v) < n, exp(—Cd;°K~2v?) for any v > 0. Recall & < n;'K. Together with (50), for any
8 € (0, 1), we have that P{(d3K MaXe(n; | IUj,t,-J,kI)(AMi )ij = 2nijv} < P(dsK maXgeqn; 11Uyt ] = KE™ 4+ P{(AM;.)ij >
2n;;K1&%) < n,exp(—Cd;*E %) + exp(—C&°~'v) for any v > £'7°A,. By (59) and (60), max; jegy) P{II"(i, )| > v} <
1, exp(—Cd; 26 =)+ exp(—C&*~1v)+exp(—Cdy) for any v 3> &1-94,. To make max; jcip) [11(i, )| = Op(n; /*K'/2 log'/? p),
it suffices to require logp = o[min{d;2£~%, d., 525*1}], A2612(logp)~! = o(1) and logn, = o(d;*£~%). To make p
diverge as fast as possible, we select § such that d;°& 2 < d < £%~1. Then § = (1+2)/(4t+4) and d3 = &£~ /+2) Hence,
if K(log n, )2+t = o(n,), we have max; jjp IP’{|III "(i, )| = v} < exp{—C(n K~ 1)3+2/@+y} 1 exp{—C(n K1)/ @+2)} for
any v > ( —1[{)(31+2)/(4z+4))\

By (59) and Cauchy-Schwarz inequality, we have E{|III"(i, /)|"'} < {E(maxien, 11U, t”klz"”)}l/2 [E{ (n’1K Zn” ! f[t'”“

1] 4
Visl AM; s *™}1Y2 =: F;; 1 - Fij » for any positive integer m. It follows Assumption 3 that F2 |, < n, MaXge(n; ] E(U?™ ) < n,.

Jitijk
1/2

11 1~
Analogously to (58), we have Ff] , STifan ”K = 0(1). Hence, max; jegp) E{|I"(i, HI™ < n/? for any positive integer m

provided that A,n; 'K = o(1). We complete the proof of Proposition 5. O

8.13. Proof of Part (ii) in Theorem 7

We first consider the case with ¢ < oco. Write 8 = (n;'Klogp)/?. For each i,j € [p], we define the event
Aij = {l6 Adul";'p M _ o041 < 4min(joy;|, @)} with some constant & > 0, and d;; = (&df’ii?p‘thre — 0y,ij)I(Af;). Identical to

(40), we have E(| £,™™ — %,13) < E{(maxicp Y0, ldij)?} + 219, It holds that

{<max2|dl,|) }<pZ {18057 — 0w 14T

i€[p] Py

p
~ jump, thre 2 ~ jump, thre
=D Z E(|6y.1; — ouijl 1A} N {6y = 0}])
ij=1

I

A jump, thre 2 c ~jump,thre __ Ajump
+p Y E(I6 ™ — oy PIAG N {6 TP = 61)

Il

Recall & ”u“j’p thre _ A;“,TPIU ”“mp| > pR) for any i, j € [p]. Identical to (42),1 < p Y },_, o, ;P(I6, 61U _ il > (4o — BN,
Selecting « = 8/2 and 8 bemg sufficiently large, identical to the arguments used in Sectlon 8.10 flor boundmg the conver-

gence rate of A3, we know I < o(X*) provided that K=L log{n.(K logp)~'} = o(1), A2(n; 'K)" >+ (logp)~! = 0(1), K = Ly,
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K(logn,)** = o(n,) with x; = max{(2t+2y +ty)/(ty), 2+2/t, 1+2/y}, and log p = o[min{(n.L,;2K)*/3¢+2) (n,K~1)y2}]
with o, = min{ty /(2t 4+ 2y 4+ 1y), /2t + 2), y /(y + 4), 1/3}. Also, identical to (43),

<p Z Gt = ouif WG — ouijl > 4aR)}'/?

