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a b s t r a c t

In this paper, we consider testing the martingale difference hypothesis for high-
dimensional time series. Our test is built on the sum of squares of the element-wise
max-norm of the proposed matrix-valued nonlinear dependence measure at different
lags. To conduct the inference, we approximate the null distribution of our test statistic
by Gaussian approximation and provide a simulation-based approach to generate critical
values. The asymptotic behavior of the test statistic under the alternative is also studied.
Our approach is nonparametric as the null hypothesis only assumes the time series
concerned is martingale difference without specifying any parametric forms of its
conditional moments. As an advantage of Gaussian approximation, our test is robust
to the cross-series dependence of unknown magnitude. To the best of our knowledge,
this is the first valid test for the martingale difference hypothesis that not only allows for
large dimension but also captures nonlinear serial dependence. The practical usefulness
of our test is illustrated via simulation and a real data analysis. The test is implemented
in a user-friendly R-function.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Testing the martingale difference hypothesis is a fundamental problem in econometrics and time series analysis. The
oncept of martingale difference plays an important role in many areas of economics and finance. Several economic
nd financial theories such as the efficient markets hypothesis (Fama, 1970, 1991; LeRoy, 1989; Lo, 1997), rational
xpectations (Hall, 1978) and optimal asset pricing (Cochrane, 2005; Fama, 2013), yield such dependence restrictions
n the underlying economic and financial variables. More formally, let {xt} be a p-dimensional time series with E(xt ) = 0
or any t ∈ Z. Write xt = (xt,1, . . . , xt,p)⊤ and denote by Fs the σ -field generated by {xt}t⩽s. We call {xt}t∈Z a martingale
ifference sequence (MDS) if and only if E(xt | Ft−1) = 0 for any t ∈ Z. Given the observations {xt}nt=1, we are interested
n the hypothesis testing problem:

H0 : {xt}t∈Z is a MDS versus H1 : {xt}t∈Z is not a MDS. (1)
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he MDS hypothesis implies that the past information does not help to improve the prediction of future values of a MDS,
o the best nonlinear predictor of the future values of a MDS given the current information set is just its unconditional
xpectation. The theme of the lack of predictability is of central interest in economics and finance and has stimulated a
uge literature in both econometrics and time series analysis.
So far most of the work on MDS testing is restricted to the univariate case, i.e., p = 1. In one strand of literature, the

DS testing problem is reduced to testing the uncorrelatedness in either time domain or spectral domain. See Box and
ierce (1970), Ljung and Box (1978), Durlauf (1991), Hong (1996), Deo (2000), Lobato et al. (2001), and Shao (2011a,b),
mong others. These tests target on serial correlation but are unable to capture nonlinear serial dependence. There are
xamples of uncorrelated processes that are not MDS such as certain bilinear processes and nonlinear moving average
rocesses, see Domínguez and Lobato (2003) for specific examples. Hence, it is important to develop tests that can
o beyond linear serial dependence. In the specification testing literature, the exponential function based approach,
ioneered by Bierens (1984, 1990), de Jong (1996) and Bierens and Ploberger (1997), is capable of detecting nonlinear
erial dependence. Using the characteristic function, Hong (1999) proposed the generalized spectral density as a new tool
or specification testing in a nonlinear time series framework; see Hong and Lee (2003) and Hong and Lee (2005) for
urther developments. As an interesting extension of Hong (1999), Escanciano and Velasco (2006) developed a MDS test
ased on the generalized spectral distribution function to capture nonlinear serial dependence at all lags. Parallel to the
xponential/characteristic function based approach, the indicator/distribution function based approach has been taken
y Stute (1997), Koul and Stute (1999), Domínguez and Lobato (2003), and Park and Whang (2005) among others. We
efer to Escanciano and Lobato (2009) for a comprehensive review.

For the multivariate time series, i.e., p > 1, the literature for the MDS testing is scarce. Although it is expected that most
of the above-mentioned tests can be extended to relatively low dimensional case, the theoretical and empirical properties
of these tests are unknown. Recently, Hong et al. (2017) proposed a multivariate extension of the classical univariate
variance ratio test (Lo and MacKinlay, 1988; Poterba and Summers, 1988; Chen and Deo, 2006) to test a weak form of
the efficient markets hypothesis, i.e., uncorrelatedness of xt . As argued in Hong et al. (2017), the rationale to consider
he MDS test for multivariate time series is that even if the MDS hypothesis holds for each component series {xt,j}t∈Z,
he MDS hypothesis could be violated at the multivariate level. In particular, the current return on the ith asset may be
redicted by past observations of the jth asset. A univariate test may fail to detect this kind of cross-serial dependence,
hich can be captured by a multivariate test. Since it is well known that the variance ratio test only targets on serial
orrelation, the test of Hong et al. (2017) is unable to capture nonlinear serial dependence.
Nowadays, time series of moderate or high dimension are routinely collected or generated owing to the advance in

cience and technology. For example, S&P 500 index measures the stock performance of 500 large companies listed on
tock exchanges in the United States, and it is tempting to ask whether the stock returns of the 500 companies are
redictable at the daily or weekly frequency for a given time period (say, 5 years). The same question can be asked for
he stocks within the same sector, such as those in the real estate sector (see Section 6 for data illustration). This naturally
eads us to the regime where the dimension p is comparable to or exceeds the sample size n. To the best of our knowledge,
here is no MDS testing procedure available in the literature that allows the dimension p to exceed the sample size n.
ost of the aforementioned tests developed in the univariate setting require nontrivial modification to accommodate the
igh-dimensionality. The multivariate variance ratio test in Hong et al. (2017) allows for growing dimension p in their
heory (i.e., 1/p+p/n = o(1)) but is quite limited since their test cannot be implemented when p > n and may encounter
omputational problems when p is large (say, p > 120); see Section 5 for more details.
To fill this gap, we introduce a new test for the MDS hypothesis of multivariate and possibly high-dimensional time

eries. We first use the element-wise max-norm of a sample-based matrix to characterize the nonlinear dependence of
nderlying p-dimensional time series {xt} at a given lag j ⩾ 1, and then combine such information at different lags to
ropose our test statistic. Owing to the high-dimensionality and unknown temporal and cross-series dependence, the
imiting null distribution of our test statistic is hard to derive, and it may even not have a closed form. To circumvent
uch difficulty, we employ the celebrated Gaussian approximation technique (Chernozhukov et al., 2013), which has
ndergone a rapid development recently, to establish the asymptotic equivalence between the null distribution of our
est statistic and that of a certain function of a multivariate Gaussian random vector. Our theoretical analysis shows that
ur proposed test works even if p grows exponentially with respect to the sample size n, provided that some suitable
egularity assumptions hold. To facilitate feasible inference, we propose a simulation-based approach to generate critical
alues. We also investigate the power behavior of our test under some local alternatives.
Since the seminal contribution of Chernozhukov et al. (2013), the literature on Gaussian approximation in the

igh-dimensional setting has been growing rapidly. For the sample mean of independent random vectors, we men-
ion Chernozhukov et al. (2013, 2017), Deng and Zhang (2020), Fang and Koike (2021), Kuchibhotla et al. (2021),
hernozhukov et al. (2022a), and Chernozhukov et al. (2022b). For high-dimensional U-statistics and U-processes,
ee Chen (2018) and Chen and Kato (2019) for recent developments. The applicability of Gaussian approximation has also
een extended to high-dimensional time series setting by Zhang and Wu (2017), Zhang and Cheng (2018), Chernozhukov
t al. (2019) and Chang et al. (2021b). Also see Chang et al. (2017a,b,c, 2018b), and Yu and Chen (2021) among others for
he use of Gaussian approximation or variants in high-dimensional statistical inference.

Zhang and Wu (2017) and Zhang and Cheng (2018) considered the Gaussian approximation for max1⩽j⩽p n−1/2 ∑n
t=1 xt,j

ith the physical dependence measure (Wu, 2005) imposed on {x }, and Chernozhukov et al. (2019) considered the
t
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ame problem when {xt} is a β-mixing sequence. Chang et al. (2021b) studied the Gaussian approximations for
(n−1/2 ∑n

t=1 xt ∈ A) over some general classes of the set A (hyper-rectangles, simple convex sets and sparsely convex
ets) under three different dependency framework (α-mixing, m-dependent, and physical dependence measure), which
include the results obtained in Zhang and Wu (2017), Zhang and Cheng (2018) and Chernozhukov et al. (2019) as
special cases. Compared to the use of Gaussian approximation results for high-dimensional time series in the existing
works, our test statistic is considerably more involved and motivates us to develop new techniques for establishing the
asymptotic equivalence between the null distribution of our test statistic and that of a certain function of a multivariate
Gaussian random vector. More specifically, the theoretical analysis in this paper targets on the Gaussian approximation
for some function of the high-dimensional vector (n − K )−1/2 ∑n−K

t=1 ηt , where ηt is a newly defined vector based on
xt , xt+1, . . . , xt+K } and K is the number of lags involved in our test statistic. Since K is allowed to grow with the sample
ize n in our setting, the dependence structure among {ηt} will vary with K which cannot be covered in the frameworks
f above mentioned works, and the existing Gaussian approximation results cannot be applied here. Some nontrivial
echnical challenges need to be addressed in our theoretical analysis.

From a methodological and practical viewpoint, we highlight a few appealing features of our proposed test:
(a) Our approach is nonparametric as the null hypothesis only assumes the time series concerned is martingale

ifference without specifying any parametric forms of its conditional moments. Hence, it is robust to second-order and
igher-order conditional moments of unknown forms, including conditional heteroscedasticity, a prominent feature of
any financial time series.
(b) It allows the dimension p to grow exponentially with respect to the sample size n, and works well for a broad range

f dimension p even at a medium sample size (e.g., n = 300) as shown in our simulation studies. We have developed an
-function MartG_test in the package HDTSA which implements the test in an automatic manner.
(c) There is no particular requirement on the strength of cross-series dependence in our theory, so our test is applicable

o time series with cross-series dependence of unknown magnitude. Strong cross-series dependence has been commonly
bserved in many real high-dimensional time series data.
The rest of this paper is organized as follows. The methodology and theoretical analysis are given in Sections 2 and 3,

espectively. Section 4 extends the proposed test to more general settings. Section 5 studies the finite sample performance
f our proposed test. A real data analysis is presented in Section 6. Section 7 concludes the paper. Section 8 includes the
athematical proofs of our main results. Some additional technical arguments and numerical studies are given in the
upplementary material. At the end of this section, we introduce some notation that is used throughout the paper. For
ny positive integer q ⩾ 2, we write [q] = {1, . . . , q} and denote by Sq−1 the q-dimensional unit sphere. For any q1 × q2
atrix M = (mi,j)q1×q2 , let |M|∞ = maxi∈[q1],j∈[q2] |mi,j| and |M|0 =

∑q1
i=1

∑q2
j=1 I(mi,j ̸= 0), where I(·) denotes the indicator

unction. Specifically, if q2 = 1, we use |M|∞ = maxi∈[q1] |mi,1| and |M|0 =
∑q1

i=1 I(mi,1 ̸= 0) to denote the L∞-norm and
L0-norm of the q1-dimensional vector M, respectively. For any q-dimensional vector a = (a1, . . . , aq)⊤, write ψ(a) as the
q-dimensional vector {ψ(a1), . . . , ψ(aq)}⊤ for given function ψ : R → R, and denote by aL the subvector of a collecting
the components indexed by a given index set L ⊂ [q].

2. Methodology

2.1. Test statistic and the associated critical values

Let {xt} be a p-dimensional time series with E(xt ) = 0 for any t . Given the observations {xt}nt=1, we shall develop a
martingale difference hypothesis test that can capture certain nonlinear dependence between xt and xt+j for j ∈ N+.
o this end, we let φ(·) : Rp

→ Rd represent a map that is provided by the user. For example, φ(x) = x is the
inear identity map; φ(x) = {x⊤, (x2)⊤}

⊤ includes both linear and quadratic terms, where x2 = (x21, . . . , x
2
p)

⊤ with
= (x1, . . . , xp)⊤; φ(x) = cos(x) captures certain type of nonlinear dependence, where cos(x) = {cos(x1), . . . , cos(xp)}⊤

with x = (x1, . . . , xp)⊤.
Denote γ j = (n − j)−1 ∑n−j

t=1 E[vec{φ(xt )x⊤

t+j}] for each j ⩾ 1. Our proposal for testing the martingale difference
hypothesis consists in checking all the pairwise covariance between φ(xt ) and xt+j, namely, our null hypothesis is now

H ′

0 : γ j = 0 for all j ⩾ 1 . (2)

It is easy to see that H0 in (1) implies H ′

0 in (2) but not vice versa. In theory, it would be ideal to develop a test that is
consistent with any violation of H0 but this is very challenging in a model free setting, since the alternative we target is
huge owing to the high-dimensionality and nonlinear serial dependence at all lags. As argued in Phillips and Jin (2014),
‘‘Typically, the information set includes the infinite past history of the series, . . . . If a finite number of lagged values is included
in the conditioning set, some dependence structure in the process may be missed due to omitted lags. However, tests that are
designed to cope with the infinite lag case may have very low power (e.g., de Jong, 1996) and may not be feasible in empirical
applications.’’ Thus even in the low-dimensional setting, it is not clear whether there is a practical benefit for a test that is
consistent with all alternatives. This motivates us to relax the null hypothesis H0 and focus on the directional alternatives

encoded by the function φ(·), which is pre-specified by the user and can incorporate some prior information.
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Note that if the time series {xt} is strictly stationary, then γ j = E[vec{φ(x0)x⊤

j }] which represents the population-level
onlinear dependence measure at lag j. In our asymptotic theory, no stationarity assumption needs to be imposed. To test
′

0, it is natural to consider a test statistic with the following form

Tn = n
K∑

j=1

|γ̂ j|
2
∞
, (3)

here γ̂ j = (n − j)−1 ∑n−j
t=1 vec{φ(xt )x

⊤

t+j} is the estimator of γ j. Here K = o(n) is a truncation lag and is allowed to grow
with respect to the sample size n. This flexibility is important when there exists nonlinear serial dependence at large lags.

Intuitively, a large value of Tn provides evidence against H ′

0 in (2) and then we can reject H0 in (1) if

Tn > cvα , (4)

where cvα > 0 is the critical value at the significance level α ∈ (0, 1). To determine cvα , we need to derive the distribution
f Tn under H0. Write γ̂ = (γ̂⊤

1 , . . . , γ̂
⊤

K )
⊤ and γ = (γ⊤

1 , . . . , γ
⊤

K )
⊤. For fixed (p, d, K ) and under suitable moment and

weak dependence conditions, it follows from the central limit theorem that
√
n(γ̂−γ) →d N (0, Σ̊K ) as n → ∞ for some

ositive definite matrix Σ̊K ∈ R(Kpd)×(Kpd). Let g̊ := (g̊1, . . . , g̊Kpd)⊤ ∼ N (0, Σ̊K ). By the continuous mapping theorem, the
istribution of Tn under H0 can be approximated by that of its Gaussian analogue G̊K =

∑K
j=1 |g̊Lj |

2
∞

in the scenario with
ixed (p, d, K ), where Lj = {(j − 1)pd + 1, . . . , jpd}. Write ñ = n − K and let

ηt = ([vec{φ(xt )x⊤

t+1}]
⊤, . . . , [vec{φ(xt )x⊤

t+K }]
⊤)⊤ (5)

for any t ∈ [ñ]. Define

Σ n,K = Cov
(

1
√
ñ

ñ∑
t=1

ηt

)
, (6)

which is the long-run covariance matrix of the sequence {ηt}
ñ
t=1. For fixed (p, d, K ), the asymptotic covariance Σ̊K of

√
n(γ̂ − γ) is essentially the limit of Σ n,K specified in (6) as n → ∞. In the high-dimensional scenarios, i.e., when

p, d, K ) is diverging with respect to n, Proposition 1 indicates that such approximation for the null distribution of Tn is
still valid even when p and d grow exponentially with respect to the sample size n.

roposition 1. Assume Conditions 1–3 in Section 3 hold and GK =
∑K

j=1 |gLj |
2
∞
, where g = (g1, . . . , gKpd)⊤ ∼ N (0,Σ n,K )

and Lj = {(j − 1)pd + 1, . . . , jpd}. Let K = O(nδ) for some constant 0 ⩽ δ < f1(τ1, τ2) with f1(τ1, τ2) defined as (14) in
ection 3. Then it holds that supx>0 |PH0 (Tn > x) − P(GK > x)| = o(1) as n → ∞, provided that log(pd) = o(nc) for some
onstant c > 0 only depending on (τ1, τ2, δ).

Proposition 1 reveals that the Kolmogorov–Smirnov distance between the null distribution of the proposed test statistic
n and the distribution of GK converges to zero, even when p and d diverge at some exponential rate of n. Letting

cvα = inf{x > 0 : P(GK ⩽ x) ⩾ 1 − α} (7)

n (4), Proposition 1 yields that PH0 (Tn > cvα) → α as n → ∞. Since the long-run covariance matrix Σ n,K is usually
unknown in practice, we need to replace it by some estimate Σ̂ n,K and then use ĉvα defined below to approximate the
desired critical value cvα specified in (7):

ĉvα = inf{x > 0 : P(ĜK ⩽ x |Xn) ⩾ 1 − α} , (8)

where Xn = {x1, . . . , xn} and ĜK =
∑K

j=1 |ĝLj |
2
∞

with ĝ := (ĝ1, . . . , ĝKpd)⊤ ∼ N (0, Σ̂ n,K ) and Lj = {(j− 1)pd+ 1, . . . , jpd}.
Then we reject the null hypothesis H0 specified in (1) if

Tn > ĉvα . (9)

We defer the details of Σ̂ n,K to Section 2.2.

Remark 1. If we select the function φ(x) = x, the test statistic Tn defined in (3) can also be applied for testing the
high-dimensional white noise hypothesis, i.e., H0 : {xt}t∈Z is white noise versus H1 : {xt}t∈Z is not white noise. Chang
et al. (2017a) considered this hypothesis testing problem with L∞-type test statistic using the maximum absolute
autocorrelations and cross-correlations of the component series in xt over all lags k ∈ [K ]. It is well known that
the L∞-type test statistic is powerful against the sparse alternatives, that is, only a small fraction of the elements in
γ = (γ⊤

1 , . . . , γ
⊤

K )
⊤ are nonzero, while it can be powerless for the dense but faint alternatives, i.e., when most elements

in γ = (γ⊤

1 , . . . , γ
⊤

K )
⊤ are nonzero but with very small magnitudes. To remedy such weakness, our proposed Tn in

(3) combines the signals from different lags together using the sum of squares and is expected to improve the power
performance in case of dense but faint alternatives. On the technical side, constructing the Gaussian approximation to
the null distribution of T defined in (3) is more challenging than that for the L -type statistic used in Chang et al.
n ∞
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2017a). Chang et al. (2017a) only considered the case with fixed K under the β-mixing assumption. The null distribution
f their test statistic can be easily obtained by the associated Gaussian approximation results developed in Chernozhukov
t al. (2019). In this paper, we only impose the α-mixing assumption on {xt} and the corresponding α-mixing coefficients
f {ηt} become a triangular array owing to the divergence of K . To the best of our knowledge, our paper is the first attempt
o derive the Gaussian approximation results in such a complex setting.

emark 2. As we mentioned earlier, the only paper that allows growing dimension for the martingale difference
ypothesis testing is Hong et al. (2017), which generalized the variance ratio test to multivariate time series. In their
symptotic theory, they considered both finite/fixed horizon (i.e., fixed K ) and increasing horizon (i.e., K → ∞ but

K 2/n → 0), which is also allowed in our theory. In their Theorem 7, they presented the limiting null distribution of
a particular test statistic Zdtr under the restriction that the dimension p grows but p/n → 0. Their another two test
statistics Ztr and Zdet for the setting of fixed p cannot be implemented in practice when p >

√
n. By contrast, our test

tatistic can work for a much broader range of p, including the case p ≫ n, and thus is advantageous in dealing with the
artingale difference hypothesis testing for high-dimensional time series. In addition, we can capture nonlinear serial
ependence owing to the flexibility of user-chosen φ(·), which yields a nonlinear dependence measure. In practice, we
eed to set the lags K and the user-chosen map φ(·), which can incorporate some prior information we have. For example,
f the time series is expected to exhibit seasonal dependence, then K should be large enough to include some seasonal lags.
f we are dealing with stock return data, then including quadratic terms in φ(·) might help to capture potential nonlinear
ependence.

emark 3. If the time series {xt} is strictly stationary, we know the transformed data {ηt} is also strictly stationary
and our test statistic Tn given in (3) essentially converts the MDS testing problem for xt to testing zero mean for the
transformed data ηt . There are indeed several papers in the literature of Gaussian approximation that tackle the mean
testing problem for high-dimensional time series; see Zhang and Wu (2017), Zhang and Cheng (2018), Chernozhukov
et al. (2019) and Chang et al. (2021b). Zhang and Wu (2017) and Zhang and Cheng (2018) considered the Gaussian
approximation theory in the framework that assumes the physical dependence (Wu, 2005) for {ηt}. Chernozhukov et al.
2019) and Chang et al. (2021b) considered the Gaussian approximation theory, respectively, in the frameworks that
ssume the β-mixing assumption and α-mixing assumption for {ηt}. Notice that the dependence structure among {ηt}
ill vary with K . The dependence frameworks for {ηt} assumed in these existing works do not cover our current setting,
hus the existing Gaussian approximation results cannot be used for approximating the null distribution of our proposed
est statistic Tn.

.2. Estimation of long-run covariance matrix

In the low-dimensional setting, long-run covariance matrix estimation (or heteroscedastic–autocorrelation-consistent
stimation) is a classic problem in econometrics and time series analysis and there is a rich literature. We refer the readers
o two foundational papers by Newey and West (1987) and Andrews (1991). In the high-dimensional setting, the estimator
roposed in the low-dimensional environment can still be used, but establishing the proper probabilistic bounds for the
ifference is very challenging. Recall ñ = n − K . Following Chang et al. (2017a), we adopt the following estimate for the
ong-run covariance matrix Σ n,K :

Σ̂ n,K =

ñ−1∑
j=−ñ+1

K
(

j
bn

)
Ĥj , (10)

here Ĥj = ñ−1 ∑ñ
t=j+1(ηt−η̄)(ηt−j−η̄)⊤ if j ⩾ 0 and Ĥj = ñ−1 ∑ñ

t=−j+1(ηt+j−η̄)(ηt−η̄)⊤ otherwise, with η̄ = ñ−1 ∑ñ
t=1 ηt .

ere K(·) is a symmetric kernel function that is continuous at 0, and bn is the bandwidth diverging with n. The theoretical
roperty of Σ̂ n,K defined as (10) is summarized in Proposition 2 in Section 3. As indicated in Andrews (1991), to makeˆn,K given in (10) be positive semi-definite, we can require the kernel function K(·) to satisfy

∫
∞

−∞
K(x)e−ixλ dx ⩾ 0 for

ny λ ∈ R, where i =
√

−1. The Bartlett kernel, Parzen kernel and Quadratic Spectral kernel all satisfy this requirement.
See Section 5 for the explicit forms of these kernels.

Given Σ̂ n,K , to compute ĉvα given in (8), we need to generate ĝ := (ĝ1, . . . , ĝKpd)⊤ ∼ N (0, Σ̂ n,K ). Notice that Σ̂ n,K is
a (Kpd) × (Kpd) matrix. The standard procedure is based on the Cholesky decomposition of Σ̂ n,K and generating ĝ is a
computationally (nK 2p2d2 + K 3p3d3)-hard problem that requires a large storage space for Σ̂ n,K . In practice, p and d can
be quite large. As suggested in Chang et al. (2017a), we can generate ĝ as follows:

Algorithm 1 Procedure for generating ĝ

Step 1. Let Θ be a ñ × ñ matrix with (i, j)th element K{(i − j)/bn}.

Step 2. Generate ξ = (ξ1, . . . , ξñ)⊤ ∼ N (0,Θ) independent of Xn.

Step 3. Let ĝ = (ĝ1, . . . , ĝKpd)⊤ = ñ−1/2 ∑ñ
t=1 ξt (ηt − η̄).
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We can show that ĝ obtained in Algorithm 1 satisfies ĝ |Xn ∼ N (0, Σ̂ n,K ). The computational complexity of Step 2 in
lgorithm 1 is just O(n3) which is independent of (p, d). When p and d are large, the required storage space of Algorithm 1
s also much smaller than that of the standard procedure since it only requires to store {ηt}

ñ
t=1 and η̄ rather than Σ̂ n,K . In

practice, we can draw ĝ1, . . . , ĝB independently by Algorithm 1 for some large integer B and then take the ⌊Bα⌋th largest
value among ĜK ,1, . . . , ĜK ,B to approximate ĉvα defined as (8), where ĜK ,i =

∑K
j=1 |ĝi,Lj |

2
∞

with ĝi = (ĝi,1, . . . , ĝi,Kpd)⊤ and
Lj = {(j − 1)pd + 1, . . . , jpd}.

3. Theoretical property

Recall Tn = n
∑K

j=1 |γ̂ j|
2
∞
. Since the distribution of γ̂ = (γ̂⊤

1 , . . . , γ̂
⊤

K )
⊤ can be well approximated by that of η̄ =

ñ−1 ∑ñ
t=1 ηt with ñ = n − K , the difference between the distributions of Tn and T̃n := ñ

∑K
j=1 |η̄Lj

|
2
∞

is expected to be
asymptotically negligible. See Lemma L2 in Section 8 for details. The key step in our theoretical analysis is to approximate
the null distribution of T̃n by Gaussian approximation.

For any j1, . . . , jK ∈ [pd] and x > 0, let Aj1,...,jK (x) = {b ∈ RKpd
: b⊤

Sj1,...,jK
bSj1,...,jK

⩽ x} with Sj1,...,jK = {j1, j2 +pd, . . . , jK +

(K − 1)pd}. Define A(x; K ) =
⋂pd

j1=1 · · ·
⋂pd

jK=1 Aj1,...,jK (x). We then have {T̃n ⩽ x} = {ñ1/2η̄ ∈ A(x; K )}. Note that the set
Aj1,...,jK (x) is convex that only depends on the components in Sj1,...,jK . We can reformulate Aj1,...,jK (x) as follows:

Aj1,...,jK (x) =

⋂
a∈SKpd−1: aSj1,...,jK

∈SK−1

{b ∈ RKpd
: a⊤b ⩽ x1/2}.

Define F =
⋃pd

j1=1 · · ·
⋃pd

jK=1{a ∈ SKpd−1
: aSj1,...,jK ∈ SK−1

}. Then A(x; K ) =
⋂

a∈F {b ∈ RKpd
: a⊤b ⩽ x1/2} and

{T̃n ⩽ x} =

{
1

√
ñ

ñ∑
t=1

a⊤ηt ⩽ x1/2 for any a ∈ F
}

(11)

or any x > 0. As indicated in (11), to construct the Gaussian approximation of PH0 (T̃n ⩽ x), we need to impose the
following assumption on the tail behavior of a⊤ηt . See also Chernozhukov et al. (2017) and Chang et al. (2021b).

Condition 1. There exist some universal constants C1 > 1, C2 > 0 and τ1 ∈ (0, 1] independent of (K , p, d, n) such that

sup
t∈[n]

sup
a∈F

P(|a⊤ηt | > x) ⩽ C1 exp(−C2xτ1 )

for any x > 0.

Condition 1 is stronger than necessary for the theoretical justification of our proposed method, and it can be weakened
at the expense of much lengthier proofs. For example, Condition 1 can be replaced by the assumption:

max
t∈[n]

max
ℓ∈[Kpd]

P(|ηt,ℓ| > x) ⩽ C1 exp(−C2xτ1 ) (12)

for any x > 0. Recall ηt,ℓ = φl1 (xt )xt+k,l2 for some l1 ∈ [d], l2 ∈ [p] and k ∈ [K ]. If φ(·) is selected as some bounded
functions, then (12) holds provided that maxt∈[n] maxl2∈[p] P(|xt,l2 | > x) ⩽ C∗ exp(−C∗∗xτ1 ) for any x > 0. If φ(·) and xt
satisfy maxt∈[n] maxl1∈[d] P{|φl1 (xt )| > x} ⩽ C∗ exp(−C∗∗xτ∗ ) and maxt∈[n] maxl2∈[p] P(|xt,l2 | > x) ⩽ C∗ exp(−C∗∗xτ∗∗ ) for any
x > 0, by Lemma 2 of Chang et al. (2013), we know (12) holds with τ1 = τ∗τ∗∗/(τ∗ + τ∗∗). For any a ∈ F , there exists
(j1, . . . , jK ) ∈ [pd]K such that

∑K
ℓ=1 a

2
jℓ+(ℓ−1)pd = 1 and aj = 0 for j /∈ Sj1,...,jK , which implies

∑K
ℓ=1 |ajℓ+(ℓ−1)pd| ⩽

√
K . By

onferroni inequality and (12), for any given a ∈ F , it holds that

P(|a⊤ηt | > x) ⩽
K∑
ℓ=1

P
{
|ηt,jℓ+(ℓ−1)pd| >

x∑K
ℓ=1 |ajℓ+(ℓ−1)pd|

}

⩽

K∑
ℓ=1

P
{
|ηt,jℓ+(ℓ−1)pd| >

x
√
K

}
⩽ C∗K exp(−C∗∗K−τ1/2xτ1 ) (13)

for any x > 0, which provides a rough upper bound for maxt∈[n] supa∈F P(|a⊤ηt | > x). When K is a fixed positive integer,
by (13), we know Condition 1 is satisfied provided that (12) holds. If we only assume (12), we can still establish the
associated Gaussian approximation results based on (13) rather than Condition 1 but the associated arguments will be
quite cumbersome.

Condition 2. Assume that {xt} is α-mixing in the sense that

α(k) := sup
t

sup
t +∞

|P(A ∩ B) − P(A)P(B)| → 0 as k → ∞,

(A,B)∈F

−∞
×Ft+k
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here F u
−∞

and F+∞

u+k are the σ -fields generated respectively by {xt}t⩽u and {xt}t⩾u+k. Furthermore, there exist some universal
onstants C3 > 1, C4 > 0 and τ2 ∈ (0, 1] independent of (K , p, d, n) such that α(k) ⩽ C3 exp(−C4kτ2 ) for all k ⩾ 1.

The α-mixing assumption in Condition 2 is weaker than the β-mixing assumption considered in Chernozhukov et al.
2019). Restricting τ2 ∈ (0, 1] is just to simplify the presentation. If the α-mixing coefficients satisfy Condition 2 with some
onstant τ2 > 1, then Condition 2 will be satisfied automatically with τ2 = 1. Under certain conditions, VAR processes,
ultivariate ARCH processes, and multivariate GARCH processes all satisfy Condition 2 with τ2 = 1; see Hafner and
reminger (2009), Boussama et al. (2011) and Wong et al. (2020). In addition, if we only require supt∈[n] supa∈F P(|a⊤ηt | >

) = O{x−(ν+ϵ)
} for any x > 0 in Condition 1 and α(k) = O{k−ν(ν+ϵ)/(2ϵ)

} for all k ⩾ 1 in Condition 2 with some
onstants ν > 2 and ϵ > 0, we can also apply the Fuk-Nagaev-type inequalities to construct the upper bounds for
he tail probabilities of certain statistics for which our testing procedure still works for Kpd diverging at some polynomial
ate of n. We refer to section 3.2 of Chang et al. (2018a) for the implementation of the Fuk–Nagaev-type inequalities in
uch a scenario.

ondition 3. There exists a universal constant C5 > 0 independent of (K , p, d, n) such that

inf
a∈F

Var
(

1
√
ñ

ñ∑
t=1

a⊤ηt

)
⩾ C5.

ondition 4. The kernel function K(·) is continuously differentiable with bounded derivatives on R satisfying (i) K(0) = 1,
(ii) K(x) = K(−x) for any x ∈ R, and (iii) |K(x)| ⩽ C6|x|−ϑ as |x| → ∞ for some universal constants C6 > 0 and ϑ > 1.

Condition 3 is a mild technical assumption for the validity of the Gaussian approximation which requires the long-run
variance of the sequence {a⊤ηt} to be non-degenerate. Note that there are no explicit requirements on the cross-series
dependence, and both weak and strong cross-series dependence are allowed in our theory. Condition 4 is commonly used
for the nonparametric estimation of the long-run covariance matrix; see Newey and West (1987) and Andrews (1991).
For the kernel functions with bounded support such as Parzen kernel and Bartlett kernel, we have ϑ = ∞ in Condition 4.

For τ1 and τ2 specified in Conditions 1 and 2, we define

f1(τ1, τ2) = min
(

1
15
,

7τ1τ2
18τ1 + 18τ2 − 3τ1τ2

,
τ2

9 − 3τ2

)
. (14)

Such defined f1(τ1, τ2) is used to control the divergence rate of K which is determined from the technical proofs of Gaussian
pproximation theory. See Proposition 1 in Section 2. Notice that τ1, τ2 ∈ (0, 1]. When τ1 = τ2 = 1, then f1(τ1, τ2) = 1/15.
Assume that the bandwidth bn involved in (10) satisfies bn ≍ nρ for some constant 0 < ρ < (ϑ − 1)/(3ϑ − 2) with ϑ

specified in Condition 4. Let

f2(ρ, ϑ) = min
(
ρ

5
,
2ρ + ϑ − 1 − 3ρϑ

6ϑ − 3

)
. (15)

uch defined f2(ρ, ϑ) is also used to control the divergence rate of K which is obtained from the estimation of long-run
ovariance matrix Σ n,K . See Proposition 2 below. For given kernel function K(·), the parameter ϑ is determined. Since
= ∞ if K(·) is selected as the kernel functions with bounded support such as Parzen kernel and Bartlett kernel, then

2(ρ,∞) = min{ρ/5, (1 − 3ρ)/6}. For given ϑ > 1, the optimal selection of ρ that maximizes f2(ρ, ϑ) with respect to ρ
s (5ϑ − 5)/(21ϑ − 13) and the associated f2(ρ, ϑ) = (ϑ − 1)/(21ϑ − 13).

Proposition 2. Assume that Conditions 1, 2 and 4 hold. Let bn ≍ nρ for some constant 0 < ρ < (ϑ − 1)/(3ϑ − 2), and
= O(nδ) for some constant 0 ⩽ δ < f2(ρ, ϑ) with f2(ρ, ϑ) defined as (15). Then |Σ̂ n,K − Σ n,K |

∞
= op[K−3

{log(npd)}−2
]

provided that log(pd) = o(nc) for some constant c > 0 only depending on (τ1, τ2, ρ, ϑ, δ).

Different from the existing literature of high-dimensional covariance matrix estimation, our procedure does not
require Σ̂ n,K to be consistent under the matrix L2-operator norm and therefore it can work without imposing any
structural assumptions on the underlying long-run covariance matrix Σ n,K . More specifically, our procedure only requires
|Σ̂ n,K − Σ n,K |

∞
= op[K−3

{log(npd)}−2
], which is a quite mild requirement and our proposed Σ̂ n,K in Section 2.2 satisfies

this even when p and d grow exponentially with n. Now we are ready to present the theoretical guarantees of our testing
procedure (9).

Theorem 1. Assume Conditions 1–4 hold. Let bn ≍ nρ for some constant 0 < ρ < (ϑ − 1)/(3ϑ − 2). Select K = O(nδ)
for some constant 0 ⩽ δ < min{f1(τ1, τ2) , f2(ρ, ϑ)} with f1(τ1, τ2) and f2(ρ, ϑ) defined as (14) and (15), respectively. Then
PH0 (Tn > ĉvα) → α as n → ∞, provided that log(pd) = o(nc) for some constant c > 0 only depending on (τ1, τ2, ρ, ϑ, δ).

Theorem 1 reveals the validity of our proposed test in the sense that the testing procedure maintains the nominal
significance level asymptotically under the null hypothesis, where pd is allowed to diverge exponentially with respect to
the sample size n. In Theorem 2, the asymptotic power of the proposed tests is analyzed.
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heorem 2. Assume the conditions of Theorem 1 hold. Let ϱ be the largest element in the main diagonal of Σ n,K , and
write λ(K , p, d, α) = {2 log(pd)}1/2 + {2 log(4K/α)}1/2. If

∑K
j=1 |γ j|

2
∞

⩾ n−1Kϱλ2(K , p, d, α)(1 + ϵn)2 under the alternative
ypothesis for some ϵn > 0 satisfying ϵn → 0 and ϱλ2(K , p, d, α)K−1(log K )−1ϵ2n → ∞, then PH1 (Tn > ĉvα) → 1 as n → ∞.

Theorem 2 shows that our proposed test is consistent under local alternatives. Recall γ = (γ⊤

1 , . . . , γ
⊤

K )
⊤ with each

j ∈ Rpd. When K is fixed and ϱ = O(1), the latter of which holds under suitable assumptions on the data generating
rocess, the condition that |γ|∞ ⩾ Cn−1/2

{log(Kpd)}1/2 for some positive constant C , is sufficient for
∑K

j=1 |γ j|
2
∞

⩾
−1Kϱλ2(K , p, d, α)(1 + ϵn)2. As we have discussed in Remark 3, if the time series {xt} is strictly stationary, we know
he transformed data {ηt} is also strictly stationary and the proposed test statistic Tn given in (3) essentially tests whether
= E(ηt ) = 0 or not. As shown in Theorem 3 of Cai et al. (2014), n−1/2

{log(Kpd)}1/2 is the minimax optimal separation
ate of any tests for the (Kpd)-dimensional mean vector hypothesis testing problem H0 : γ = 0 versus H1 : γ ̸= 0 based
n the data {ηt}

n
t=1 if the smallest eigenvalues of Var(ηt ) are uniformly bounded away from zero. That is, for any α, β > 0

atisfying α + β < 1, there exists a constant δ0 > 0 such that infγ∈M(δ0) supξα∈Tα PH1 (reject H0 based on ξα) ⩽ 1 − β for
ll sufficiently large n, p and d, where M(δ0) = {γ ∈ RKpd

: |γ|∞ ⩾ δ0n−1/2
{log(Kpd)}1/2}, and Tα is the set of all α-level

ests for the test H0 : γ = 0 versus H1 : γ ̸= 0. Hence, if the time series {xt} is strictly stationary, our proposed testing
rocedure with fixed K will share some minimax optimal property.

. General martingale difference hypothesis and specification testing

Our test procedure can also be extended to a more general martingale difference hypothesis, that is

H0 : E(xt | Ft−1) = µx for any t ∈ Z , (16)

here µx ∈ Rp is an unknown vector. In this scenario, we can consider the test statistic

T new
n = n

K∑
j=1

|γ̂
new
j |

2
∞
, (17)

here γ̂new
j = (n − j)−1 ∑n−j

t=1 vec{φ(xt )(xt+j − x̄)⊤} with x̄ = n−1 ∑n
t=1 xt . Write x̊t = xt − µx. In comparison to Tn given

n (3), we replace xt+j there by its mean-centered version xt+j − x̄ in T new
n . Notice that

γ̂
new
j =

1
n − j

n−j∑
t=1

vec
(
φ(xt )x̊⊤

t+j −

[
1

n − j

n−j∑
s=1

E{φ(xs)}
]
x̊⊤

t

)
  

Ij

+ vec
([

1
n − j

n−j∑
t=1

E{φ(xt )}
](

1
n − j

n−j∑
t=1

x̊t −
1
n

n∑
t=1

x̊t
)⊤)

  
IIj

− vec
{(

1
n − j

n−j∑
t=1

[φ(xt ) − E{φ(xt )}]
)(

1
n

n∑
t=1

x̊t
)⊤}

  
IIIj

.

Since K = o(n) and j ∈ [K ], Ij is the leading term of γ̂new
j , and IIj and IIIj are the negligible terms in comparison to Ij.

efine

ηnewt =

⎛⎜⎝ vec(φ(xt )x̊⊤

t+1 − [(n − 1)−1 ∑n−1
s=1 E{φ(xs)}]x̊⊤

t )
...

vec(φ(xt )x̊⊤

t+K − [(n − K )−1 ∑n−K
s=1 E{φ(xs)}]x̊⊤

t )

⎞⎟⎠ .

Write ñ = n − K . If Conditions 1 and 3 hold for ηnewt , together with Condition 2, we know the null distribution of T new
n

can be approximated by that of its Gaussian analogue Gnew
K =

∑K
j=1 |gnew

Lj
|
2
∞
, where Lj = {(j − 1)pd + 1, . . . , jpd} and

gnew
= (gnew

1 , . . . , gnew
Kpd )⊤ ∼ N (0,Σ new

n,K ) with Σ new
n,K = Cov(ñ−1/2 ∑ñ

t=1 η
new
t ). Write ˆ̊xt = xt − x̄ and

η̂
new
t =

⎛⎜⎝ vec[φ(xt ) ˆ̊x⊤

t+1 − {(n − 1)−1 ∑n−1
s=1 φ(xs)} ˆ̊x

⊤
t ]

...
ˆ⊤ −1 ∑n−K ˆ⊤

⎞⎟⎠ .
vec[φ(xt )x̊t+K − {(n − K ) s=1 φ(xs)}x̊t ]
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dentical to (10), we can adopt the following estimate for Σ new
n,K :

Σ̂
new
n,K =

ñ−1∑
j=−ñ+1

K
(

j
bn

)
Ĥnew

j ,

where Ĥnew
j = ñ−1 ∑ñ

t=j+1(η̂
new
t − ¯̂ηnew)(η̂newt−j − ¯̂ηnew)⊤ if j ⩾ 0 and Ĥnew

j = ñ−1 ∑ñ
t=−j+1(η̂

new
t+j − ¯̂ηnew)(η̂newt − ¯̂ηnew)⊤

therwise, with ¯̂ηnew = ñ−1 ∑ñ
t=1 η̂

new
t . Algorithm 2 states how to implement the proposed general martingale difference

ypothesis test in practice.

Algorithm 2 Testing procedure for general martingale difference hypothesis

Step 1. Compute the test statistic T new
n as in (17), and let Θ be a ñ × ñ matrix with (i, j)th element K{(i − j)/bn}.

Step 2. Generate ξ = (ξ1, . . . , ξñ)⊤ ∼ N (0,Θ) independent of Xn, and let ĝnew
= ñ−1/2 ∑ñ

t=1 ξt (η̂
new
t − ¯̂ηnew).

Step 3. Draw ĝnew
1 , . . . , ĝnew

B independently by Step 2 for some large integer B.