u L oL utj
ij=1
p .
+p Y {E(6TP — ouif WPUGT — ouigl > (B — )N
ij=1
Notice that max;jepp EU%;, — ouijl*) < nl/z < p** with ¢, = 1/(4«), where « is specified in the beginning of
Section 3. Since « B/2, repeating the arguments used in Section 8.10 for bounding the convergence rate of A}

jump

again, it holds that Il $ p**“[max;jcpy P{I6; ;" — ouijl > (B — @)R}V? < o(¥?) if K~?Ly log{n.(K logp)~'} = o(1),
Ai(n;ll()‘/(z‘”)(logp)‘l = o(1), K > L, K(logn, )X = o(n,) with x; = max{(2t + 2y + 1y)/(y),2 +2/1,1 +
2/y}, logp = o[min{(n,L;2K)?/G¢*2) (n,K~1)2}] with xo = min{ty/(2c + 2y + ), /(2 + 2),y/(y + 4),1/3}.
Therefore, E{(maXicrp) ) ;— Idij|)*} < 1411 < o(X?), which implies supp, E (||Z,‘Jump thre =ul2) < c2(n; 'K log p)'~.
Analogously, in the case with ¢ = oo, we have sup,, E (||EJump thre _ Sll3) < ( <K logp)!=7 provided that K > Ly,
A2(n71K)/CH2(logp)™' = o(1), K(logn,)' = o(n,) with x; = max{(2t + 2)/ +1y)/(y), 2 + 2/1,1 + 2/y} and
logp = of{(n,K~ "2} with x, = min{ty/(2t + 2y + 1y),1/(2t + 2), ¥ /(y + 4), 1/3}). We complete the proof of Part
(ii) in Theorem 7. O

8.14. Proof of Theorem 8

For sufficiently large n, MiNgepn; ;) Nijk = Ak + 1 and MaXke[n; ;1 Nijk = 24k + 2. Analogously to (48), we have that

nj

tijkViije LijkViije
sl < 5 Z > ( / Uis| de,5> ( / Ujs| de,s)
ij t; ti i i

k=1 K<|t—k|<K+Ag Y ljkAbije SN GURN
GijkViije 1 mij tije+1
< | K max max / Ui.s| dM; g X—E f Uis| dM; s (61)
kelnij) tije€Sijie Jo pnti o 2n; j = Juj
; 1 Mij tije+1
= N v § / Uisl dMis .
L =1 YHije

For any constant d > 1 and i € [p], define the event & 4 = {supos<r is| > d}. Let (AM;.); (“ ftt”,";;":ff dM; s for any
14, kN, e

k € [ni;] and t;j, € Sij- Recall (AM;.);j = ftl”n” dM; ;. By Assumption 7, it holds that

JomT e Jom
P( J Z/ Ui.s'dMi,szv>f]P< J Z/ Uls|szs_ 3gld3 ]d>+P(51d)+[P(S]d)

2”1,1 — Yt znl’] =1 Ytije

<P{d21< max max (AM; )" - (AM; )y > 2n,jv} + exp(—Cd") (62)

keln;j1tij.e€Si jk
for any v > 0. By Bonferroni inequality, we have that
(k, K) (k.€)
Py max max (AM; ) <n, max max P{(AM; ) > v} (63)
keln;j1tij e€Sijk keln;j1tij e€Sijk

for any v > 0. Recall that § = max; jepy MaXke(n; ;] MAXy;; ,es; [tije — tijl < n;'K. By Assumption 8(ii), it holds that
MaXge(n; ) MaXe;; ;) E{(AM;. )(k e)} < Ang KL IE A, n 'K = o(1), by Markov’s inequality, Assumption 8 implies that

P{(AM;.. )(u > v} = P[(AM;. )](k,,l) E{(AM;.) (kl)} > v — E{(AM; ) NG z)}]
< PI(AM; )5 — E((AM; )(H)}>U/2]56Xp( cU)exp(cx*an)geXp(_cU)

(k.£)

for any v > A.n;'K. By (63), we have P{maxiepm; maxt”[es”k(AM ) > v} < n,exp(—Cv) for any v > A,n;'K.