Step 4. For given significance level α ∈ (0, 1), take the ⌊Bα⌋th largest value among Ĝnew
K ,1 , . . . , Ĝ

new
K ,B as the critical value

ĉvα , where Ĝnew
K ,i =

∑K
j=1 |ĝnew

i,Lj
|
2
∞

with ĝnew
i = (ĝnew

i,1 , . . . , ĝ
new
i,Kpd)

⊤ and Lj = {(j − 1)pd + 1, . . . , jpd}.

Step 5. We reject H0 defined as (16) if T new
n > ĉvα .

Below we shall provide some detailed discussion about potential extension of our test to the specification testing
framework. Let yt and ut be observable p-dimensional and q-dimensional time series, respectively. Consider the time
eries model

yt = h(ut; θ0) + xt , (18)

here xt is the error process, and h(·; ·) ∈ Rp is a known link function with unknown truth θ0 ∈ Rm. Without loss of
enerality, we assume E(xt |ut ) = 0. Model (18) is quite general for our analysis where we can select ut as yt−1, . . . , yt−ℓ
or some integer ℓ ⩾ 1. For the model diagnosis, we are interested in the hypothesis testing problem:

H0 : {xt}t∈Z is a MDS versus H1 : {xt}t∈Z is not a MDS. (19)

ased on the conditional moment restrictions E(xt |ut ) = 0, for given basis functions ψ(·) : Rq
→ Rl with pl ⩾ m, we can

dentify the unknown truth θ0 by the pl unconditional moment restrictions

E[{yt − h(ut; θ0)} ⊗ ψ(ut )] = 0 ,

here ⊗ denotes the Kronecker product.
Case 1. If m is fixed or diverges slowly with the sample size n, applying the estimation procedure suggested in Chang

t al. (2015), we can obtain a consistent estimator θ̂n for θ0 and it admits the following asymptotic expansion:

θ̂n − θ0 =
1
n

n∑
t=1

w(yt ,ut ) + high order term , (20)

here w(·) is the influence function such that E{w(yt ,ut )} = 0. Write x̂t = yt − h(ut; θ̂n). Together with (20), it holds
that

x̂t = xt − ∇θh(ut; θ0) ·
1
n

n∑
s=1

w(ys,us) + high order term .

Based on obtained {x̂t}nt=1, we can propose the following test statistic for (19):

T ♮n = n
K∑

j=1

|γ
♮

j |
2

∞
, (21)

where γ♮j = (n − j)−1 ∑n−j
t=1 vec{φ(x̂t )x̂

⊤

t+j}. In comparison to the original test statistic Tn given in (3) based on observed
{xt}nt=1, we replace xt there by its estimate x̂t . By Taylor expansion, under some regularity conditions, it holds that

γ
♮

j =
1

n − j

n−j∑
vec{φ(xt )x⊤

t+j} −
1
n

n∑
Ajw(yt ,ut ) + high order term ,
t=1 t=1
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here Aj = (n − j)−1 ∑n−j
t=1 E{xt+j ⊗ [∇xφ(xt )∇θh(ut; θ0)] + [∇θh(ut+j; θ0)] ⊗ φ(xt )}. Define

η
♮
t =

⎛⎜⎝vec{φ(xt )x⊤

t+1} − A1w(yt ,ut )
...

vec{φ(xt )x⊤

t+K } − AKw(yt ,ut )

⎞⎟⎠ .

Recall ñ = n−K . Following the same arguments in Section 2.1, the null distribution of T ♮n can be approximated by that of
its Gaussian analogue G♮K =

∑K
j=1 |g♮Lj

|
2

∞
, where Lj = {(j− 1)pd+ 1, . . . , jpd} and g♮ = (g♮1, . . . , g

♮

Kpd)
⊤

∼ N (0,Σ ♮

n,K ) with

Σ ♮

n,K = Cov(ñ−1/2 ∑ñ
t=1 η

♮
t ). The key challenge here is to construct a valid estimate Σ̂

♮

n,K satisfying |Σ̂
♮

n,K − Σ ♮

n,K |
∞

=

op[K−3
{log(npd)}−2

] with unknown A1, . . . ,AK and unobserved {xt}.
Case 2. If m ≫ n, we need to assume the unknown truth θ0 = (θ0,1, . . . , θ0,m)⊤ in (18) is sparse. Let S = {k ∈ [m] :

θ0,k ̸= 0}. Using the penalized estimation procedure, for example, Chang et al. (2018c), we can obtain a sparse estimate
θ̂n for θ0 satisfying the oracle property: (i) P(θ̂n,Sc = 0) → 1 as n → ∞, and (ii) θ̂n,S follows the asymptotic expansion:

θ̂n,S − θ0,S − ξn =
1
n

n∑
t=1

w̃(yt ,ut ) + high order term , (22)

where w̃(·) is the influence function such that E{w̃(yt ,ut )} = 0, and ξn is the asymptotic bias satisfying |ξn|∞ = Op(δn)
for some δn = o(1) but δn ≫ n−1/2. To propose the testing procedure in the setting with m ≫ n, we need to do the next
three steps first: (a) identify the index set S , (b) estimate the asymptotic bias ξn, (c) obtain the bias-corrected estimate θ̃n
for θ0 based on the estimate of ξn. Write x̂t = yt − h(ut; θ̃n). We can still use the test statistic T ♮n given in (21) in current
setting. To determine the associated critical value, we only need to replace w(·) and ∇θh(·; θ0) by w̃(·) and ∇θSh(·; θ0),
respectively, in the procedure for the setting with fixed or slowly diverging m. However, as commented in Chang et al.
(2021a), if h(·; θ) is a nonlinear function of θ, the asymptotic bias ξn may include some unknown information which makes
the estimation of ξn extremely difficult (if not impossible). How to address this problem requires further study.

5. Simulation studies

In this section, we examine the finite sample performance of our proposed test in comparison with the ones proposed
by Hong et al. (2017). All tests in our simulation are implemented at the 5% significance level using 4000 Monte Carlo
replications, and the number of bootstrap replications used to determine the critical value ĉvα in our procedure is chosen
as B = 2000. We set the sample size n ∈ {100, 300} and lags K ∈ {2, 4, 6, 8}. The dimension p is set according to
the ratio p/n ∈ {0.04, 0.08, 0.15, 0.4, 1.2}, which covers low-, moderate- and high-dimensional scenarios. Two types
of maps are considered, i.e., (i) linear function (d = p), φ(xt ) = xt ; (ii) both linear and quadratic functions (d = 2p),
φ(xt ) = {x⊤

t , (x2t )⊤}
⊤. Furthermore, we use three kernel functions for the estimation of long-run covariance matrix Σ n,K ,

i.e.,

(a) Quadratic Spectral (QS) kernel: KQS(x) = 25(12π2x2)−1
{(6πx/5)−1 sin(6πx/5) − cos(6πx/5)}.

(b) Parzen (PR) kernel: KPR(x) = (1 − 6x2 + 6|x|3)I(0 ⩽ |x| ⩽ 1/2) + 2(1 − |x|)3I(1/2 < |x| ⩽ 1).
(c) Bartlett (BT) kernel: KBT(x) = (1 − |x|)I(|x| ⩽ 1).

Recall ñ = n−K . We use the data-driven bandwidth formulas developed in Andrews (1991) to determine the associated
bandwidth bn involved in these three kernel functions, that is, bQS = 1.3221{â(2)ñ}1/5, bPR = 2.6614{â(2)ñ}1/5 and
bBT = 1.1447{â(1)ñ}1/3, where â(2) = {

∑Kpd
ℓ=1 4ρ̂

2
ℓ σ̂

4
ℓ (1 − ρ̂ℓ)−8

}{
∑Kpd

ℓ=1 σ̂
4
ℓ (1 − ρ̂ℓ)−4

}
−1 and â(1) = {

∑Kpd
ℓ=1 4ρ̂

2
ℓ σ̂

4
ℓ (1 −

ρ̂ℓ)−6(1 + ρ̂ℓ)−2
}{

∑Kpd
ℓ=1 σ̂

4
ℓ (1 − ρ̂ℓ)−4

}
−1, with ρ̂ℓ and σ̂ 2

ℓ being, respectively, the estimated autoregressive coefficient and
innovation variance from fitting an AR(1) model to time series {ηt,ℓ}

ñ
t=1, the ℓth component sequence of {ηt}

ñ
t=1 defined in

(5). Denote the test statistics based on the three kernels with linear map by T l
QS, T

l
PR and T l

BT, respectively, and denote the
nes with both linear and quadratic map by T q

QS, T
q
PR and T q

BT, respectively. Note that the data-driven formulas by Andrews
1991) are based on AR(1) model assumption and also deliver an estimation-optimal bandwidth in the low-dimensional
etting. Here we apply it to determine the associated bandwidth bn in both moderate- and high-dimensional settings since
here are no other known formulas and the numerical studies in Chang et al. (2017a) show such formula seems to work
ell when the dimension is large. We also include three tests proposed by Hong et al. (2017) in our simulation comparison,

.e., the trace-based test Ztr, the determinant-based test Zdet, and the large-dimensional test Zdtr. Note that Hong et al.
2017) only examined the finite sample performance of Ztr and Zdet, which cannot be implemented when p >

√
n, whereas

dtr is shown to be valid under the assumption p/n → 0 and its implementation becomes infeasible when p > n. The
ests of Hong et al. (2017) require the matrix normalization which is computationally prohibitive in the high-dimensional
etting. See Section S.4 in the supplementary material for the comparison of computational cost between our test and the
ests of Hong et al. (2017).
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.1. Empirical size

To examine the empirical size, we consider the following models:

Model 1. i.i.d. normal sequence: xt
i.i.d.
∼ N (0,A) where A = (akl)p×p with akl = 0.995|k−l| for any k, l ∈ [p].

Model 2. Stochastic volatility model: xt = εt exp(σt ) with σt = 0.25σt−1+0.05ut , εt
i.i.d.
∼ N (0,Ω ε) and ut

i.i.d.
∼ N (0,Ωu),

where Ω ε = (ωε,kl)p×p and Ωu = (ωu,kl)p×p with ωε,kl = I(k = l) + 0.4I(k ̸= l) and ωu,kl = 0.9|k−l| for any
k, l ∈ [p].

Model 3. Bivariate constant conditional correlation GARCH(1,1) model: xt = b1/2
t ◦ εt with bt = a0 + A1bt−1 + A2x2t−1

and εt
i.i.d.
∼ N (0,Ω ε), where ◦ denotes the Hadamard product, a0 = (0.2, 0.1 1⊤

p−1)
⊤, A1 = 0.9 Ip, A2 =

diag(0.05, 0.08, 0.03 1⊤

p−2), and Ω ε = (ωε,kl)p×p with ωε,kl = I(k = l) + 0.5I(k ̸= l) for any k, l ∈ [p]. Here 1q
and Iq denote, respectively, the q-dimensional vector with all components being 1 and q-dimensional identity
matrix for any given integer q.

A few comments are in order. Model 1 was used by Chang et al. (2017a) in their simulation for high-dimensional white
noise testing problem. Model 2 is the multivariate extension of the univariate stochastic volatility model considered
in Escanciano and Velasco (2006) for the univariate martingale difference hypothesis testing problem. Model 3 is
motivated from Hong et al. (2017), which reduces to the bivariate GARCH model considered in Hong et al. (2017) when
p = 2.

As seen from Table 1, our tests have quite accurate size when the dimension p is low for all models. For a fixed sample
size n, the rejection rates tend to decrease as the dimension p increases, showing the impact on the bootstrap-based
approximation from the dimension p. For a fixed dimension p, enlarging sample size from n = 100 to n = 300 helps
o bring down the size distortion to some extent for most kernels and maps, e.g., the empirical sizes for Models 1–3 are
ndersized when n = 100 and p/n = 1.2 (p = 120), and the empirical sizes increase and become much closer to the
% nominal level when n = 300 and p/n = 0.4 (p = 120). Overall our tests show reasonably good size control and the
ndersize phenomenon for the moderate- and high-dimensional scenarios could be due to the bandwidth choice, which
s always a difficult issue in practice. The three tests of Hong et al. (2017) also show quite accurate size for Models 1 and
, and there is some noticeable over-rejection for Model 3 when n = 100. When n = 300 and p/n = 0.4, we are unable to
mplement the test Zdtr even though p < n. The reason is that the computation of Zdtr requires to store five 1202

× 1202

atrices, and product of three 1202
× 1202 matrices during the calculation, which results in running out of the memory

RAM: 8158 MB). This indicates the difficulty of implementing their tests for p = 120 and beyond.
In order to investigate the influence of the data-driven bandwidth used in our simulation, we examine the sensitivity

f our size and power results by replacing the data-driven bandwidth bn by its scaled version c · bn with c ∈

{2−3, 2−2, 2−1, 21, 22, 23
}. Simulation results for Bartlett kernel are displayed in Tables 2 and 4. Simulation results for

Quadratic Spectral kernel and Parzen kernel are reported in the supplementary material. For different multiplies c , the
sizes and powers are relatively robust. In addition, we find that the results for c < 1 perform a little better than these
for c > 1 in general, but not by much. Therefore, the choice of c = 1 in our simulation is reasonable.

5.2. Empirical power

To study the empirical power of the proposed method, we consider the following models:

Model 4. First-order exponential autoregressive model: xt = 0.15xt−1 + exp(−2x2t−1) + εt with εt
i.i.d.
∼ N (0,Ω ε), where

Ω ε = (ωε,kl)p×p with ωε,kl = I(k = l) + 0.25I(k ̸= l) for any k, l ∈ [p].
Model 5. The sum of a white noise and cosine of the first difference of an autoregressive process: xt = εt + 0.8 cos(zt −

zt−1) with zt = 0.85zt−1+ut , εt
i.i.d.
∼ N (0,Ω ε) and ut

i.i.d.
∼ N (0,Ωu), whereΩ ε = (ωε,kl)p×p andΩu = (ωu,kl)p×p

with ωε,kl = I(k = l) + 0.3I(k ̸= l) and ωu,kl = 0.7|k−l| for any k, l ∈ [p].
Model 6. Threshold autoregressive model of order one: xt = (xt,1, . . . , xt,p)⊤ with xt,j = −0.45xt−1,jI(xt−1,j ⩾ 1) +

0.6xt−1,jI(xt−1,j < 1) + εt,j for each j ∈ [p], where εt = (εt,1, . . . , εt,p)⊤
i.i.d.
∼ N (0, Ip).

Models 4–6 can be regarded as multivariate extensions of the univariate models considered in Escanciano and Velasco
(2006) (see Models 7–9 there). Table 3 shows that for Models 4–6, the powers based on three different kernels are similar
for the same map with the use of Bartlett kernel exhibiting slightly more power in most cases. When n = 100 and for
Model 4, using the linear and quadratic map leads to more power when p/n ⩽ 0.15, but less power when p/n > 0.15.
This can be explained by the impact from the high dimension. The additional nonlinear serial dependence captured by
the quadratic map is apparent when p ⩽ 15, but as the dimension p increases to 120, the signal related to nonlinear
dependence is likely dominated by that related to linear dependence and possibly the noise, so using linear map alone
yields more power. Similar phenomena occur for Models 5 and 6. As expected, when we increase the sample size n from
100 to 300, we see the appreciation of the power as both linear and nonlinear serial dependence get strengthened at the
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Table 1
Empirical sizes (%) of the tests T l

QS , T
l
PR , T

l
BT , T

q
QS , T

q
PR , T

q
BT , Ztr , Zdet and Zdtr for Models 1–3 at the 5% nominal level.

Model 1 Model 2 Model 3

n p/n K T lQS T lPR T lBT TqQS TqPR TqBT Ztr Zdet Zdtr T lQS T lPR T lBT TqQS TqPR TqBT Ztr Zdet Zdtr T lQS T lPR T lBT TqQS TqPR TqBT Ztr Zdet Zdtr

100 0.04 2 4.2 4.5 4.5 4.3 4.3 4.4 5.2 4.4 5.5 4.2 4.4 4.7 2.2 2.4 2.5 5.2 4.7 4.8 3.5 3.6 4.2 2.9 2.8 3.2 6.7 6.3 5.2
4 5.1 5.0 5.2 4.6 4.3 4.5 5.2 5.2 5.4 3.1 3.3 3.5 2.9 2.8 3.2 4.3 4.9 6.3 3.2 3.2 3.5 3.0 3.1 3.4 6.9 6.9 6.3
6 4.6 4.4 4.8 4.5 4.5 4.6 5.0 4.7 6.0 3.0 2.9 3.5 2.8 2.7 2.9 5.4 4.4 6.0 3.1 3.1 3.6 3.9 4.0 4.1 6.5 6.8 6.1
8 4.4 4.4 4.7 5.0 4.9 5.1 5.6 4.9 6.2 2.8 2.8 3.3 2.9 2.8 3.1 5.4 4.5 6.5 3.3 3.3 4.0 4.5 4.4 4.9 6.7 7.9 6.9

0.08 2 4.1 4.1 4.1 3.1 3.2 3.4 4.8 4.9 5.2 3.8 3.9 4.0 1.9 1.8 1.8 4.4 4.9 5.2 3.3 3.2 3.5 2.7 2.5 2.7 5.9 8.0 5.2
4 3.9 3.8 4.0 4.4 4.3 4.7 6.0 4.8 5.2 3.0 3.0 3.5 1.8 1.9 2.1 5.4 5.1 6.0 2.6 2.5 3.0 2.7 2.7 2.7 7.1 8.7 5.2
6 4.6 4.4 4.6 4.4 4.4 4.7 6.7 6.3 6.2 2.2 2.1 2.5 2.2 2.2 2.4 5.5 5.9 5.6 2.2 2.3 2.8 4.4 4.2 4.5 7.5 8.2 7.1
8 4.8 4.9 5.2 4.0 3.9 4.2 7.4 5.7 5.4 2.3 2.0 3.0 2.1 2.2 2.4 7.2 5.5 6.9 2.8 2.8 3.3 4.4 4.4 4.9 8.2 8.9 7.6

0.15 2 4.2 4.4 4.4 4.0 3.8 4.2 NA NA 4.6 3.4 3.4 3.7 1.9 1.9 2.3 NA NA 4.8 3.4 3.4 4.1 1.9 1.9 1.9 NA NA 5.1
4 4.3 4.2 4.6 3.2 3.2 3.5 NA NA 4.3 2.5 2.5 2.7 1.7 1.8 2.1 NA NA 5.9 2.2 2.2 2.7 2.5 2.4 2.7 NA NA 5.8
6 4.2 4.0 4.4 3.8 3.8 4.0 NA NA 5.2 2.7 2.9 3.3 1.7 1.6 1.9 NA NA 5.7 2.2 2.1 2.8 2.8 2.7 3.0 NA NA 7.4
8 4.0 4.1 4.5 4.4 4.5 4.8 NA NA 6.3 2.7 2.6 3.1 2.1 2.2 2.4 NA NA 6.4 1.8 1.8 2.6 3.4 3.6 3.6 NA NA 8.3

0.40 2 3.8 4.0 4.1 2.1 2.3 2.6 NA NA 4.8 3.4 3.5 3.9 2.0 2.3 2.5 NA NA 4.7 2.7 2.5 3.0 1.8 1.8 1.9 NA NA 5.5
4 2.8 2.9 3.2 2.5 2.6 2.6 NA NA 5.3 3.2 3.2 3.6 2.1 2.1 2.3 NA NA 5.4 1.7 1.7 2.1 2.0 2.2 1.9 NA NA 6.6
6 2.9 3.0 3.4 2.8 2.8 3.2 NA NA 5.6 2.6 2.6 3.1 2.1 2.0 2.1 NA NA 6.0 1.1 1.1 1.7 2.4 2.6 2.3 NA NA 7.9
8 3.2 3.0 3.4 3.2 3.1 3.4 NA NA 5.8 2.8 2.8 3.2 2.6 2.5 2.8 NA NA 5.2 1.5 1.4 2.2 3.3 3.6 3.4 NA NA 9.2

1.20 2 2.2 2.3 2.5 1.1 1.2 1.3 NA NA NA 3.8 3.8 4.3 2.6 2.8 2.7 NA NA NA 1.6 1.6 2.0 2.9 3.3 2.5 NA NA NA
4 2.0 2.1 2.6 1.1 1.2 1.2 NA NA NA 2.9 3.1 3.2 2.5 2.5 2.7 NA NA NA 1.1 1.1 1.8 3.9 4.1 3.1 NA NA NA
6 2.0 2.1 2.4 1.1 1.1 1.3 NA NA NA 3.3 3.3 3.9 2.3 2.4 2.4 NA NA NA 1.1 1.1 1.5 4.9 5.3 3.9 NA NA NA
8 1.4 1.7 2.0 1.2 1.2 1.4 NA NA NA 3.1 3.2 3.8 2.9 3.1 3.2 NA NA NA 1.1 1.0 1.5 6.3 6.7 5.5 NA NA NA

300 0.04 2 5.6 5.5 5.8 4.2 4.1 4.4 5.1 5.5 5.8 4.1 4.1 4.2 3.8 3.7 3.9 4.9 5.6 4.7 4.0 4.0 4.0 3.6 3.4 3.8 6.2 7.5 5.2
4 3.9 4.2 4.5 4.7 4.6 5.0 5.9 5.4 5.0 3.7 3.9 4.2 2.9 2.8 3.2 6.1 5.9 5.6 3.8 3.7 4.1 3.3 3.4 3.9 6.2 6.6 5.5
6 4.2 4.1 4.2 5.5 5.2 5.5 6.4 6.7 5.6 3.9 3.6 3.9 3.9 4.0 4.2 6.6 6.8 6.4 3.7 3.7 4.1 4.7 4.7 4.9 7.3 7.9 5.6
8 4.7 4.8 5.0 6.0 6.0 6.3 7.1 6.9 5.8 3.7 3.8 4.0 4.1 4.0 4.3 7.1 6.4 5.1 3.2 3.0 3.4 4.4 4.4 4.8 8.6 8.0 6.3

0.08 2 4.8 4.8 5.0 4.0 4.0 4.1 NA NA 5.5 4.2 4.3 4.4 3.5 3.6 3.8 NA NA 4.8 3.6 3.5 3.8 3.2 3.2 3.2 NA NA 5.6
4 3.8 3.8 3.9 4.1 4.0 4.2 NA NA 5.2 3.8 3.5 3.8 3.7 3.6 3.9 NA NA 5.0 3.7 3.5 4.0 3.2 3.0 3.4 NA NA 5.4
6 4.6 4.4 5.0 5.0 5.0 5.4 NA NA 5.0 3.6 3.3 3.8 4.1 4.2 4.4 NA NA 5.4 3.3 3.2 3.7 3.4 3.3 3.7 NA NA 5.3
8 3.9 4.2 4.3 5.7 5.9 6.1 NA NA 5.4 3.7 3.6 4.1 3.8 3.7 4.0 NA NA 5.4 3.0 3.0 3.4 3.6 3.7 4.1 NA NA 5.9

0.15 2 4.7 4.6 4.8 3.8 3.9 4.3 NA NA 6.0 4.4 4.4 4.7 3.7 3.6 3.9 NA NA 4.6 3.9 4.0 4.2 3.1 2.9 3.3 NA NA 5.0
4 4.4 4.4 4.6 4.4 4.3 4.6 NA NA 4.6 3.7 3.9 3.9 4.2 4.2 4.4 NA NA 5.1 3.2 3.2 3.6 3.2 3.0 3.3 NA NA 5.3
6 3.9 3.9 4.1 4.6 4.4 4.8 NA NA 5.1 3.5 3.5 3.8 3.4 3.7 3.8 NA NA 5.3 3.2 3.0 3.4 3.6 3.5 3.8 NA NA 6.8
8 3.9 4.0 4.2 4.4 4.4 4.7 NA NA 5.6 3.5 3.5 3.7 4.2 4.3 4.4 NA NA 5.6 3.0 3.0 3.4 3.6 3.4 4.1 NA NA 5.9

0.40 2 4.2 4.2 4.3 2.6 2.6 2.8 NA NA NA 4.5 4.6 4.8 3.1 3.0 3.4 NA NA NA 3.8 3.8 4.1 2.8 2.7 3.1 NA NA NA
4 3.5 3.5 3.6 3.2 3.2 3.5 NA NA NA 4.2 4.3 4.5 3.8 3.7 4.0 NA NA NA 3.1 3.1 3.5 2.7 2.6 3.0 NA NA NA
6 3.7 3.9 4.2 4.1 4.1 4.7 NA NA NA 4.1 4.0 4.4 3.9 4.0 4.2 NA NA NA 2.7 2.6 3.0 2.4 2.3 2.7 NA NA NA
8 3.2 3.3 3.8 4.1 4.0 4.6 NA NA NA 4.1 4.1 4.2 4.2 4.2 4.4 NA NA NA 2.3 2.3 2.8 2.8 2.9 3.1 NA NA NA

1.20 2 3.1 3.0 3.4 1.8 1.7 2.0 NA NA NA 4.0 4.2 4.2 3.9 3.9 4.0 NA NA NA 3.8 3.8 4.0 2.4 2.4 2.8 NA NA NA
4 2.3 2.2 2.4 1.8 1.8 2.0 NA NA NA 3.8 3.9 4.0 3.9 3.9 4.2 NA NA NA 2.7 2.7 3.1 1.8 1.9 2.0 NA NA NA
6 1.3 1.2 1.7 1.7 1.7 1.9 NA NA NA 3.8 3.5 3.9 4.2 4.4 4.7 NA NA NA 2.1 2.2 2.6 2.1 2.1 2.2 NA NA NA
8 1.1 1.3 1.8 1.7 1.8 2.1 NA NA NA 4.2 4.4 4.6 4.0 3.9 4.2 NA NA NA 1.8 1.7 2.4 2.0 2.0 2.5 NA NA NA

sample level. Overall, the powers of our tests are quite encouraging for the three models, and all combinations of kernel
and map under consideration.

By contrast, the three tests of Hong et al. (2017) mostly fail to reject the martingale difference hypothesis for Models
and 5 in all settings. This is presumably due to the inability of their tests to capture nonlinear serial dependence. For
odel 6, their tests exhibit great power, which is probably due to the fact that the model implies strong linear serial
ependence although it is a nonlinear model per se. Indeed, the sample ACF at lag 1, 2, 3 are 0.324, 0.120 and 0.046,

respectively, based on our simulation. Again their tests cannot be implemented when p is too large relative to n, as their
bility of handling the high dimension is quite limited.

.3. Power curve

In this subsection, we perturb Models 1–3 so that the new sequence is not a MDS and present power curves. For given
onstant a ∈ {0, 0.5, 1, 1.5, 2, 2.5}, the model settings are as follows:

Model 1′. Let xt follow Model 1 and yt = xt + a exp(−2x2t−1).
Model 2′. Let xt follow Model 2 and yt = xt + a cos(εt−1 ◦ σt−1), where εt−1 and σt−1 are specified in Model 2.
Model 3′. Let xt follow Model 3 and yt = xt + a log(x2t−2).

We aim to test whether {yt}t∈Z defined in Models 1′–3′ is a MDS. When a = 0, yt = xt and Models 1′–3′ become Models
–3, respectively, which follow the null hypothesis. Figs. 1–3 display the empirical sizes and powers of our proposed tests
T l
BT, T

q
BT) and Hong et al. (2017)’s test (Zdtr) when the sample size n = 100. Notice that Zdtr is feasible when p < n. Thus

hen p/n = 1.2, there is no power curve for Zdtr. As seen from Fig. 1, our tests and Hong et al. (2017)’s test control
he empirical sizes well under the null hypothesis with a = 0 and the empirical powers increase for larger values of
he distance parameter a. But our tests outperform Hong et al. (2017)’s test especially for large K . In Fig. 2, Hong et al.
2017)’s test almost cannot detect the alternative hypotheses, but our tests still work well. This is presumably due to the
nability of their test to capture nonlinear serial dependence. Based on Fig. 3, similar phenomenon is observed that the
mpirical powers increase as the distance a grows. Somewhat counter-intuitively, the empirical powers of Zdtr decrease
hen a increases from 2 to 2.5, which means the power is non-monotonic. In addition, comparing the results of our tests

or two maps, we find that the test based on linear and quadratic map is more powerful than the test only based on
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with T lBT Model 3 with TqBT
c

−2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23

.0 3.6 3.6 3.7 3.9 5.0 3.9 3.7 2.8 2.8 2.9 3.0 3.9

.4 3.8 3.5 2.6 2.5 2.7 3.9 4.0 4.0 3.2 2.9 3.0 3.4

.3 4.0 3.8 2.8 1.9 2.2 4.4 4.6 4.5 4.2 3.7 3.6 3.6

.1 4.7 3.9 2.7 1.9 1.5 6.0 5.8 5.3 5.2 4.0 4.3 4.2

.8 4.2 3.4 3.2 4.0 4.5 3.1 3.3 3.0 2.7 3.0 2.5 4.3

.7 3.7 3.1 2.6 2.2 2.4 3.6 3.8 3.2 3.3 2.8 2.3 3.1

.9 3.7 2.9 2.2 1.5 1.4 4.3 4.5 3.4 4.0 3.4 2.3 2.7

.0 3.7 3.4 2.0 1.3 1.2 5.0 5.5 4.8 4.4 4.1 3.4 4.0

.8 3.6 4.0 3.1 2.9 3.9 3.3 3.0 2.5 2.4 1.8 2.4 3.1

.3 3.5 2.8 1.9 1.6 1.8 3.4 3.6 2.9 2.5 2.3 2.5 2.6

.6 3.5 3.2 1.7 1.3 1.0 3.8 3.7 2.6 3.5 2.4 3.1 3.2

.6 3.2 2.3 1.5 0.9 0.7 3.9 4.1 3.6 3.9 3.4 3.0 3.4

.9 3.0 3.1 2.7 2.2 2.3 1.8 2.6 2.3 1.5 2.2 2.4 3.2

.8 2.6 2.2 1.4 1.0 0.9 2.3 2.2 2.4 2.0 2.1 2.4 3.1

.2 2.9 2.0 1.2 0.6 0.5 2.9 2.8 3.2 2.6 2.7 2.9 4.3

.1 2.3 1.9 1.3 0.7 0.6 3.0 3.1 3.7 3.4 4.0 4.0 4.8

.4 2.6 2.4 1.8 1.8 1.5 1.8 2.1 2.1 2.1 3.0 4.6 5.0

.1 1.7 1.4 0.8 0.6 0.4 1.4 2.0 2.4 2.9 4.2 5.4 6.3

.7 1.6 1.2 0.7 0.5 0.5 1.9 2.4 2.9 3.9 4.7 6.5 8.7

.0 1.7 1.4 0.6 0.5 0.4 2.3 3.0 3.7 5.3 6.9 8.4 10.6

.0 4.4 4.4 3.8 4.1 3.9 4.0 4.1 3.8 3.4 2.9 3.0 3.0

.1 4.6 3.5 3.3 2.7 2.4 4.5 4.1 4.6 4.0 3.1 2.3 2.4

.0 3.8 3.5 2.6 2.1 1.7 5.0 5.7 4.9 4.3 3.2 2.5 2.2

.2 3.8 3.3 3.2 1.7 1.2 5.2 5.7 5.0 4.9 3.5 2.9 2.1

.7 4.2 4.3 3.4 3.8 2.9 3.9 3.2 3.5 3.2 3.6 3.0 2.6

.5 3.9 3.9 3.3 2.4 2.3 4.2 4.6 4.2 3.2 3.3 2.3 2.0

.6 4.0 4.0 3.0 1.9 1.5 4.5 4.8 4.3 4.1 3.4 2.4 2.1

.2 3.9 2.7 2.5 1.6 0.7 5.6 5.2 5.0 4.0 3.5 3.4 1.7

.8 3.8 4.0 4.0 2.9 2.7 4.4 3.6 3.7 2.9 2.6 2.6 2.7

.0 4.0 3.5 2.9 2.4 1.7 4.0 3.5 3.2 3.3 2.1 2.2 1.6

.7 3.6 3.5 2.0 1.6 1.0 4.5 4.3 4.3 4.3 2.8 2.1 1.5

.7 3.7 3.1 2.2 1.4 0.4 4.9 5.0 4.2 3.9 3.6 2.2 1.4

.5 3.8 3.8 4.1 3.0 2.8 3.9 3.4 3.5 2.8 2.5 2.0 2.0

.9 3.6 2.6 3.3 2.1 1.3 3.8 3.4 3.5 2.9 2.4 1.7 1.6

.9 3.6 3.4 2.0 1.4 0.9 3.9 3.7 3.1 3.1 2.6 1.8 1.5

.4 3.1 2.6 1.8 1.0 0.4 4.5 3.9 3.9 3.0 2.4 1.6 1.3

.5 3.9 3.5 2.7 3.2 2.1 3.1 2.7 2.8 2.3 2.2 2.0 1.6

.6 4.0 2.8 2.2 1.3 0.9 2.8 2.8 2.5 2.3 1.7 1.3 0.9

.9 2.7 2.6 1.7 1.0 0.3 3.2 3.2 2.7 2.3 2.2 1.3 1.3

.8 2.8 2.1 1.4 0.8 0.2 3.5 3.6 3.0 2.6 2.3 1.6 1.0
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Table 2
Empirical sizes (%) of the tests T l

BT and T q
BT for Models 1–3 at the 5% nominal level, where c represents the constant which is multiplied by A

Model 1 with T lBT Model 1 with TqBT Model 2 with T lBT Model 2 with TqBT Model 3

c c c c c

n p/n K 2−3 2−2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23 2−3 2

100 0.04 2 4.6 4.9 4.7 4.3 5.3 6.1 9.4 4.2 4.3 4.2 4.0 4.3 4.5 7.9 4.2 4.4 4.1 4.0 4.0 4.1 5.5 3.0 3.0 2.8 2.5 2.4 2.8 4.3 4.1 4
4 5.1 5.0 4.8 4.5 4.3 5.3 6.6 5.0 4.2 4.4 4.6 3.8 4.8 6.4 4.3 4.3 3.4 3.8 2.9 2.4 3.4 2.8 3.5 3.1 3.4 2.3 2.2 2.7 4.4 4
6 5.1 5.0 4.1 4.8 4.5 4.1 6.0 5.3 5.0 4.9 5.1 5.1 4.5 5.8 3.8 4.0 3.2 2.8 2.0 2.1 2.1 3.1 3.2 3.5 3.0 2.9 2.3 2.7 4.2 4
8 5.7 5.3 4.9 5.4 4.5 4.1 4.0 5.3 5.6 5.0 6.1 4.8 5.5 5.1 3.5 3.6 4.1 3.2 2.3 2.0 1.5 3.7 3.3 3.5 3.7 3.3 3.1 3.2 3.8 4

0.08 2 4.9 4.2 4.3 4.6 4.9 5.9 9.2 4.2 4.3 4.1 4.2 4.3 5.2 7.2 4.3 4.0 3.4 4.1 3.5 4.1 5.7 2.5 2.6 2.2 2.2 2.3 2.2 3.7 4.0 3
4 5.4 4.8 5.1 4.2 3.7 4.6 5.0 4.5 4.0 4.4 4.6 3.8 3.9 5.7 3.9 3.5 3.5 3.0 2.3 2.1 2.5 2.8 2.7 1.8 2.0 2.2 1.9 2.4 3.7 3
6 4.7 4.7 5.1 4.1 3.7 4.5 4.7 4.9 5.0 5.5 4.6 4.5 3.8 5.3 3.3 3.6 3.7 3.1 2.7 1.3 2.1 2.5 2.5 2.6 2.2 2.2 1.7 2.2 4.3 3
8 4.8 5.2 4.6 4.0 4.5 3.3 4.3 4.8 5.0 5.3 5.2 5.0 4.2 4.4 3.2 3.0 3.4 2.6 2.1 1.5 0.8 2.5 2.9 2.7 2.1 2.0 2.3 2.1 4.5 4

0.15 2 5.3 4.5 4.4 4.5 4.5 5.6 8.9 4.2 3.2 3.3 4.0 3.7 4.1 6.1 4.3 4.4 4.3 3.3 3.9 4.8 5.1 2.5 2.2 2.1 2.4 2.2 2.0 2.7 4.2 3
4 5.0 4.7 4.3 3.9 3.7 3.8 5.6 4.3 4.0 4.0 3.8 3.2 3.5 4.6 3.8 3.9 3.6 3.0 2.4 2.6 2.7 2.4 1.9 2.2 1.9 2.0 1.9 2.2 2.9 3
6 4.0 4.5 4.7 3.9 4.3 3.6 3.6 3.7 4.1 3.9 4.1 3.9 3.9 3.8 3.2 3.6 3.3 2.9 2.3 1.4 1.6 2.3 2.0 2.2 1.6 2.6 1.8 2.0 3.2 3
8 4.8 4.7 4.5 3.9 3.9 3.0 3.1 4.5 4.9 4.5 4.8 4.3 3.7 4.1 3.3 3.5 3.1 3.0 2.0 1.0 0.9 2.4 2.9 2.4 2.1 2.0 1.8 2.0 3.0 3

0.40 2 4.6 4.1 4.2 4.2 4.7 4.5 6.4 3.1 3.1 2.7 2.6 2.7 2.9 5.1 4.1 3.8 4.0 3.6 3.8 4.0 5.9 2.4 2.6 2.2 2.6 2.0 2.9 3.8 3.5 3
4 3.5 3.6 3.8 3.2 3.4 2.6 3.5 2.7 2.9 3.1 2.9 3.0 2.7 3.1 4.0 3.5 4.1 3.6 2.9 2.5 3.3 2.5 2.7 2.5 2.3 2.2 2.1 2.5 3.0 2
6 4.0 4.2 4.1 3.8 2.8 2.2 2.8 3.0 3.7 2.9 3.2 2.2 2.3 3.2 3.9 4.0 3.2 3.4 2.8 2.0 2.2 2.5 2.9 2.4 2.4 2.1 2.0 2.2 3.2 3
8 3.8 3.7 4.0 3.8 3.1 2.3 1.7 3.5 3.2 3.3 3.5 3.0 2.8 2.5 3.5 3.9 3.7 3.2 2.1 1.9 1.4 2.8 2.9 3.2 2.1 2.1 2.5 2.5 2.9 3

1.20 2 3.9 4.4 3.1 3.1 2.9 3.1 4.1 1.8 1.8 1.4 1.4 1.1 1.4 2.2 4.5 4.0 3.9 4.1 4.3 5.1 6.5 3.1 2.4 2.7 2.6 2.5 2.9 4.7 3.1 3
4 2.9 3.0 2.5 2.4 1.4 1.3 2.1 1.8 1.7 1.6 1.3 1.2 1.2 1.6 4.5 3.7 4.2 3.6 3.8 4.0 4.1 2.7 2.8 3.0 2.8 2.4 2.4 3.3 2.3 2
6 2.8 3.0 2.3 2.2 1.6 0.9 0.9 1.8 1.8 1.8 1.7 1.2 1.4 1.6 3.8 4.2 3.8 3.2 3.0 3.0 3.2 2.7 3.3 2.9 3.1 2.7 2.2 2.7 2.0 1
8 2.9 2.8 2.4 2.3 1.4 0.8 0.5 1.9 1.9 2.0 1.7 1.4 1.4 1.1 4.0 4.1 4.1 3.7 2.9 2.4 2.4 3.2 3.2 3.2 2.9 3.2 2.7 2.8 1.7 2

300 0.04 2 5.2 4.8 5.2 4.7 4.9 4.6 5.6 4.7 4.6 5.0 4.4 4.8 4.8 5.6 4.4 4.9 4.0 4.0 3.8 4.4 4.3 3.7 3.9 3.5 3.6 3.2 3.7 3.4 4.2 5
4 4.5 4.6 5.2 4.3 4.8 4.6 4.6 5.6 5.4 4.3 4.9 4.8 4.6 4.1 4.2 4.0 3.8 3.7 3.3 3.2 3.0 4.2 3.6 4.6 4.0 3.4 2.9 2.9 4.5 4
6 4.9 4.6 4.3 4.7 4.6 3.4 3.6 5.7 5.7 5.1 5.0 4.3 4.5 3.9 4.9 3.5 4.0 4.0 3.3 2.3 1.8 3.9 4.1 4.7 4.2 3.9 3.8 2.4 4.3 5
8 5.1 5.0 5.6 4.3 3.7 3.5 3.2 6.8 6.5 6.3 5.6 5.4 5.4 4.7 4.4 4.5 4.1 3.5 3.3 1.7 1.7 5.3 4.6 4.4 4.4 3.9 3.1 3.4 3.7 4

0.08 2 4.8 4.7 4.1 4.9 4.2 4.6 5.1 4.4 4.8 4.4 4.3 4.5 4.5 4.3 4.6 4.9 4.9 4.4 4.5 4.4 4.8 4.0 4.1 3.8 3.1 3.3 3.3 3.7 4.5 4
4 5.2 4.6 4.6 4.1 4.3 3.7 4.3 5.1 5.1 5.0 4.8 4.4 3.8 3.7 4.2 4.1 3.9 4.4 3.7 3.1 3.1 4.8 3.9 4.4 4.2 3.6 3.1 2.9 4.7 4
6 4.3 4.4 5.1 4.6 3.9 3.5 2.7 6.2 5.8 5.6 5.6 5.1 4.4 3.1 4.7 4.2 4.1 4.2 3.0 2.7 2.4 4.9 4.8 4.2 4.3 3.5 3.2 2.7 4.2 3
8 5.1 4.8 5.0 4.1 3.8 2.7 2.0 6.2 5.7 5.3 5.4 4.5 4.7 4.0 4.0 4.3 4.4 3.6 3.4 2.1 1.6 4.8 4.4 4.5 3.6 4.5 3.3 3.1 4.1 4

0.15 2 4.3 4.3 5.4 5.0 4.4 5.1 5.0 4.5 4.2 4.0 3.6 3.6 3.8 4.3 5.0 4.0 4.4 4.4 4.6 4.8 4.7 3.7 4.2 3.8 3.4 3.2 3.6 3.8 4.0 4
4 4.6 4.3 4.4 4.5 3.3 3.1 3.4 4.4 4.4 4.9 4.2 4.3 3.5 3.5 4.8 4.8 4.7 4.2 3.6 4.3 3.6 4.4 4.1 3.7 3.9 3.1 2.8 2.9 4.1 4
6 5.2 4.3 4.1 4.6 3.7 2.9 2.9 5.1 5.0 5.0 5.0 4.0 3.5 2.8 4.6 4.8 4.8 3.9 3.3 2.9 2.8 5.5 4.3 4.6 3.6 3.9 3.1 3.1 4.2 3
8 4.3 4.1 4.2 3.7 2.7 2.5 2.2 5.3 5.0 5.7 5.5 4.9 3.5 3.1 3.8 4.2 4.3 4.8 3.4 2.7 1.7 4.3 4.5 4.7 4.5 3.9 3.7 3.0 4.0 3

0.40 2 4.2 4.2 4.7 3.8 3.7 4.2 3.5 3.8 3.8 2.9 3.2 3.1 2.7 3.0 5.2 4.5 5.1 4.8 5.0 4.9 5.3 3.5 4.2 4.4 3.5 3.3 3.6 3.6 4.3 4
4 3.8 3.8 3.9 3.9 3.4 3.0 1.7 4.2 4.6 3.2 3.2 2.7 2.4 2.1 4.9 4.4 4.3 4.5 4.6 3.7 3.7 4.9 4.6 4.6 4.2 4.1 3.4 2.6 4.0 3
6 3.8 4.1 3.1 3.4 2.9 2.1 1.4 3.7 4.1 4.4 3.3 2.9 2.9 1.7 4.6 4.5 4.2 4.4 4.0 3.2 3.1 4.9 4.1 4.4 4.2 4.1 3.2 3.4 3.6 3
8 3.8 3.2 3.8 3.4 2.6 1.5 0.7 3.7 4.0 4.3 3.8 3.5 2.6 1.9 4.2 4.7 4.3 3.7 3.5 2.8 2.4 5.8 5.1 4.6 4.4 4.2 4.0 3.6 3.4 3

1.20 2 3.0 3.6 3.4 3.4 3.2 2.4 1.9 2.0 1.9 1.8 1.8 1.3 1.5 1.2 4.6 5.4 4.9 5.2 4.8 4.4 5.7 4.6 4.4 4.6 4.3 4.0 4.2 4.5 4.3 4
4 3.6 2.9 2.9 3.5 2.2 1.2 0.8 2.0 1.9 2.2 1.6 1.4 1.0 0.6 4.6 4.8 4.5 4.1 3.8 3.7 3.7 4.1 4.3 4.2 4.1 3.4 3.8 3.8 3.2 3
6 2.6 2.4 2.6 2.1 1.5 0.6 0.2 2.3 2.3 1.8 1.6 1.4 0.9 0.7 4.7 4.1 4.4 4.4 3.6 3.5 3.5 5.4 4.4 4.4 4.3 4.2 3.9 3.7 3.2 2
8 2.1 2.7 2.6 1.6 1.2 0.6 0.1 2.2 2.0 2.1 2.2 1.9 0.8 0.7 4.5 3.6 4.0 4.5 4.3 3.6 2.5 5.1 4.5 5.0 4.5 4.6 3.8 3.7 2.9 2
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Table 3
Empirical powers (%) of the tests T l

QS , T
l
PR , T

l
BT , T

q
QS , T

q
PR , T

q
BT , Ztr , Zdet and Zdtr for Models 4–6 at the 5% nominal level.