Together with (50) for any é € (0, 1), it holds that

]P’{dZK max max (AM;. )(” (AM;.);j >2n,}v}

ke[n,-.j] tij.e eS,-,j k

51@{ max max (AM;. )" > & }—HP’{dZK(AMl i > 2m; &%)

keln;j1tije€Sijk
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< n, exp(—CE %) + exp(—Cd~2£°1v)

for any v >»> &'7%d?A.. Together with (61) and (62), max;jejp P(|wij| > v) < n.exp(—C&~%) + exp(—Cd—2&°~1v) +
exp(—Cd') for any v > £!7%d?A,. In order to make max;jepy |@ij| = Op(f;‘l/2 log!/? p), it suffices to require logp =
o[min{~?, d—4£%-1 d4], kié‘*zgd“(logp)*1 = 0(1) and logn, = o(£~?). To make p diverge as fast as possible, we select
8 = 1/(3t+4)and d =< &% Then if K(logn,)**+/* = o(n,), max; jep P(|mij] > v) < exp{—C(n K~ 1)2+2/Citayy 4
EXp{— (n K~ ])L/(3l+4 } for any v > (n—lk) 20+2)/( 3L+4))L

Analogous to (58), by Assumptions 7 and 8, it holds that

[t,j,k\/tl,j,f 2m
max E(|wu| )< max max max E / Uis| dM; s <1
ije ijelpl keln;jl tij ¢ €Sij k tijkALije

for any fixed positive integer m. We complete the proof of Theorem 8. O
8.15. Proof of Theorem 9

Write 8 = (n; 'K log p)'/2. Recall 6™ = 6,, i — ;. By Theorem 8 and the proof of Section 8.10, for some sufficiently
large constant e, > 0, if A2(n; 1K)/ (3‘+45,(log p)~! = o(1), we have

P(max |Gu,ij — Ouijl = o ) < p? max P(|o; u”p ouijl > a,R/2) + p? maxIP’(lw,Jl > o, 8/2) = o(R?)
i,jelp] i.,jelp]

provided that logp = o[min{(n,L,2K)?/C¢*+2), (n,K=")"}], K~L} log{n.(K logp)~'} = o(1) and K > L,, where x* =
lTllI‘l{L)//(ZL + 2y 4+ y),t/(3t + 4), y/(y + 4)}. Hence, Part (i) holds. For any C > 0, by Markov’s mequallty, we have

<~ thre <~ thre ~thre

P(|X, — Zull2 > CR79) < C%¢ ‘ZNZ(" VE(| X, — Xyul2). In the sequel, we will show E(| ¥, — X,|1%) <
(o 282(1-9), Based on this result, we know Part (ii) holds. For each i,j € [p], we define the event A;; = {|0thfje —ouijl <
4min(|oy;j|, «R)} with some constant @ > 0,and d;; = (6;“,.‘;—%,1’])1( i’j). As shown in (40) and (41), E (||Z‘thre Z‘ul@) <

E{(maxie[p] Zf:1 |d,j|)2} =+ C2N2(1iq) and

o (3 ) | = » 385 v s <o

ij=1

I
p

+p Y E(I6F — 00 ITAS; N (SIS = 6uij)]) -
ij=1

1l
Recall & Athre = 6u,il(I6yijl = BR). By (42), 1 < pzu ]auUIP’{|au,J oyijl = (4a — B)N}. Notice that max; jepp
E{|6.ij — au”| } < ni% Identical to (43), 1 < pny/* Y0 {P(16u,1j — ouijl > 4eR)V2 + pni/* 3P [P{16u1j — ouigl >
(B — a)R}]V2. Selectmg a = /2 for some suff1c1ently large > 0, we have I +II < 0(R?) provided that
Ai(n ‘1K)‘/(3l+4 (logp)~! = o(1), logp = o[min{(n,L;>K)*/C¢+2) (n,K~1)"}], K-“LY log{n.(K logp)~'} = o(1) and K > Ly,
where x* = min{ty /(2 + 2y +1y),1/(3t + 4), y/(y +4)). Thus E(|Ehe — =,012) < czR*1~9, We complete the proof of
Theorem 9. O