Model 4 Model 5 Model 6

n p/n K T lQS T lPR T lBT TqQS TqPR TqBT Ztr Zdet Zdtr T lQS T lPR T lBT TqQS TqPR TqBT Ztr Zdet Zdtr T lQS T lPR T lBT TqQS TqPR TqBT Ztr Zdet Zdtr

100 0.04 2 79.0 78.1 81.2 93.5 93.5 94.5 6.1 5.5 6.0 65.7 65.2 69.1 94.2 94.3 95.5 4.5 4.7 5.6 77.0 77.4 84.4 80.5 81.3 85.4 100 63.9 100
4 87.8 87.5 89.2 97.8 97.8 98.3 6.7 6.0 5.9 81.5 80.3 83.4 98.3 98.4 98.6 4.5 4.6 6.6 66.7 66.5 77.7 75.7 76.2 81.8 99.7 62.4 99.4
6 91.1 90.9 92.6 98.7 98.7 99.0 6.4 5.0 6.6 87.1 86.8 89.1 99.0 99.0 99.2 5.0 5.4 7.3 64.7 63.8 76.8 75.6 76.8 82.3 97.7 59.6 97.0
8 93.5 93.0 94.5 99.3 99.1 99.4 4.6 5.7 6.8 90.9 90.8 92.3 99.2 99.1 99.4 4.9 5.3 7.9 66.6 65.1 78.0 77.8 77.9 84.8 94.2 52.5 91.1

0.08 2 82.2 81.6 84.8 93.0 93.2 94.7 6.4 7.0 5.7 71.8 71.7 76.3 94.9 95.0 96.0 4.3 5.0 4.9 75.0 75.1 85.2 71.0 72.3 78.7 100 51.7 100
4 91.8 91.4 93.0 97.7 97.8 98.2 6.7 6.9 6.3 86.7 86.0 89.2 97.9 97.8 98.4 5.7 5.6 6.9 65.8 65.2 79.9 65.6 67.6 75.3 100 63.3 100
6 93.9 93.6 95.3 98.6 98.7 98.9 5.4 7.4 6.7 90.7 90.4 92.7 99.0 99.1 99.3 6.5 6.3 8.2 63.6 62.7 78.6 65.0 65.7 75.0 100 66.0 99.9
8 95.3 95.0 96.3 99.1 99.2 99.3 5.8 6.7 7.0 92.6 92.6 94.9 99.0 98.9 99.2 6.6 6.1 9.1 61.6 60.4 77.8 65.8 66.5 75.9 99.7 61.4 99.7

0.15 2 84.2 84.1 87.2 90.8 91.0 92.7 NA NA 5.9 74.7 74.6 80.1 91.7 91.9 93.7 NA NA 5.3 71.3 71.6 83.3 60.3 62.4 69.9 NA NA 100
4 92.2 91.6 94.4 96.8 96.7 97.3 NA NA 6.3 88.1 87.5 91.3 96.8 96.8 97.6 NA NA 6.6 58.4 58.5 76.7 53.1 54.8 64.9 NA NA 100
6 95.2 95.0 96.6 97.7 97.7 97.9 NA NA 7.9 91.5 91.4 94.2 97.7 97.9 98.1 NA NA 9.4 55.5 54.6 75.4 50.1 51.5 62.9 NA NA 100
8 96.0 95.8 97.1 98.3 98.2 98.6 NA NA 8.2 94.4 94.4 96.2 98.4 98.5 98.8 NA NA 11.2 54.3 53.2 75.3 48.9 50.8 61.7 NA NA 100

0.40 2 85.0 84.5 88.7 78.8 79.7 82.4 NA NA 6.3 73.7 73.4 79.6 80.5 81.4 84.7 NA NA 5.9 62.0 62.8 81.7 44.5 47.7 55.3 NA NA 100
4 91.5 91.1 94.3 88.4 89.0 90.4 NA NA 7.0 87.6 87.0 91.4 90.0 90.7 92.6 NA NA 9.2 47.2 47.0 72.9 34.6 37.7 44.9 NA NA 100
6 94.6 94.2 96.9 91.7 92.2 93.4 NA NA 6.7 91.7 91.2 94.5 91.8 92.2 93.7 NA NA 12.8 40.4 38.8 69.5 32.3 34.1 41.1 NA NA 100
8 95.2 94.9 97.2 92.2 92.7 93.3 NA NA 9.4 92.9 92.8 95.8 93.6 93.9 95.2 NA NA 14.5 36.3 35.1 65.4 32.0 34.1 39.8 NA NA 100

1.20 2 78.5 78.0 83.9 44.3 45.6 48.8 NA NA NA 67.6 68.3 77.9 52.5 55.0 58.8 NA NA NA 49.3 49.1 77.3 43.7 46.8 45.8 NA NA NA
4 87.6 86.9 91.8 57.0 58.6 61.8 NA NA NA 82.8 82.1 88.8 64.3 66.2 70.1 NA NA NA 30.0 29.4 60.8 46.9 49.4 43.5 NA NA NA
6 89.2 88.8 93.2 58.3 60.0 62.7 NA NA NA 87.1 86.4 92.2 68.6 71.0 73.6 NA NA NA 21.7 20.9 52.3 49.7 53.1 44.8 NA NA NA
8 90.8 90.3 94.5 62.6 64.2 66.9 NA NA NA 88.9 88.6 92.9 69.4 71.4 74.8 NA NA NA 17.5 16.7 44.4 53.9 56.2 47.9 NA NA NA

300 0.04 2 100 100 100 100 100 100 13.6 8.3 8.6 100 100 100 100 100 100 5.0 5.3 5.2 100 100 100 99.4 99.5 99.7 100 99.0 100
4 100 100 100 100 100 100 15.1 8.9 10.4 100 100 100 100 100 100 5.1 5.9 5.7 99.8 99.8 99.9 98.9 99.0 99.3 100 98.6 100
6 100 100 100 100 100 100 10.4 8.9 7.9 100 100 100 100 100 100 6.1 6.5 6.1 99.8 99.7 99.9 98.6 98.5 99.1 100 97.0 100
8 100 100 100 100 100 100 9.7 9.2 6.2 100 100 100 100 100 100 6.5 6.9 6.2 100 100 100 99.2 99.2 99.6 100 95.7 100

0.08 2 100 100 100 100 100 100 NA NA 9.3 100 100 100 100 100 100 NA NA 4.8 100 100 100 98.6 98.6 99.3 NA NA 100
4 100 100 100 100 100 100 NA NA 11.7 100 100 100 100 100 100 NA NA 5.9 99.9 99.9 100 98.2 98.2 99.1 NA NA 100
6 100 100 100 100 100 100 NA NA 8.3 100 100 100 100 100 100 NA NA 6.0 99.9 99.9 100 98.3 98.4 99.1 NA NA 100
8 100 100 100 100 100 100 NA NA 7.3 100 100 100 100 100 100 NA NA 7.0 100 100 100 98.3 98.3 99.0 NA NA 100

0.15 2 100 100 100 100 100 100 NA NA 10.2 100 100 100 100 100 100 NA NA 5.6 100 100 100 98.2 98.4 98.8 NA NA 100
4 100 100 100 100 100 100 NA NA 11.1 100 100 100 100 100 100 NA NA 6.1 99.9 99.9 100 97.0 97.0 98.3 NA NA 100
6 100 100 100 100 100 100 NA NA 9.9 100 100 100 100 100 100 NA NA 6.8 99.9 99.9 100 97.2 97.3 98.6 NA NA 100
8 100 100 100 100 100 100 NA NA 7.0 100 100 100 100 100 100 NA NA 7.3 99.9 100 100 96.8 97.0 98.6 NA NA 100

0.40 2 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 96.4 96.4 98.2 NA NA NA
4 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 99.9 100 94.3 94.4 97.4 NA NA NA
6 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 99.9 99.9 100 92.0 92.1 96.9 NA NA NA
8 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 92.5 92.3 96.9 NA NA NA

1.20 2 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 92.9 92.7 97.0 NA NA NA
4 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 82.9 83.2 93.0 NA NA NA
6 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 76.0 76.1 89.6 NA NA NA
8 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 69.3 69.3 87.1 NA NA NA

linear map for the three models. This should not be surprising. Since the alternatives in the three models are nonlinear
transformations, the linear and quadratic map can capture both linear and nonlinear dependence. Generally speaking,
both of the two maps perform well in the three models.

6. Real data analysis

In this section, we apply our proposed tests to a real dataset, which collects weekly closing prices from 17 September
004 to 26 December 2008 for 394 stocks. The returns of the stocks are obtained by the log difference of the data. And
he sample size n for the returns is 223. These stocks can be classified into 9 major sectors, which consist of materials
22 stocks), real estate (25 stocks), utilities (26 stocks), consumer staples (30 stocks), healthcare (55 stocks), industrials
56 stocks), financials (58 stocks), IT (60 stocks), and consumer discretionary (62 stocks). Here we examine the validity of
he martingale difference hypothesis within each sector and for all stocks using our tests and the ones proposed in Hong
t al. (2017). Note that neither Ztr nor Zdet is applicable here, since p <

√
n is violated for each sector. Hence we only

resent the results of Zdtr for each sector, as it is not usable when we apply to all stock returns. Denote by xt the returns
of these stocks at time t . Financial theory usually assumes the stock prices follow geometric Brownian Motion which
implies E(xt ) = 0 under the efficient markets hypothesis. We can propose the test statistic Tmean = |n−1/2 ∑n

t=1 xt |∞ for
he null hypothesis H0 : E(xt ) = 0. Using the method given in Section 4.1 of Chang et al. (2021b) with three kernels (QS,
PR, BT) to estimate the associated long-run covariance matrix, the associated p-values for such null hypothesis are 0.759,
0.749 and 0.753, respectively, which means there is no strong evidence against the zero-mean assumption of xt in our
real data.

Table 5 reports the p-values of Zdtr and our tests with assuming E(xt ) = 0 and without assuming E(xt ) = 0. It
ppears that there is no strong evidence against the martingale difference hypothesis based on all tests, except for a
arginally significant p-value of Zdtr when K = 2 for the sector of consumer staples. Generally speaking, the martingale
ifference hypothesis is expected to hold for the weekly returns data, so in a sense both our tests and Zdtr help confirming
his property. For the same map, the use of different kernels do not seem to affect the p-values much, indicating the
nsensitivity of our results with respect to the kernel. For this particular dataset, the use of linear and quadratic maps also
roduces p-values that are not far away from the use of linear maps alone, for most sectors. The p-values corresponding to
dtr seem to monotonically decrease as K goes down from 8 to 2 for all sectors, an interesting phenomenon worthy of some
heoretical investigation. In addition, the results of our tests with assuming E(x ) = 0 and without assuming E(x ) = 0
t t
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Andrews’ bandwidth.

with T lBT Model 6 with TqBT
c

2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23

.2 93.2 84.3 79.1 79.9 88.1 99.6 96.7 90.6 84.4 84.7 87.3 95.6

.7 91.6 78.6 68.2 68.0 78.2 99.4 96.9 91.2 82.8 78.8 84.0 93.1

.6 91.8 78.5 65.0 64.2 72.5 99.7 97.7 91.0 84.3 79.7 82.6 92.0

.7 91.2 78.9 65.4 61.6 70.3 99.5 98.0 91.8 85.1 80.3 83.2 92.4

.3 94.6 85.1 77.4 77.6 88.7 99.7 95.3 86.8 78.4 76.5 84.0 94.3

.2 94.0 78.3 66.9 66.9 79.4 99.3 96.1 85.7 74.2 71.9 79.8 92.6

.3 94.0 78.5 62.2 59.3 73.7 99.3 95.8 85.9 76.4 70.0 77.7 91.8

.5 94.8 78.5 61.2 56.5 70.6 99.1 96.3 87.9 76.0 69.7 76.2 90.5

.8 95.4 83.1 76.1 76.3 87.1 99.0 93.9 81.1 71.2 70.1 79.7 93.2

.5 94.8 76.5 61.1 60.5 77.3 98.3 93.0 78.6 63.0 59.7 71.7 90.7

.4 94.6 75.3 58.6 53.0 69.7 98.1 93.3 78.7 63.0 58.3 68.4 89.5

.5 94.9 78.2 55.2 48.3 66.7 97.9 93.6 79.2 65.0 56.9 65.7 87.5

.5 96.2 82.6 67.3 67.3 83.4 95.6 87.2 69.5 55.1 55.0 68.6 90.4

.3 94.8 73.1 49.7 47.0 68.7 92.6 84.6 63.1 44.1 43.0 56.7 86.5

.4 95.3 69.5 41.9 36.9 60.5 89.4 80.8 58.7 40.1 41.6 52.0 83.8

.4 95.0 66.2 38.8 33.1 54.8 87.6 79.8 56.9 39.6 38.1 51.9 83.1

.3 97.0 77.6 54.1 54.0 75.4 78.9 67.6 51.2 46.8 50.3 64.6 89.0

.0 95.2 63.0 30.7 28.2 53.1 64.1 56.3 41.5 42.9 49.9 59.9 85.0

.0 93.0 53.2 23.1 20.5 43.1 55.7 49.7 40.3 45.1 54.0 64.0 84.4

.8 92.8 48.7 20.8 18.3 40.4 50.8 46.6 41.2 48.1 57.5 68.9 85.1

0 100 100 99.9 99.9 99.9 100 99.9 99.8 99.6 99.5 99.4 99.7
0 100 100 99.9 99.7 99.5 100 100 99.8 99.5 99.1 99.2 99.4
0 100 100 99.8 99.6 99.2 100 99.9 99.8 99.4 99.0 99.1 99.5
0 100 100 99.9 99.6 99.3 100 100 99.8 99.5 99.4 99.2 99.0

0 100 100 99.9 99.9 99.9 100 99.9 99.7 99.3 99.0 99.0 99.5
0 100 100 99.9 99.6 99.3 100 99.9 99.5 98.9 98.9 98.5 99.1
0 100 100 99.9 99.7 99.3 100 100 99.5 98.9 98.5 98.4 99.1
0 100 100 100 99.6 99.2 100 99.8 99.7 99.3 98.5 98.5 99.1

0 100 100 100 99.9 100 100 100 99.3 99.1 98.8 99.0 99.5
0 100 100 99.8 99.8 99.5 100 99.8 99.5 98.7 97.8 97.7 98.8
0 100 100 99.9 99.7 99.1 100 100 99.4 98.6 97.8 98.1 98.5
0 100 100 100 99.7 99.2 100 100 99.4 98.7 98.1 97.3 98.5

0 100 100 100 100 99.9 100 99.8 99.3 97.9 97.3 97.6 98.7
0 100 100 100 99.7 99.4 99.8 99.8 98.9 97.5 95.3 94.9 96.6
0 100 100 100 99.7 98.8 99.8 99.8 98.5 97.3 94.2 93.3 95.5
0 100 100 100 99.7 98.4 99.8 99.7 98.9 96.6 92.7 91.5 94.5

0 100 100 100 100 99.9 99.7 99.5 98.9 96.9 95.2 94.3 95.8
0 100 100 100 99.8 98.7 98.5 98.3 97.4 92.9 87.0 84.6 88.8
0 100 100 100 99.5 97.4 98.0 97.5 96.1 89.5 79.0 76.0 82.5
0 100 100 100 98.8 95.5 96.6 96.0 94.5 86.5 72.4 68.5 77.6
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Table 4
Empirical powers (%) of the tests T l

BT and T q
BT for Models 4–6 at the 5% nominal level, where c represents the constant which is multiplied by

Model 4 with T lBT Model 4 with TqBT Model 5 with T lBT Model 5 with TqBT Model 6

c c c c c

n p/n K 2−3 2−2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23 2−3 2−2 2−1 20 21 22 23 2−3 2−

100 0.04 2 81.2 81.8 80.5 78.8 76.6 73.2 72.1 95.7 95.9 95.6 93.5 93.8 92.8 92.4 73.2 73.7 72.0 69.0 64.3 61.5 61.2 96.0 96.3 96.0 95.8 95.0 94.0 93.9 99.5 98
4 89.9 89.8 89.3 88.6 86.7 80.6 78.3 99.1 98.8 98.9 98.0 97.7 96.6 97.0 85.9 85.6 85.9 83.3 79.6 72.9 69.7 99.0 98.9 98.8 98.8 97.9 97.5 96.7 98.5 97
6 93.2 93.2 94.0 91.3 89.8 85.1 80.6 99.3 99.2 99.4 99.0 99.0 98.2 98.2 90.2 90.4 90.5 89.3 85.9 79.9 75.9 99.0 99.5 99.1 99.0 98.8 98.6 98.2 98.7 97
8 94.4 94.7 94.4 93.6 91.2 88.3 82.7 99.6 99.6 99.2 99.4 99.1 99.1 98.8 93.1 93.4 92.5 91.8 89.1 84.7 78.3 99.5 99.2 99.4 99.5 99.4 98.9 98.9 98.6 97

0.08 2 87.0 86.7 86.6 85.0 80.9 76.6 72.7 95.7 95.7 95.2 94.9 94.2 92.6 92.4 80.6 80.8 78.9 76.6 69.9 65.3 63.2 96.0 96.4 95.7 95.3 93.9 93.5 93.3 99.9 99
4 93.7 93.5 93.8 92.6 89.8 83.9 77.3 98.4 98.9 98.7 98.2 97.5 97.1 96.4 90.4 90.7 91.1 88.9 84.1 76.9 70.5 98.9 98.4 98.6 98.7 97.6 96.8 96.3 99.9 99
6 96.7 96.2 96.1 94.6 93.5 87.2 80.4 99.2 99.2 99.3 99.0 98.5 98.2 97.9 93.9 94.3 93.8 92.6 89.9 82.0 74.6 99.1 99.2 99.3 99.0 98.6 98.1 98.1 99.7 99
8 97.1 96.9 97.2 96.2 93.9 90.2 83.5 99.4 99.4 99.1 99.2 98.6 98.9 98.4 95.9 95.8 95.6 95.1 92.1 86.6 79.1 99.5 99.5 99.4 99.3 99.0 99.0 98.4 99.8 99