8.16. Proof of Lemma 1

Write S, = Z'le ;. Note that max;cz) Var(z;) < oco. We will apply the Fuk-Nagaev inequality (Rio, 2017,~Theorem 6.2)
to bound the tail probability of maxes |S¢|. Define o™ '(u) = Y~ Hu < a(k)}. Since a(k) < a; exp(—aL.“|k —m|%),
then o '(u) < m + a;”‘piﬁ log"¢(aju~") for any u > 0. Define Q(u) = sup,z Q:(u) with Q(u) = inf{x > 0 : P(|z| >
X) < u}. Since P(|z| > x) < byexp(—byx'), then Q(u) < b, " log""(byu~"). Define R(u) = o~ '(u)Q(u). We have
R(u) < cililog™(cou™") + cymlog'/"(cou™") with ¢; = b r max(a2 V9 1), ¢ = max(a1,b1) and r, = ro/(r + @).
Since R(u) is a right-continuous and non-increasing functlon then its mverse functlon H(x) = R~'(x) = inf{u : R(u) <
x} < inf{u : cilslog"™(cau™!) + cymlog"(cu™!) < X} < & exp(—&L;™x™) + & exp(— czm"x ) for any x > 0 with
¢1 = ¢ and ¢; = min{(2¢;)™™, (2¢1)""}. Write I = ¢, exp(—Ezf_ *X'*) 4+ €1 exp(—C,m~"X"). Therefore, fo (X) Q(u)du <
foﬁ b, " log""(byu~")du < 122(1; inyy'reVdy 3 by 'llog!"(byfi~Y) < @Y{T/? log(bii")}/". As x — o0, we have
it — 0%, which implies &i"/2 log(b1ii~') — 0. Hence there exists a universal constant ¢ > 0 such that &i"/? log(h1ii"!) < ¢
for any i € (0, 2¢;]. By the definition of i, we have fH(x) (u)du < exp(— CLn "x") 4+ exp(—Cm~"x") for any x > O.

Recall sﬁ Zﬁ,tz:l |Cov(z,, z,)|. By the Fuk-Nagaev inequality, P(maxyes S| > 4nx) < 4(1 + ﬁ2p715 2)2)=p/2 4
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41 fOHm/”) Qu)du < (1+ 2p~'s;%22)™/2 + A~ exp(—CA™A™ p~™*L-") + exp(—Cm "/ A" p™")} for any A > 0 and
p > 1. We complete the proof of Lemma 1. O

8.17. Proof of Lemma 2

We first ~consider the case with ¢ < oo. Define Az(or, u) = max{1, maXeep Z?:sal/“(t — s)}. Notice that a(k) <
a; exp{—az(Lﬁ’lk)“‘} for any integer k > 1. For any k > 2, it holds that

a i
Ao, 2(k—1)}) <1 t— sN1/(2k=2) 4 1/(2k—2)
ala, 2(k— 1)} < 1+ l};%(;{a( s)} <1+ Z{a(m)}

m=0

n m
<1+a +a Zf exp{—a,(2k — 2)’1i;¢x“’} dx
m—1

m=1

o0
<1l+a +a / exp{—a(2k — 2)7'Lx*} dx < Cu(k — 1)L
0

for some constant C, > 0 independent of k. Due to k¥ < kle* for any integer k > 1, we then have A’Tft’l{a, 2k — 1)} <
Ck=M{(k — 1)=& < (C.e?/%L;)(CeeV/*Li )} —2(k!)V/%. Let I(x) be the kth order cumulant of the random variable x. By
Theorem 4.17 of Saulis and Statulevicius (1991) with 8 = 1, we have |I}(Sq)| < (k0)**7+V¢(CL;H2)(CLzHz ) %#t with C =
27427 C,e?/¢, which implies |Ik(Sq/f)| = A~ Tk(Sq)| < (k)*T1/¢(CLH2A~1)(CLzHzn~")*"2. By Lemma 2.4 of Saulis and
Statulevicius (1991), it holds that P(|S;| > fix) < exp(—CAL; 'H; 2x?)+exp{—C(iiL; 'H; 'x)"/*P} for any x > 0, where F =
1+7+ ¢~ Analogously, when ¢ = oo, we can also show P(|S;| > fix) < exp(—CAL- ' H- 2x?) + exp{—C(iL- 'H; 'x)"/(1+D}
for any x > 0, where 7 = 1+ . We complete the proof of Lemma 2. O
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