0.15 2 88.4 88.5 89.5 87.0 82.2 75.4 69.6 94.4 93.6 93.7 92.8 90.5 90.3 90.3 84.7 83.8 83.9 79.0 72.5 65.9 59.6 95.1 95.4 94.4 93.2 92.1 91.1 90.5 100 99
4 95.6 95.4 94.7 94.6 91.4 83.6 74.9 97.9 97.7 97.4 97.3 97.1 95.8 94.7 93.0 92.6 92.5 91.2 86.1 75.5 69.4 97.9 97.9 98.1 97.3 96.9 95.3 94.9 99.9 99
6 97.2 96.8 97.2 96.9 94.2 87.8 76.9 98.3 98.4 98.3 98.0 98.2 97.0 95.7 95.6 95.6 95.5 93.8 90.7 81.4 74.8 98.9 98.6 98.5 98.2 97.8 96.6 96.8 99.9 99
8 97.8 98.0 98.3 97.0 94.9 89.5 80.8 98.6 98.6 99.0 98.7 98.3 97.1 96.4 96.9 96.9 96.6 95.7 93.1 85.4 77.3 98.8 98.8 98.8 98.6 98.5 97.7 97.2 99.9 99

0.40 2 89.7 90.9 89.5 88.2 81.8 71.2 63.0 82.9 84.6 82.3 81.4 79.2 76.2 78.4 85.7 85.3 85.3 81.4 72.6 61.7 53.4 87.1 87.3 86.9 85.2 81.8 79.7 81.6 99.9 99
4 95.6 96.3 95.7 93.9 88.7 79.3 66.2 90.4 90.2 90.7 89.6 88.0 84.7 84.0 93.2 94.2 93.1 91.2 84.8 73.1 59.2 93.6 93.4 93.2 91.4 90.4 87.7 86.9 99.9 99
6 97.2 97.8 97.0 96.1 92.3 82.3 68.2 92.4 92.6 92.0 92.1 91.7 88.6 87.6 95.7 96.5 96.3 93.5 88.9 76.9 64.9 94.8 94.6 94.6 93.5 93.0 89.7 89.1 99.8 99
8 97.8 97.8 97.9 96.7 93.0 85.7 71.0 93.3 93.1 93.7 93.1 92.4 90.7 88.7 97.5 97.4 97.0 95.6 92.3 81.1 67.4 94.9 95.1 95.2 94.1 93.6 91.3 90.2 99.8 99

1.20 2 86.7 86.2 88.1 83.9 76.3 62.3 49.4 51.2 49.4 49.8 48.7 45.3 43.6 46.9 84.2 84.1 84.0 78.5 65.1 52.3 41.8 64.0 63.2 63.0 58.6 55.2 51.8 58.8 99.7 99
4 93.6 93.6 93.0 90.4 84.4 69.1 51.9 60.3 60.9 60.7 58.4 55.2 51.9 52.5 91.4 91.5 91.2 88.3 79.5 59.5 45.3 72.4 71.0 71.7 69.7 65.4 60.1 61.8 99.1 99
6 95.3 96.1 96.0 93.9 87.1 72.2 53.4 63.6 63.9 63.1 63.7 60.1 56.4 54.5 94.5 94.6 94.5 91.8 84.5 67.7 50.3 75.2 74.7 74.1 73.7 69.4 64.4 66.4 99.1 98
8 96.4 96.0 96.3 94.7 89.3 75.2 55.3 63.8 65.7 65.5 65.8 61.0 58.6 57.2 96.1 95.5 95.4 93.3 86.7 73.2 54.2 75.6 74.6 74.8 74.8 70.8 68.1 67.5 98.3 96

300 0.04 2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10

0.08 2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100 10
4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10

0.15 2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100 10
4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10

0.40 2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10

1.20 2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
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Fig. 1. Empirical sizes and powers of T l
BT , T

q
BT and Zdtr for Model 1′ at the nominal level α = 0.05, where the sample size n = 100.

re quite similar, which is consistent with the aforementioned conclusion that E(xt ) is not significantly different from
ero. Overall, our tests are preferred to the ones proposed in Hong et al. (2017) due to the fact that they can be used
egardless of whether the dimension p exceeds the sample size n.

. Discussion

In this paper, we propose a new martingale difference test that captures nonlinear serial dependence and works in the
igh-dimensional environment, as motivated by the increasing availability of high-dimensional nonlinear time series from
conomics and finance. Under mild moment and weak temporal dependence assumptions, we establish the validity of
aussian approximation and provide a simulation-based approach for critical values. In addition to its built-in capability
f accommodating both low and high dimensions, our test also has a number of appealing features such as being robust to
onditional moments of unknown forms and strong/weak cross-series dependence. From our numerical simulations and
real data analysis, we observe quite encouraging finite sample performance. Therefore we feel confident to recommend
987
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Fig. 2. Empirical sizes and powers of T l
BT , T

q
BT and Zdtr for Model 2′ at the nominal level α = 0.05, where the sample size n = 100.

ts use by the practitioners when there is a need to assess the martingale difference hypothesis for econometric/financial
ime series of moderate or high dimension.

In the literature, testing quantile/directional predictability has been studied for low-dimensional time series; see Han
t al. (2016). It would be also interesting to extend their test to the high-dimensional setting. A sound data-driven
andwidth choice in our simulation-based approach for generating the critical values merits additional research, especially
rom a testing-optimal viewpoint. We leave these topics for future investigation.

. Technical proofs

In this section, we provide the detailed proofs for all theoretical results stated in the paper, and also introduce necessary
emmas and propositions with proofs. Throughout this section, we use C to denote a generic positive finite constant that
oes not depend on (p, d, n, K ) and may be different in different uses. For two sequences of positive numbers {a } and
n

988
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Fig. 3. Empirical sizes and powers of T l
BT , T

q
BT and Zdtr for Model 3′ at the nominal level α = 0.05, where the sample size n = 100.

bn}, we write an ≲ bn or bn ≳ an if lim supn→∞ an/bn ⩽ c0 for some positive constant c0. We write an ≍ bn if an ≲ bn and
n ≲ an hold simultaneously. We write an ≪ bn or bn ≫ an if lim supn→∞ an/bn = 0. For a countable set F , we use |F| to
enote the cardinality of F .
Write u := (u1, . . . , uKpd)⊤ = (γ̂⊤

1 , . . . , γ̂
⊤

K )
⊤ with γ̂ j = (n − j)−1 ∑n−j

t=1 vec{φ(xt )x
⊤

t+j} for any j ∈ [K ]. Let ñ = n − K .
ecall ηt = ([vec{φ(xt )x⊤

t+1}]
⊤, . . . , [vec{φ(xt )x⊤

t+K }]
⊤)⊤. Since {xt} is an α-mixing process satisfying Condition 2, we know

he newly defined process {ηt} is also α-mixing with the α-mixing coefficients {α̃K (k)}k⩾1 satisfying

α̃K (k) ⩽ C3 exp(−C4|k − K |
τ2
+ ) , (23)

here the positive constants τ2, C3 and C4 are specified in Condition 2. Write η̄ := (η̄1, . . . , η̄Kpd)⊤ = ñ−1 ∑ñ
t=1 ηt . For

ach j ∈ [K ], define Zj = nmaxℓ∈Lj u
2
ℓ and Z̃j = ñmaxℓ∈Lj η̄

2
ℓ with Lj := {(j− 1)pd+ 1, . . . , jpd}. Then the test statistic can

e written as T = n
∑K

|γ̂ |
2

=
∑K Z . Furthermore, we let T̃ :=

∑K Z̃ .
n j=1 j ∞ j=1 j n j=1 j
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Table 5
P-values of our tests and Hong et al.’s test for the weekly stock returns.

MDS test General MDS test Hong et al.’s test

Sectors p K T l
QS T l

PR T l
BT T q

QS T q
PR T q

BT T l
QS T l

PR T l
BT T q

QS T q
PR T q

BT Zdtr
Joint test 394 2 0.334 0.308 0.311 0.403 0.393 0.364 0.322 0.303 0.292 0.371 0.349 0.357 NA

4 0.523 0.517 0.546 0.440 0.462 0.443 0.524 0.508 0.520 0.465 0.465 0.450 NA
6 0.558 0.543 0.570 0.522 0.526 0.499 0.574 0.513 0.589 0.506 0.510 0.512 NA
8 0.612 0.602 0.643 0.553 0.538 0.521 0.639 0.600 0.643 0.518 0.527 0.546 NA

Materials 22 2 0.687 0.676 0.723 0.723 0.691 0.687 0.707 0.697 0.696 0.719 0.701 0.696 0.500
4 0.741 0.729 0.772 0.749 0.726 0.763 0.749 0.732 0.776 0.753 0.730 0.779 0.759
6 0.582 0.563 0.608 0.586 0.566 0.607 0.602 0.565 0.609 0.595 0.572 0.594 0.844
8 0.513 0.510 0.562 0.511 0.513 0.559 0.530 0.519 0.542 0.520 0.533 0.546 0.879

Real estate 25 2 0.610 0.610 0.603 0.629 0.591 0.646 0.622 0.603 0.614 0.610 0.600 0.643 0.305
4 0.537 0.518 0.594 0.578 0.535 0.599 0.570 0.512 0.612 0.554 0.541 0.600 0.385
6 0.464 0.440 0.491 0.475 0.440 0.488 0.474 0.454 0.498 0.476 0.450 0.475 0.510
8 0.457 0.421 0.472 0.465 0.447 0.472 0.467 0.450 0.489 0.458 0.418 0.489 0.612

Utilities 26 2 0.710 0.683 0.721 0.706 0.687 0.707 0.679 0.659 0.698 0.716 0.691 0.674 0.166
4 0.755 0.744 0.766 0.761 0.737 0.800 0.750 0.745 0.773 0.746 0.743 0.792 0.173
6 0.756 0.736 0.782 0.761 0.736 0.770 0.755 0.747 0.757 0.752 0.732 0.777 0.171
8 0.565 0.561 0.579 0.577 0.545 0.569 0.561 0.564 0.588 0.594 0.560 0.587 0.193

Consumer 30 2 0.804 0.803 0.838 0.650 0.648 0.685 0.804 0.786 0.843 0.683 0.650 0.713 0.042
staples 4 0.411 0.400 0.458 0.417 0.394 0.421 0.420 0.426 0.438 0.393 0.404 0.444 0.170

6 0.446 0.466 0.462 0.358 0.346 0.385 0.446 0.436 0.501 0.380 0.393 0.380 0.226
8 0.498 0.516 0.520 0.412 0.406 0.422 0.504 0.493 0.518 0.387 0.415 0.409 0.291

Healthcare 55 2 0.835 0.808 0.846 0.813 0.816 0.855 0.803 0.794 0.838 0.809 0.796 0.848 0.131
4 0.611 0.603 0.618 0.549 0.543 0.544 0.590 0.626 0.590 0.537 0.542 0.559 0.172
6 0.636 0.626 0.665 0.592 0.578 0.591 0.625 0.616 0.642 0.597 0.616 0.605 0.188
8 0.661 0.641 0.657 0.615 0.621 0.636 0.626 0.626 0.656 0.618 0.595 0.614 0.351

Industrials 56 2 0.588 0.541 0.595 0.579 0.547 0.603 0.575 0.549 0.588 0.553 0.547 0.590 0.365
4 0.642 0.640 0.677 0.665 0.617 0.696 0.676 0.625 0.697 0.670 0.657 0.686 0.485
6 0.637 0.630 0.676 0.650 0.626 0.665 0.666 0.629 0.678 0.639 0.637 0.692 0.573
8 0.697 0.698 0.739 0.694 0.680 0.730 0.706 0.692 0.742 0.705 0.683 0.723 0.631

Financials 58 2 0.675 0.641 0.676 0.265 0.254 0.244 0.677 0.656 0.675 0.273 0.268 0.250 0.148
4 0.715 0.704 0.726 0.360 0.379 0.347 0.719 0.703 0.734 0.367 0.361 0.362 0.290
6 0.710 0.708 0.724 0.429 0.441 0.416 0.706 0.674 0.730 0.429 0.422 0.406 0.370
8 0.740 0.715 0.763 0.485 0.497 0.478 0.737 0.728 0.739 0.486 0.501 0.472 0.498

IT 60 2 0.276 0.293 0.293 0.296 0.292 0.307 0.295 0.277 0.306 0.283 0.267 0.288 0.121
4 0.550 0.541 0.586 0.531 0.537 0.595 0.551 0.545 0.569 0.532 0.541 0.590 0.299
6 0.610 0.599 0.615 0.611 0.577 0.623 0.593 0.566 0.634 0.583 0.583 0.610 0.454
8 0.637 0.588 0.636 0.622 0.583 0.613 0.624 0.599 0.619 0.596 0.586 0.629 0.629

Consumer 62 2 0.273 0.273 0.264 0.286 0.316 0.303 0.267 0.274 0.260 0.318 0.306 0.308 0.407
discretionary 4 0.350 0.344 0.351 0.366 0.359 0.377 0.355 0.363 0.355 0.384 0.335 0.362 0.648

6 0.372 0.342 0.385 0.407 0.393 0.409 0.358 0.363 0.360 0.387 0.395 0.390 0.800
8 0.377 0.360 0.359 0.405 0.401 0.405 0.358 0.351 0.378 0.406 0.391 0.403 0.888

8.1. A key proposition

Let {zt}nt=1 be a dz-dimensional dependent sequence with E(zt ) = 0 for any t ∈ [n]. Define sn,z = n−1/2 ∑n
t=1 zt and

Ξ = Var(n−1/2 ∑n
t=1 zt ). Write zt = (zt,1, . . . , zt,dz )

⊤. We assume {zt}nt=1 satisfy the following three assumptions:

S1. There exist universal constants b1 > 1, b2 > 0 and r1 ∈ (0, 1] such that supt∈[n] supj∈[dz ] P(|zt,j| > u) ⩽ b1 exp(−b2ur1 )
for any u > 0.

S2. There exist universal constants a1 > 1, a2 > 0 and r2 ∈ (0, 1] such that the α-mixing coefficients of the sequence
{zt}nt=1, denoted by {αz(k)}k⩾1, satisfying αz(k) ⩽ a1 exp(−a2|k − m|

r2
+ ) for any k ⩾ 1 and some m = m(n) > 0, where

m = o(n) may diverge with n.
S3. There exists a universal constant c > 0 such that E(|n−1/2 ∑n

t=1 zt,j|
2) ⩾ c for any j ∈ [dz].

et sn,y ∼ N (0,Ξ ) be independent of Zn = {z1, . . . , zn}. Define

ϱn := sup
u∈Rdz ,ν∈[0,1]

⏐⏐P(√νsn,z +
√
1 − νsn,y ⩽ u) − P(sn,y ⩽ u)

⏐⏐ . (24)

hang et al. (2021b) gives an upper bound for ϱn when m is a fixed constant. Proposition 3 presents a more general result
hat allows m diverging with n, whose proof is presented in the supplementary material.
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roposition 3. Assume dz ⩾ nϖ for some sufficiently small constant ϖ > 0. Under AS1–AS3, it holds that

ϱn ≲
m1/3(log dz)2/3

n1/9 {m1/6(log dz)1/2 + m1/3
+ (log dz)1/(3r2)}

provided that log dz ≪ min{m3r/(6+2r)n7r/(18+6r),m−3r1/(6+2r1)n7r1/(18+6r1), nr2/(9−3r2)} with m ≲ n1/9(log n)1/3, where r =

1r2/(r1 + r2) and r1 and r2 are specified in AS1 and AS2, respectively.

Proposition 3 requires m involved in Assumption AS2 cannot diverge faster than n1/9(log n)1/3. The proof of Proposi-
ion 3 is based on the widely used ‘‘large-and-small-blocks’’ technique in time series analysis. The key step for the proof
f Proposition 3 is to establish the associated Gaussian approximation result for the partial sum over the large blocks, see
emma L4 in the supplementary material. The restrictions on log dz given in Proposition 3 are derived from the conditions
f Lemma L4 with suitable selections of the lengths of large and small blocks. In the proofs of Propositions 2 and 3, and
heorem 2, we need the following lemma whose proof is given in the supplementary material.

emma L1. Under AS1–AS3, it holds that

max
0⩽a⩽n−q

max
j∈[dz ]

P
(
max
k∈[q]

⏐⏐⏐⏐ a+k∑
t=a+1

zt,j

⏐⏐⏐⏐ ⩾ x
)

≲ exp(−Cq−1m−1x2) + qx−1 exp(−Cxr ) + qx−1 exp(−Cm−r1xr1 ) (25)

or any x > 0 and m ⩽ q ⩽ n, where r = r1r2/(r1 + r2).

.2. Proof of Proposition 1

Recall Tn =
∑K

j=1 Zj and T̃n :=
∑K

j=1 Z̃j. To construct Proposition 1, we need the following lemma whose proof is given
n the supplementary material.

emma L2. Assume Conditions 1–3 hold. Let τ = τ1τ2/(τ1 + τ2). If log(Kpd) = o(nτ/2) and K τ1 log(Kpd) = o(nτ1/2), then

|Tn − T̃n| ≲
K 3/2

{log(Kpd)}1/2

n1/2 max[{log(Kpd)}1/τ , K {log(Kpd)}1/τ1 ]

ith probability at least 1 − C(Kpd)−1 under H0.

Recall η̄ = ñ−1 ∑ñ
t=1 ηt and GK =

∑K
j=1 maxℓ∈Lj |gℓ|

2 with g = (g1, . . . , gKpd)⊤ ∼ N (0,Σ n,K ) where Σ n,K = ñE{(η̄ −

)(η̄ − µ)⊤} and µ = ñ−1 ∑ñ
t=1 E(ηt ). Under H0, we have µ = 0. Thus Σ n,K = ñE(η̄η̄⊤). Define v := (v1, . . . , vKpd)⊤ =

˜1/2η̄. Our proof includes two steps: (i) using Proposition 3 to show supx>0 |P(T̃n ⩽ x) − P(GK ⩽ x)| = o(1), and (ii) using
Lemma L2 to show supx>0 |P(Tn ⩽ x) − P(GK ⩽ x)| = o(1).

Step 1. For any j1, . . . , jK ∈ [pd] and x > 0, let Aj1,...,jK (x) = {b ∈ RKpd
: b⊤

Sj1,...,jK
bSj1,...,jK

⩽ x} with Sj1,...,jK =

{j1, j2 + pd, . . . , jK + (K − 1)pd}. Define A(x; K ) =
⋂pd

j1=1 · · ·
⋂pd

jK=1 Aj1,...,jK (x). We then have {T̃n ⩽ x} = {v ∈ A(x; K )} and
{GK ⩽ x} = {g ∈ A(x; K )}. Note that the set Aj1,...,jK (x) is convex that only depends on the components in Sj1,...,jK . For a
generic integer q ⩾ 2, denote by Sq−1 the q-dimensional unit sphere. We can reformulate Aj1,...,jK (x) as follows:

Aj1,...,jK (x) =

⋂
a∈{a∈SKpd−1:aSj1,...,jK

∈SK−1}

{b ∈ RKpd
: a⊤b ⩽

√
x}.

Define F =
⋃pd

j1=1 · · ·
⋃pd

jK=1{a ∈ SKpd−1
: aSj1,...,jK ∈ SK−1

}. Then A(x; K ) =
⋂

a∈F {b ∈ RKpd
: a⊤b ⩽

√
x}. For the unit

sphere SK−1 equipped with | · |2, it is well-known that its ϵ-covering number NSK−1,ϵ satisfies ϵ−K ⩽ NSK−1,ϵ ⩽ (1+2ϵ−1)K ,
ee Lemma 5.2 of Vershynin (2012). Let Sϵ be an ϵ-net of SK−1 with cardinality NSK−1,ϵ . Without loss of generality, we
ssume Sϵ ⊂ SK−1. Then S̃(j1,...,jK )

ϵ := {a ∈ SKpd−1
: aSj1,...,jK ∈ Sϵ} provides an ϵ-net of {a ∈ SKpd−1

: aSj1,...,jK ∈ SK−1
}

or any given (j1, . . . , jK ) ∈ [pd]K , and |S̃(j1,...,jK )
ϵ | = NSK−1,ϵ . Furthermore, we know Fϵ =

⋃pd
j1=1 · · ·

⋃pd
jK=1 S̃ϵ

(j1,...,jK )
⊂ F

s an ϵ-net of F with |Fϵ | satisfying ϵ−K ⩽ |Fϵ | ⩽ {(2 + ϵ)ϵ−1pd}K . Recall A(x; K ) =
⋂

a∈F {b ∈ RKpd
: a⊤b ⩽

√
x}.

efine A1(x) =
⋂

a∈Fϵ {b ∈ RKpd
: a⊤b ⩽ (1 − ϵ)

√
x} and A2(x) =

⋂
a∈Fϵ {b ∈ RKpd

: a⊤b ⩽
√
x}. We can show that

1(x) ⊂ A(x; K ) ⊂ A2(x). Define

ρ1,g (x) := |P{v ∈ A1(x)} − P{g ∈ A1(x)}| ∨ |P{v ∈ A2(x)} − P{g ∈ A2(x)}| ,
ρ2,g (x) := |P{g ∈ A2(x)} − P{g ∈ A1(x)}| .

It then holds that

P{v ∈ A(x; K )} ⩽ P{v ∈ A2(x)} ⩽ P{g ∈ A2(x)} + ρ1,g (x)
⩽ P{g ∈ A1(x)} + ρ2,g (x) + ρ1,g (x)
⩽ P{g ∈ A(x; K )} + ρ (x) + ρ (x) .
1,g 2,g
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K
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(

nalogously, we also have P{v ∈ A(x; K )} ⩾ P{g ∈ A(x; K )} − ρ1,g (x) − ρ2,g (x). Hence, we have

|P{v ∈ A(x; K )} − P{g ∈ A(x; K )}| ⩽ ρ1,g (x) + ρ2,g (x) . (26)

We set ϵ = n−1 throughout the following arguments. Then |Fϵ | ⩾ nK . Due to τ2 ∈ (0, 1], it holds that K ≲ (log |Fϵ |)1/τ2 .
Note that K ≲ n1/9(log n)1/3. By Proposition 3 with m = K , dz ≲ (npd)K and (r1, r2) = (τ1, τ2), we have

sup
x>0

ρ1,g (x) = sup
x>0

⏐⏐⏐⏐P(
max
a∈Fϵ

a⊤v ⩽ x
)

− P
(
max
a∈Fϵ

a⊤g ⩽ x
)⏐⏐⏐⏐

≲ n−1/9K 5/3
{log(npd)}7/6 + n−1/9K (1+3τ2)/(3τ2){log(npd)}(1+2τ2)/(3τ2) ,

rovided that log(npd) ≪ min{K (τ−6)/(6+2τ )n7τ/(18+6τ ), K−(6+5τ1)/(6+2τ1)n7τ1/(18+6τ1), K−1nτ2/(9−3τ2)}. To make supx>0 ρ1,g (x)
o(1), we need to require log(npd) ≪ min{n2/21K−10/7, nτ2/(3+6τ2)K−(1+3τ2)/(1+2τ2)}. Notice that ρ2,g (x) = P{(1 − ϵ)

√
x <

axa∈Fϵ a⊤g ⩽
√
x}. If x ⩽ K 3

{log(npd)}3, by Nazarov’s inequality (Lemma A.1, Chernozhukov et al., 2017), we have
ρ2,g (x) ⩽ Cϵ

√
x log |Fϵ | ≲ n−1K 2

{log(npd)}2. If x > K 3
{log(npd)}3, by Markov inequality, we have

ρ2,g (x) ⩽ P
{
(1 − ϵ)

√
x ⩽ max

a∈Fϵ
a⊤g

}
⩽

E(maxa∈Fϵ |a⊤g|)
(1 − ϵ)K 3/2{log(npd)}3/2

≲ {log(npd)}−1,

here the last step is based on Lemma 7.4 in Fan et al. (2018). Hence, supx>0 ρ2,g (x) = o(1) if log(npd) ≪ min{n2/21K−10/7,
τ2/(3+6τ2)K−(1+3τ2)/(1+2τ2)}. Due to |P(T̃n ⩽ x) − P(GK ⩽ x)| = |P{v ∈ A(x; K )} − P{g ∈ A(x; K )}|, (26) implies

sup
x>0

|P(T̃n ⩽ x) − P(GK ⩽ x)| = o(1)

rovided that log(npd) ≪ min{K (τ−6)/(6+2τ )n7τ/(18+6τ ), K−(6+5τ1)/(6+2τ1)n7τ1/(18+6τ1), K−1nτ2/(9−3τ2), K−(1+3τ2)/(1+2τ2)nτ2/(3+6τ2)

−10/7n2/21
}.

Step 2. For any ζ > 0, we have

sup
x>0

|P(Tn ⩽ x) − P(GK ⩽ x)| ⩽ sup
x>0

|P(T̃n ⩽ x) − P(GK ⩽ x)| + P(|Tn − T̃n| > ζ ) + sup
x>0

P(x − ζ < GK ⩽ x + ζ ) . (27)

ote that K = o(n). Selecting ζ = CK 3/2
{log(npd)}1/2n−1/2 max[{log(npd)}1/τ , K {log(npd)}1/τ1 ] for some sufficiently large

onstant C > 0, Lemma L2 yields that P(|Tn − T̃n| > ζ ) = o(1). In the sequel, we will consider P(x − ζ < GK ⩽ x + ζ )
nder the scenarios x ⩽ ζ and x > ζ , respectively. Notice that (1, 0, . . . , 0)⊤ ∈ F and (−1, 0, . . . , 0)⊤ ∈ F . Recall that

g = (g1, . . . , gKpd)⊤ ∼ N (0,Σ n,K ) and {GK ⩽ x} = {maxa∈F a⊤g ⩽
√
x} for any x > 0. Then we have

sup
x⩽ζ

P(x − ζ < GK ⩽ x + ζ ) ⩽ sup
x⩽ζ

P(GK ⩽ x + ζ ) = sup
x⩽ζ

P
(
max
a∈F

a⊤g ⩽
√
x + ζ

)
⩽ sup

x⩽ζ
P(−

√
x + ζ ⩽ g1 ⩽

√
x + ζ ) ≲

√
ζ , (28)

here the last step is due to the anti-concentration inequality of normal random variable. For any x > ζ , it holds that

P(x − ζ < GK ⩽ x + ζ ) = P(GK ⩽ x + ζ ) − P(GK ⩽ x − ζ )

⩽ P
(
max
a∈Fϵ

a⊤g ⩽
√
x + ζ

)
− P

{
max
a∈Fϵ

a⊤g ⩽ (1 − ϵ)
√
x − ζ

}
⩽ P

(
max
a∈Fϵ

a⊤g ⩽
√
x +

√
ζ

)
− P

{
max
a∈Fϵ

a⊤g ⩽ (1 − ϵ)(
√
x −

√
ζ )

}
⩽ P

{
(1 − ϵ)(

√
x −

√
ζ ) < max

a∈Fϵ
a⊤g ⩽ (1 − ϵ)

√
x
}

+ P
{
(1 − ϵ)

√
x < max

a∈Fϵ
a⊤g ⩽

√
x +

√
ζ

}
.

Recall |Fϵ | ⩽ {(2+ϵ)ϵ−1pd}K with ϵ = n−1. By Nazarov’s inequality, we have supx>ζ P{(1−ϵ)(
√
x−

√
ζ ) < maxa∈Fϵ a⊤g ⩽

1 − ϵ)
√
x} ≲

√
ζK log(npd) and supx>ζ P(

√
x < maxa∈Fϵ a⊤g ⩽

√
x +

√
ζ ) ≲

√
ζK log(npd). Due to P{(1 − ϵ)

√
x <

maxa∈Fϵ a⊤g ⩽
√
x +

√
ζ } = ρ2,g (x) + P(

√
x < maxa∈Fϵ a⊤g ⩽

√
x +

√
ζ ), together with (28), we have

supP(x − ζ < GK ⩽ x + ζ ) ≲ sup ρ2,g (x) +

√
ζK log(npd) = o(1) +

√
ζK log(npd) .
x>0 x>0
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f log(npd) ≪ min{K−5τ/(3τ+2)nτ/(3τ+2), K−7τ1/(3τ1+2)nτ1/(3τ1+2)
}, then ζK log(npd) = o(1). By (27), to make supx>0 |P(Tn ⩽ x)

−P(GK ⩽ x)| = o(1), we need to require K ≲ n1/9(log n)1/3 and

log(npd) ≪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K−(6−τ )/(6+2τ )n7τ/(18+6τ ) ,

K−(6+5τ1)/(6+2τ1)n7τ1/(18+6τ1) ,

K−1nτ2/(9−3τ2) ,

K−10/7n2/21 ,

K−(1+3τ2)/(1+2τ2)nτ2/(3+6τ2) ,

K−5τ/(3τ+2)nτ/(3τ+2) ,

K−7τ1/(3τ1+2)nτ1/(3τ1+2) .

ue to log(npd) → ∞ as n → ∞, K should satisfy the restriction K ≪ nf1(τ1,τ2) with f1(τ1, τ2) specified in (14). If
= O(nδ) for some constant 0 ⩽ δ < f1(τ1, τ2), there exists a constant c > 0 only depending on (τ1, τ2, δ) such that

upx>0 |P(Tn ⩽ x) − P(GK ⩽ x)| = o(1) provided that log(pd) ≪ nc . □

.3. Proof of Proposition 2

Write µ = (µ1, . . . , µKpd)⊤ = ñ−1 ∑ñ
t=1 E(ηt ). Define Σ ∗

n,K =
∑ñ−1

j=−ñ+1 K(j/bn)Hj, where Hj = ñ−1 ∑ñ
t=j+1 E{(ηt −

)(ηt−j − µ)⊤} if j ⩾ 0 and Hj = ñ−1 ∑ñ
t=−j+1 E{(ηt+j − µ)(ηt − µ)⊤} if j < 0. By the triangle inequality, we have

|Σ̂ n,K − Σ n,K |
∞

⩽ |Σ̂ n,K − Σ ∗

n,K |
∞

+ |Σ ∗

n,K − Σ n,K |
∞
.

et τ∗ = (τ1τ2)/(τ1 + 2τ2). As we will show later in Sections 8.3.1 and 8.3.2, |Σ ∗

n,K − Σ n,K |
∞

≲ n−ρK 2, and

|Σ̂ n,K − Σ ∗

n,K |
∞

= Op

[
{log(npd)}(2+τ1ϑ−τ1)/(2τ1ϑ−τ1)

n(2ρ+ϑ−1−3ρϑ)/(2ϑ−1)

]
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
rovided that K ≲ n(2ρϑ+1−2ρ)/(2ϑ−1)

{log(npd)}(4−τ1)/(2τ1ϑ−τ1) ∧ n(1−ρ+ρϑ)/ϑ . Therefore, K 3
{log(npd)}2|Σ̂ n,K − Σ n,K |

∞
=

op(1) provided that 0 < ρ < (ϑ − 1)/(3ϑ − 2) and

log(npd) ≪

⎧⎪⎪⎨⎪⎪⎩
K−5/2nρ/2 ,
{K−(6ϑ−3)n(2ρ+ϑ−1−3ρϑ)

}
τ1/(2+5τ1ϑ−3τ1) ,

{K−3ϑnρ+ϑ−2ρϑ−1
}
τ1/(2ϑ+2τ1ϑ) ,

K−3τ∗/(1+2τ∗)n(τ∗−ρτ∗)/(1+2τ∗) .

Due to log(npd) → ∞ as n → ∞, K should satisfy the restriction K ≪ nf2(ρ,ϑ) with f2(ρ, ϑ) specified in (15). If
= O(nδ) for some constant 0 ⩽ δ < f2(ρ, ϑ), there exists a constant c > 0 only depending on (τ1, τ2, ρ, ϑ, δ) such

hat K 3
{log(npd)}2|Σ̂ n,K − Σ n,K |

∞
= op(1) provided that log(pd) ≪ nc . □

.3.1. Convergence rate of |Σ̂ n,K − Σ ∗

n,K |
∞

Without loss of generality, we can assume µ = 0. Recall that Σ̂ n,K =
∑ñ−1

j=−ñ+1 K(j/bn)Ĥj, where Ĥj = ñ−1 ∑ñ
t=j+1(ηt −

¯)(ηt−j − η̄)⊤ if j ⩾ 0, Ĥj = ñ−1 ∑ñ
t=−j+1(ηt+j − η̄)(ηt − η̄)⊤ otherwise, ñ = n − K and η̄ = ñ−1 ∑ñ

t=1 ηt . By the triangle
nequality, it holds that⏐⏐⏐⏐ ñ−1∑

j=0

K
(

j
bn

)
(Ĥj − Hj)

⏐⏐⏐⏐
∞

⩽

⏐⏐⏐⏐ ñ−1∑
j=0

K
(

j
bn

)[
1
ñ

ñ∑
t=j+1

{ηtη
⊤

t−j − E(ηtη
⊤

t−j)}
]⏐⏐⏐⏐

∞  
I

+

⏐⏐⏐⏐ ñ−1∑
j=0

K
(

j
bn

)(
1
ñ

ñ∑
t=j+1

ηt

)
η̄⊤

⏐⏐⏐⏐
∞  

II

+

⏐⏐⏐⏐ ñ−1∑
j=0

K
(

j
bn

)
η̄

(
1
ñ

ñ∑
t=j+1

ηt−j

)⊤
⏐⏐⏐⏐
∞  

III

+

⏐⏐⏐⏐ ñ−1∑
j=0

(
ñ − j
ñ

)
K

(
j
bn

)
η̄⊗2

⏐⏐⏐⏐
∞  

IV

.

In the sequel, we will specify the convergence rates of I, II, III and IV respectively. Recall η = (η , . . . , η )⊤.
t t,1 t,Kpd
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Convergence rate of I. Given ℓ1, ℓ2 ∈ [Kpd], we define ψt,j = ηt+j,ℓ1ηt,ℓ2 − E(ηt+j,ℓ1ηt,ℓ2 ). For any M = o(n) → ∞

atisfying M ≳ K and bn = o(M), we have

P
(⏐⏐⏐⏐ ñ−1∑

j=0

K
(

j
bn

)[
1
ñ

ñ∑
t=j+1

{ηt,ℓ1ηt−j,ℓ2 − E(ηt,ℓ1ηt−j,ℓ2 )}
]⏐⏐⏐⏐ > x

)

⩽ P
{ M∑

j=0

⏐⏐⏐⏐K(
j
bn

)⏐⏐⏐⏐ ⏐⏐⏐⏐1ñ
ñ−j∑
t=1

ψt,j

⏐⏐⏐⏐ > x
2

}
+ P

{ ñ−1∑
j=M+1

⏐⏐⏐⏐K(
j
bn

)⏐⏐⏐⏐ ⏐⏐⏐⏐1ñ
ñ−j∑
t=1

ψt,j

⏐⏐⏐⏐ > x
2

}
(29)

or any x > 0. Lemma 2 of Chang et al. (2013) yields max0⩽j⩽ñ−1 maxt∈[ñ−j] P(|ψt,j| > x) ⩽ C exp(−Cxτ1/2) for any x > 0.
y Condition 4 and bn ≍ nρ for some ρ ∈ (0, 1), we have

∑ñ−1
j=M+1 K(j/bn) ≲

∑ñ−1
j=M+1(j/bn)

−ϑ ≲ nρϑM1−ϑ . Analogous to
emma 4 of Chang et al. (2018b), we can show that

P
{ ñ−1∑

j=M+1

⏐⏐⏐⏐K(
j
bn

)⏐⏐⏐⏐1ñ
ñ−j∑
t=1

ψt,j

⏐⏐⏐⏐ > x
2

}
⩽

ñ−1∑
j=M+1

P
(⏐⏐⏐⏐1ñ

ñ−j∑
t=1

ψt,j

⏐⏐⏐⏐ > CMϑ−1x
nρϑ

)

⩽

ñ−1∑
j=M+1

ñ−j∑
t=1

P
(

|ψt,j| >
CMϑ−1x

nρϑ

)
⩽ Cn2 exp

{
−

CMτ1(ϑ−1)/2xτ1/2

nρϑτ1/2

}
(30)

or any x > 0. Write Dn =
∑M

j=0 |K(j/bn)| and τ∗ = (τ1τ2)/(τ1 + 2τ2). It is easy to see Dn ≲ bn ≍ nρ . For each
given j, we observe that {ψt,j} is also an α-mixing sequence and its α-mixing coefficients α̃ψt,j (k) ⩽ α̃K (|k − j|+) ⩽

3 exp(−C4|k − j − K |
τ2
+ ), where α̃K (·) is the α-mixing coefficients of the process {ηt} defined in (23). By Bonferroni

nequality and Lemma L1 with q = ñ − j, m = j + K , r1 = τ1/2, r2 = τ2 and r = τ∗, we have

P
{ M∑

j=0

⏐⏐⏐⏐K(
j
bn

)⏐⏐⏐⏐1ñ
ñ−j∑
t=1

ψt,j

⏐⏐⏐⏐ > x
2

}
⩽

M∑
j=0

P
(⏐⏐⏐⏐1ñ

ñ−j∑
t=1

ψt,j

⏐⏐⏐⏐ > x
2Dn

)

≲ M exp
(

−
Cn1−2ρx2

M

)
+

Mnρ

x

[
exp{−Cn(1−ρ)τ∗xτ∗} + exp

{
−

Cn(1−ρ)τ1/2xτ1/2

Mτ1/2

}]
or any x > 0. Together with (29) and (30), it holds that

P(I > x) ≲
∑

ℓ1∈[Kpd]

∑
ℓ2∈[Kpd]

P
(⏐⏐⏐⏐ ñ−1∑

j=0

K
(

j
bn

)[
1
ñ

ñ∑
t=j+1

{ηt,ℓ1ηt−j,ℓ2 − E(ηt,ℓ1ηt−j,ℓ2 )}
]⏐⏐⏐⏐ > x

)

≲ (Kpdn)2 exp
{
−

CMτ1(ϑ−1)/2xτ1/2

nρϑτ1/2

}
+ M(Kpd)2 exp

(
−

Cn1−2ρx2

M

)
+

Mnρ(Kpd)2

x

[
exp{−Cn(1−ρ)τ∗xτ∗} + exp

{
−

Cn(1−ρ)τ1/2xτ1/2

Mτ1/2

}]
or any x > 0, which implies that

I = Op

[
nρϑ {log(npd)}2/τ1

Mϑ−1

]
+ Op

[
M1/2

{log(npd)}1/2

n(1−2ρ)/2

]
+ Op

[
M{log(npd)}2/τ1

n1−ρ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
. (31)

o make I converge as fast as possible, we need to specify the optimal M in (31). If log(npd) ⩽ n(1−ρ)(ϑ−1)τ1/{ϑ(4−τ1)}, with
electing M ≍ n(2ρϑ+1−2ρ)/(2ϑ−1)

{log(npd)}(4−τ1)/(2τ1ϑ−τ1), we have

I = Op

{[
{log(npd)}(2+τ1ϑ−τ1)/τ1

n2ρ+ϑ−1−3ρϑ

]1/(2ϑ−1)}
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
.

If log(npd) > n(1−ρ)(ϑ−1)τ1/{ϑ(4−τ1)}, with selecting M ≍ n(1−ρ+ρϑ)/ϑ , we have

I = Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
.

herefore, we can conclude that

I = Op

{[
{log(npd)}(2+τ1ϑ−τ1)/τ1

n2ρ+ϑ−1−3ρϑ

]1/(2ϑ−1)}
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
rovided that K ≲ n(2ρϑ+1−2ρ)/(2ϑ−1)

{log(npd)}(4−τ1)/(2τ1ϑ−τ1) ∧ n(1−ρ+ρϑ)/ϑ .
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Convergence rates of II and III. Given ℓ1, ℓ2 ∈ [Kpd], write

II(ℓ1, ℓ2) =

⏐⏐⏐⏐ ñ−1∑
j=0

K
(

j
bn

)(
1
ñ

ñ∑
t=j+1

ηt,ℓ1

)
η̄ℓ2

⏐⏐⏐⏐.
y Bonferroni inequality and the triangle inequality, it holds that

P{II(ℓ1, ℓ2) > x} ⩽ P
[ ñ−1∑

j=0

⏐⏐⏐⏐K(
j
bn

)⏐⏐⏐⏐⏐⏐⏐⏐1ñ
ñ∑

t=j+1

{ηt,ℓ1 − E(ηt,ℓ1 )}
⏐⏐⏐⏐|η̄ℓ2 | > x

2

]
  

II1,ℓ1,ℓ2 (x)

+ P
[ ñ−1∑

j=0

⏐⏐⏐⏐K(
j
bn

)⏐⏐⏐⏐⏐⏐⏐⏐1ñ
ñ∑

t=j+1

E(ηt,ℓ1 )
⏐⏐⏐⏐|η̄ℓ2 | > x

2

]
  

II2,ℓ1,ℓ2 (x)

for any x > 0. Note that
∑ñ−1

j=0 |K(j/bn)| ≲ bn ≍ nρ . By Bonferroni inequality, the triangle inequality and Lemma L1, we
have

II1,ℓ1,ℓ2 (x) ⩽
ñ−1∑
j=0

P
[⏐⏐⏐⏐1ñ

ñ∑
t=j+1

{ηt,ℓ1 − E(ηt,ℓ1 )}
⏐⏐⏐⏐|η̄ℓ2 | > Cx

nρ

]

⩽

ñ−1∑
j=0

P
[⏐⏐⏐⏐1ñ

ñ∑
t=j+1

{ηt,ℓ1 − E(ηt,ℓ1 )}
⏐⏐⏐⏐ > Cx1/2

nρ/2

]
+ nP

(
|η̄ℓ2 | >

Cx1/2

nρ/2

)

≲ n exp
(

−
Cn1−ρx

K

)
+

nρ/2+1

x1/2

[
exp{−Cnτ (2−ρ)/2xτ/2} + exp

{
−

Cnτ1(2−ρ)/2xτ1/2

K τ1

}]
or any x > 0, where τ = τ1τ2/(τ1 + τ2). Condition 1 yields that supt∈[ñ] supℓ∈[Kpd] E(|ηt,ℓ|) ⩽ C . Analogously, it holds that

II2,ℓ1,ℓ2 (x) ≲ n exp
(

−
Cn1−2ρx2

K

)
+

n1+ρ

x

[
exp{−Cn(1−ρ)τ xτ } + exp

{
−

Cn(1−ρ)τ1xτ1

K τ1

}]
or any x > 0. Therefore, by Bonferroni inequality, we have

P(II > x) ⩽
∑

ℓ1,ℓ2∈[Kpd]

P{II(ℓ1, ℓ2) > x}

≲ n(Kpd)2
{
exp

(
−

Cn1−ρx
K

)
+ exp

(
−

Cn1−2ρx2

K

)}
+

n1+ρ(Kpd)2

x

[
exp{−Cn(1−ρ)τ xτ } + exp

{
−

Cn(1−ρ)τ1xτ1

K τ1

}]
+

nρ/2+1(Kpd)2

x1/2

[
exp{−Cnτ (2−ρ)/2xτ/2} + exp

{
−

Cnτ1(2−ρ)/2xτ1/2

K τ1

}]
for any x > 0, which implies that

II = Op

{
K log(npd)

n1−ρ

}
+ Op

[
K 1/2

{log(npd)}1/2

n(1−2ρ)/2

]
+ Op

[
{log(npd)}1/τ

n1−ρ

]
+ Op

[
{log(npd)}2/τ

n2−ρ

]
+ Op

[
K {log(npd)}1/τ1

n1−ρ

]
+ Op

[
K 2

{log(npd)}2/τ1

n2−ρ

]
.

Note that M ≳ K , τ1 ∈ (0, 1] and τ∗ < τ in (31) and K = o(n). Then

II = Op

{[
{log(npd)}(2+τ1ϑ−τ1)/τ1

n2ρ+ϑ−1−3ρϑ

]1/(2ϑ−1)}
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
rovided that K ≲ n(2ρϑ+1−2ρ)/(2ϑ−1)

{log(npd)}(4−τ1)/(2τ1ϑ−τ1) ∧ n(1−ρ+ρϑ)/ϑ . Similarly, we also have

III = Op

{[
{log(npd)}(2+τ1ϑ−τ1)/τ1

n2ρ+ϑ−1−3ρϑ

]1/(2ϑ−1)}
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
provided that K ≲ n(2ρϑ+1−2ρ)/(2ϑ−1)

{log(npd)}(4−τ1)/(2τ1ϑ−τ1) ∧ n(1−ρ+ρϑ)/ϑ .
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Convergence rate of IV. Given ℓ1, ℓ2 ∈ [Kpd], write

IV(ℓ1, ℓ2) =

⏐⏐⏐⏐ ñ−1∑
j=0

(
ñ − j
ñ

)
K

(
j
bn

)
η̄ℓ1 η̄ℓ2

⏐⏐⏐⏐.
y Bonferroni inequality and the triangle inequality, it holds that

P{IV(ℓ1, ℓ2) > x} ⩽ P
{ ñ−1∑

j=0

⏐⏐⏐⏐K(
j
bn

)⏐⏐⏐⏐|η̄ℓ1 ||η̄ℓ2 | > x
}

or any x > 0. Identical to the arguments for deriving the upper bound of II1,ℓ1,ℓ2 (x), we know the same upper bound also
olds for P{IV(ℓ1, ℓ2) > x}. Hence, we have

IV = Op

{[
{log(npd)}(2+τ1ϑ−τ1)/τ1

n2ρ+ϑ−1−3ρϑ

]1/(2ϑ−1)}
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
provided that K ≲ n(2ρϑ+1−2ρ)/(2ϑ−1)

{log(npd)}(4−τ1)/(2τ1ϑ−τ1) ∧ n(1−ρ+ρϑ)/ϑ .
Therefore, we can conclude that⏐⏐⏐⏐ ñ−1∑

j=0

K
(

j
bn

)
(Ĥj − Hj)

⏐⏐⏐⏐
∞

⩽ I + II + III + IV

= Op

[
{log(npd)}(2+τ1ϑ−τ1)/(2τ1ϑ−τ1)

n(2ρ+ϑ−1−3ρϑ)/(2ϑ−1)

]
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
.

dentically, we can also show⏐⏐⏐⏐ −1∑
j=−ñ+1

K
(

j
bn

)
(Ĥj − Hj)

⏐⏐⏐⏐
∞

= Op

[
{log(npd)}(2+τ1ϑ−τ1)/(2τ1ϑ−τ1)

n(2ρ+ϑ−1−3ρϑ)/(2ϑ−1)

]
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
.

Hence, we have

|Σ̂ n,K − Σ ∗

n,K |
∞

= Op

[
{log(npd)}(2+τ1ϑ−τ1)/(2τ1ϑ−τ1)

n(2ρ+ϑ−1−3ρϑ)/(2ϑ−1)

]
+ Op

[
{log(npd)}2/τ1

n(ρ+ϑ−2ρϑ−1)/ϑ

]
+ Op

[
{log(npd)}1/τ∗

n1−ρ

]
rovided that K ≲ n(2ρϑ+1−2ρ)/(2ϑ−1)

{log(npd)}(4−τ1)/(2τ1ϑ−τ1) ∧ n(1−ρ+ρϑ)/ϑ . □

.3.2. Convergence rate of |Σ ∗

n,K − Σ n,K |
∞

Note that Σ n,K = ñE{(η̄−µ)(η̄−µ)⊤}, Hj = ñ−1 ∑ñ
t=j+1 E{(ηt −µ)(ηt−j−µ)⊤} if j ⩾ 0 and Hj = ñ−1 ∑ñ

t=−j+1 E{(ηt+j−

)(ηt − µ)⊤} if j < 0, where η̄ = ñ−1 ∑ñ
t=1 ηt , µ = ñ−1 ∑ñ

t=1 E(ηt ) and ηt = (ηt,1, . . . , ηt,Kpd)⊤. We write Σ n,K =

σn,K (ℓ1, ℓ2)}(Kpd)×(Kpd), Hj = {Hj(ℓ1, ℓ2)}(Kpd)×(Kpd) and η̊t,ℓ = ηt,ℓ − E(ηt,ℓ). For any ℓ1, ℓ2 ∈ [Kpd], it holds that

σn,K (ℓ1, ℓ2) = ñE
{(

1
ñ

ñ∑
t=1

η̊t,ℓ1

)(
1
ñ

ñ∑
t=1

η̊t,ℓ2

)}

=
1
ñ

ñ∑
t=1

E(η̊t,ℓ1 η̊t,ℓ2 ) +
1
ñ

ñ−1∑
t1=1

ñ−t1∑
j=1

E(η̊t1,ℓ1 η̊t1+j,ℓ2 ) +
1
ñ

ñ−1∑
t2=1

ñ−t2∑
j=1

E(η̊t2+j,ℓ1 η̊t2,ℓ2 )

= H0(ℓ1, ℓ2) +

ñ−1∑
j=1

H−j(ℓ1, ℓ2) +

ñ−1∑
j=1

Hj(ℓ1, ℓ2) .

y Davydov’s inequality, |Hj(ℓ1, ℓ2)| ⩽ ñ−1 ∑ñ
t=j+1 |E(η̊t,ℓ1 η̊t−j,ℓ2 )| ≲ ñ−1(ñ − j) exp(−C |j − K |

τ2
+ ) for any j ⩾ 1. This bound

lso holds for |H−j(ℓ1, ℓ2)| with j ⩾ 1. Observe that Σ ∗

n,K := {σ ∗

n,K (ℓ1, ℓ2)}(Kpd)×(Kpd) =
∑ñ−1

j=−ñ+1 K(j/bn)Hj and K(·) is
ymmetric with K(0) = 1. By the triangle inequality and Condition 4,

|σ ∗

n,K (ℓ1, ℓ2) − σn,K (ℓ1, ℓ2)| ⩽
ñ−1∑
j=1

⏐⏐⏐⏐K(
j
bn

)
− 1

⏐⏐⏐⏐{|Hj(ℓ1, ℓ2)| + |H−j(ℓ1, ℓ2)|
}

≲

ñ−1∑ j(ñ − j)
bnñ

exp(−C |j − K |
τ2
+ )
j=1
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≲
1
bn

[ K∑
j=1

j +
ñ−1∑

j=K+1

j exp{−C(j − K )τ2}
]

≲ b−1
n K 2 .

Thus |Σ ∗

n,K − Σ n,K |
∞

≲ b−1
n K 2. □

8.4. Proof of Theorem 1

Recall GK =
∑K

j=1 maxℓ∈Lj |gℓ|
2 and ĜK =

∑K
j=1 maxℓ∈Lj |ĝℓ|

2 with g = (g1, . . . , gKpd)⊤ ∼ N (0,Σ n,K ) and ĝ =

(ĝ1, . . . , ĝKpd)⊤ ∼ N (0, Σ̂ n,K ). As shown in Proposition 1, supx>0 |P(Tn ⩽ x) − P(GK ⩽ x)| = o(1). Write Xn = {x1, . . . , xn}.
To construct Theorem 1, it suffices to show supx>0 |P(GK ⩽ x) − P(ĜK ⩽ x | Xn)| = o(1). Recall ρ2,g (x) = |P{g ∈ A2(x)} −

{g ∈ A1(x)}| for A1(x) and A2(x) defined in Section 8.2. Here we also define

ρ3,g (x) := |P{g ∈ A1(x)} − P{ĝ ∈ A1(x) |Xn}| ∨ |P{g ∈ A2(x)} − P{ĝ ∈ A2(x) |Xn}| .

dentical to the result {GK ⩽ x} = {g ∈ A(x; K )} stated in Section 8.2, we also have {ĜK ⩽ x} = {ĝ ∈ A(x; K )} for any
> 0, where A(x; K ) is defined in Section 8.2. Then it holds that

P(ĜK ⩽ x |Xn) = P{ĝ ∈ A(x; K ) |Xn} ⩽ P{ĝ ∈ A2(x) |Xn}

⩽ P{g ∈ A2(x)} + ρ3,g (x)
⩽ P{g ∈ A1(x)} + ρ2,g (x) + ρ3,g (x)
⩽ P{g ∈ A(x; K )} + ρ2,g (x) + ρ3,g (x)
⩽ P(GK ⩽ x) + ρ2,g (x) + ρ3,g (x)

for any x > 0. Similarly, we can also obtain the reverse inequality. Notice that we have shown in Section 8.2 that
supx>0 ρ2,g (x) = o(1). Therefore,

sup
x>0

|P(GK ⩽ x) − P(ĜK ⩽ x |Xn)| ⩽ sup
x>0

ρ2,g (x) + sup
x>0

ρ3,g (x) = o(1) + sup
x>0

ρ3,g (x).

By Lemma 13 of Chang et al. (2021b), it holds that

sup
x>0

|P{g ∈ A1(x)} − P{ĝ ∈ A1(x) |Xn}|

= sup
x>0

⏐⏐⏐⏐P{
max
a∈Fϵ

a⊤g ⩽ (1 − ϵ)
√
x
}

− P
{
max
a∈Fϵ

a⊤ĝ ⩽ (1 − ϵ)
√
x
⏐⏐⏐Xn

}⏐⏐⏐⏐
≲ ∆1/3

n {K log(npd)}2/3

ith ∆n = maxa1,a2∈F |a⊤

1 (Σ n,K − Σ̂ n,K )a2|, where F is defined in Section 8.2. Recall |a|0 ⩽ K and |a|2 = 1 for any
∈ F . Thus, |a⊤

1 (Σ n,K − Σ̂ n,K )a2| ⩽ |a1|1|a2|1|Σ n,K − Σ̂ n,K |
∞

⩽ K |Σ n,K − Σ̂ n,K |
∞
. Then we have supx>0 |P{g ∈ A1(x)} −

P{ĝ ∈ A1(x) |Xn}| ≲ K |Σ n,K − Σ̂ n,K |
1/3
∞

{log(npd)}2/3. Analogously, we also have supx>0 |P{g ∈ A2(x)} − P{ĝ ∈ A2(x) |Xn}| ≲

K |Σ n,K − Σ̂ n,K |
1/3
∞ {log(npd)}2/3. Hence,

sup
x>0

|P(GK ⩽ x) − P(ĜK ⩽ x |Xn)| ≲ K |Σ n,K − Σ̂ n,K |
1/3
∞

{log(npd)}2/3 + o(1) . (32)

y Proposition 2, we complete the proof. □

.5. Proof of Theorem 2

Recall that Xn = {x1, . . . , xn} and ĜK =
∑K

j=1 maxℓ∈Lj |ĝℓ|
2 with ĝ = (ĝ1, . . . , ĝKpd)⊤. By Bonferroni inequality, we have

P(ĜK > x |Xn) ⩽
K∑

j=1

P
(
max
ℓ∈Lj

|ĝℓ|
2
>

x
K

⏐⏐⏐⏐Xn

)
=

K∑
j=1

P
(
max
ℓ∈Lj

|ĝℓ| >
x1/2

K 1/2

⏐⏐⏐⏐Xn

)
or any x > 0. Since ĝ ∼ N (0, Σ̂ n,K ) with Σ̂ n,K = {σ̂n,K (ℓ1, ℓ2)}Kpd×Kpd, then

E
(
max
ℓ∈Lj

|ĝℓ|
⏐⏐⏐Xn

)
⩽ [1 + {2 log(pd)}−1

]{2 log(pd)}1/2 max
ℓ∈Lj

{σ̂n,K (ℓ, ℓ)}1/2

or any j ∈ [K ]. Recall Σ n,K = {σn,K (ℓ1, ℓ2)}Kpd×Kpd and ϱ = maxℓ∈[Kpd] σn,K (ℓ, ℓ). Define an event

E0(ν) =

{
max

⏐⏐⏐⏐ σ̂n,K (ℓ, ℓ) − 1
⏐⏐⏐⏐ ⩽ ν} ,
ℓ∈[Kpd] σn,K (ℓ, ℓ)
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here ν > 0 and ν ≍ {K log(pd)}−1. As shown in Proposition 2, maxℓ∈[Kpd] |σ̂n,K (ℓ, ℓ) − σn,K (ℓ, ℓ)| = op[K−3
{log(npd)}−2

] =

op(ν). From Condition 3, we have minℓ∈[Kpd] σn,K (ℓ, ℓ) ⩾ C , where C is a positive constant. It holds that

max
ℓ∈[Kpd]

⏐⏐⏐⏐ σ̂n,K (ℓ, ℓ)σn,K (ℓ, ℓ)
− 1

⏐⏐⏐⏐ ⩽ maxℓ∈[Kpd] |σ̂n,K (ℓ, ℓ) − σn,K (ℓ, ℓ)|
minℓ∈[Kpd] σn,K (ℓ, ℓ)

= op(ν).

Thus P{E0(ν)c} → 0 as n → ∞. Restricted on E0(ν), it holds that

max
j∈[K ]

E
(
max
ℓ∈Lj

|ĝℓ|
⏐⏐⏐Xn

)
⩽ (1 + ν)1/2ϱ1/2[1 + {2 log(pd)}−1]

{2 log(pd)}1/2.

By Borell inequality for Gaussian process, it holds that

P
{
max
ℓ∈Lj

|ĝℓ| ⩾ E
(
max
ℓ∈Lj

|ĝℓ|
⏐⏐⏐Xn

)
+ x

⏐⏐⏐⏐Xn

}
⩽ 2 exp

{
−

x2

2maxℓ∈Lj σ̂n,K (ℓ, ℓ)

}
or any x > 0. Let x∗ = K (1 + ν)ϱ([1 + {2 log(pd)}−1

]{2 log(pd)}1/2 + {2 log(4K/α)}1/2)2. Restricted on E0(ν), we have

x1/2∗

K 1/2 ⩾ max
j∈[K ]

E
(
max
ℓ∈Lj

|ĝℓ|
⏐⏐⏐Xn

)
+ (1 + ν)1/2ϱ1/2

{
2 log

(
4K
α

)}1/2

,

hich yields that

P{ĜK > x∗, E0(ν) |Xn} ⩽

K∑
j=1

P
{
max
ℓ∈Lj

|ĝℓ| − E
(
max
ℓ∈Lj

|ĝℓ|
⏐⏐⏐Xn

)
>

x1/2∗

K 1/2 − E
(
max
ℓ∈Lj

|ĝℓ|
⏐⏐⏐Xn

)
, E0(ν)

⏐⏐⏐⏐Xn

}

⩽

K∑
j=1

P
[
max
ℓ∈Lj

|ĝℓ| − E
(
max
ℓ∈Lj

|ĝℓ|
⏐⏐⏐Xn

)
> (1 + ν)1/2ϱ1/2

{
2 log

(
4K
α

)}1/2

, E0(ν)
⏐⏐⏐⏐Xn

]
⩽ 2K exp

{
−

2(1 + ν)ϱ log(4K/α)
2(1 + ν)ϱ

}
=
α

2
.

ince P{E0(ν)c |Xn} = op(1), then P{E0(ν)c |Xn} ⩽ α/4 with probability approaching one. Hence, P(ĜK > x∗ |Xn) ⩽ 5α/6
ith probability approaching one. Following the definition of ĉvα , it holds with probability approaching one that

ĉvα ⩽ (1 + ν)Kϱλ2(K , p, d, α)
[
1 + {2 log(pd)}−1]2 (33)

ith λ(K , p, d, α) = {2 log(pd)}1/2 + {2 log(4K/α)}1/2.
We next specify the lower bound of Tn. Recall that Tn = n

∑K
j=1 |γ̂ j|

2
∞

=
∑K

j=1 maxℓ∈Lj (n
1/2uℓ)2, where u =

u1, . . . , uKpd)⊤ = (γ̂⊤

1 , . . . , γ̂
⊤

K )
⊤ with γ̂ j = (n − j)−1 ∑n−j

t=1 vec{φ(xt )x
⊤

t+j}. Let ũ = (ũ1, . . . , ũKpd)⊤ = (γ⊤

1 , . . . , γ
⊤

K )
⊤

ith γ j = (n − j)−1 ∑n−j
t=1 E[vec{φ(xt )x⊤

t+j}]. Define ℓ
∗

j = argmaxℓ∈Lj |ũℓ| for j ∈ [K ]. By Cauchy–Schwarz inequality, it
olds that

Tn =

K∑
j=1

max
ℓ∈Lj

(n1/2uℓ)2 ⩾

K∑
j=1

(n1/2uℓ∗j )
2

=

K∑
j=1

(
n1/2uℓ∗j − n1/2ũℓ∗j + n1/2ũℓ∗j

)2
= n

K∑
j=1

(uℓ∗j − ũℓ∗j )
2
+ n

K∑
j=1

ũ2
ℓ∗j

+ 2n
K∑

j=1

ũℓ∗j (uℓ∗j − ũℓ∗j )

⩾ n
K∑

j=1

(uℓ∗j − ũℓ∗j )
2
+ n

K∑
j=1

ũ2
ℓ∗j

− 2n
( K∑

j=1

ũ2
ℓ∗j

)1/2{ K∑
j=1

(uℓ∗j − ũℓ∗j )
2
}1/2

.

ccording to the definition of u and ũ, we have n1/2(uℓ∗j − ũℓ∗j ) = n1/2(n − j)−1 ∑n−j
t=1[φl∗1

(xt )xt+j,l∗2
− E{φl∗1

(xt )xt+j,l∗2
}] for

ome l∗1 ∈ [d] and l∗2 ∈ [p]. Note that K ≪ n1/7. By Bonferroni inequality and Lemma L1, it holds that for any x > 0

P
{
n

K∑
j=1

(uℓ∗j − ũℓ∗j )
2 > x

}
⩽

K∑
j=1

P
(

n1/2

n − j

⏐⏐⏐⏐ n−j∑
t=1

[φl∗1
(xt )xt+j,l∗2

− E{φl∗1
(xt )xt+j,l∗2

}]

⏐⏐⏐⏐ > x1/2

K 1/2

)

≲
n1/2K 3/2

x1/2

{
exp

(
−

Cnτ/2xτ/2

K τ/2

)
+ exp

(
−

Cnτ1/2xτ1/2

K 3τ1/2

)}
+ K exp

(
−

Cx
K 2

)
with τ = τ1τ2/(τ1 + τ2), which implies that n

∑K
j=1(uℓ∗j − ũℓ∗j )

2
= Op(K 2 log K ). Choose u > 0 such that (1 + ν)1/2[1 +

2 log(pd)}−1
+ u] = 1 + ϵn for some ϵn > 0. Due to

∑K ũ2
∗ ⩾ n−1Kϱλ2(K , p, d, α)(1 + ϵn)2 and n

∑K (uℓ∗ − ũℓ∗ )2 =
j=1 ℓj j=1 j j
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p(K 2 log K ), by (33), it holds with probability approaching one that

Tn ⩾ n
K∑

j=1

(uℓ∗j − ũℓ∗j )
2
+ (1 + ν)Kϱλ2(K , p, d, α)[1 + {2 log(pd)}−1

+ u]2

− Op
{
K 3/2(log K )1/2ϱ1/2λ(K , p, d, α)(1 + ϵn)

}
> (1 + ν)Kϱλ2(K , p, d, α)

[
1 + {2 log(pd)}−1]2

+ 2Kϱλ2(K , p, d, α)u

− Op
{
K 3/2(log K )1/2ϱ1/2λ(K , p, d, α)(1 + ϵn)

}
> ĉvα + 2Kϱλ2(K , p, d, α)u − Op

{
K 3/2(log K )1/2ϱ1/2λ(K , p, d, α)

}
.

otice that ϵn → 0 and ϱλ2(K , p, d, α)K−1(log K )−1ϵ2n → ∞. Then it holds that

ϵn ≫
K 1/2(log K )1/2

{log(pd)}1/2 + (log K )1/2
≫

1
log(pd)

≳
1

K log(pd)
= ν,

which implies that u ≍ ϵn. It yields that Kϱλ2(K , p, d, α)u ≫ K 3/2(log K )1/2ϱ1/2λ(K , p, d, α) and Kϱλ2(K , p, d, α)u → ∞.
Therefore, we have Tn − ĉvα > Kϱλ2(K , p, d, α)u with probability approaching one. Hence, PH1 (Tn > ĉvα) → 1 as

→ ∞. □

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.09.001.
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