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of our test is illustrated via simulation and a real data analysis. The test is implemented
in a user-friendly R-function.
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1. Introduction

Testing the martingale difference hypothesis is a fundamental problem in econometrics and time series analysis. The
concept of martingale difference plays an important role in many areas of economics and finance. Several economic
and financial theories such as the efficient markets hypothesis (Fama, 1970, 1991; LeRoy, 1989; Lo, 1997), rational
expectations (Hall, 1978) and optimal asset pricing (Cochrane, 2005; Fama, 2013), yield such dependence restrictions
on the underlying economic and financial variables. More formally, let {X;} be a p-dimensional time series with E(x;) = 0
for any t € Z. Write X, = (X¢1, ..., xt.p)T and denote by .#; the o-field generated by {X;};<;. We call {X;};cz a martingale
difference sequence (MDS) if and only if E(x; | #;_1) = 0 for any t € Z. Given the observations {x.} we are interested
in the hypothesis testing problem:

n
t=1
Hg : {X;}tcz is a MDS  versus Hj : {X;};cz iS not a MDS. (1)
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The MDS hypothesis implies that the past information does not help to improve the prediction of future values of a MDS,
so the best nonlinear predictor of the future values of a MDS given the current information set is just its unconditional
expectation. The theme of the lack of predictability is of central interest in economics and finance and has stimulated a
huge literature in both econometrics and time series analysis.

So far most of the work on MDS testing is restricted to the univariate case, i.e., p = 1. In one strand of literature, the
MDS testing problem is reduced to testing the uncorrelatedness in either time domain or spectral domain. See Box and
Pierce (1970), Ljung and Box (1978), Durlauf (1991), Hong (1996), Deo (2000), Lobato et al. (2001), and Shao (2011a,b),
among others. These tests target on serial correlation but are unable to capture nonlinear serial dependence. There are
examples of uncorrelated processes that are not MDS such as certain bilinear processes and nonlinear moving average
processes, see Dominguez and Lobato (2003) for specific examples. Hence, it is important to develop tests that can
go beyond linear serial dependence. In the specification testing literature, the exponential function based approach,
pioneered by Bierens (1984, 1990), de Jong (1996) and Bierens and Ploberger (1997), is capable of detecting nonlinear
serial dependence. Using the characteristic function, Hong (1999) proposed the generalized spectral density as a new tool
for specification testing in a nonlinear time series framework; see Hong and Lee (2003) and Hong and Lee (2005) for
further developments. As an interesting extension of Hong (1999), Escanciano and Velasco (2006) developed a MDS test
based on the generalized spectral distribution function to capture nonlinear serial dependence at all lags. Parallel to the
exponential/characteristic function based approach, the indicator/distribution function based approach has been taken
by Stute (1997), Koul and Stute (1999), Dominguez and Lobato (2003), and Park and Whang (2005) among others. We
refer to Escanciano and Lobato (2009) for a comprehensive review.

For the multivariate time series, i.e., p > 1, the literature for the MDS testing is scarce. Although it is expected that most
of the above-mentioned tests can be extended to relatively low dimensional case, the theoretical and empirical properties
of these tests are unknown. Recently, Hong et al. (2017) proposed a multivariate extension of the classical univariate
variance ratio test (Lo and MacKinlay, 1988; Poterba and Summers, 1988; Chen and Deo, 2006) to test a weak form of
the efficient markets hypothesis, i.e., uncorrelatedness of x;. As argued in Hong et al. (2017), the rationale to consider
the MDS test for multivariate time series is that even if the MDS hypothesis holds for each component series {x; j}cz,
the MDS hypothesis could be violated at the multivariate level. In particular, the current return on the ith asset may be
predicted by past observations of the jth asset. A univariate test may fail to detect this kind of cross-serial dependence,
which can be captured by a multivariate test. Since it is well known that the variance ratio test only targets on serial
correlation, the test of Hong et al. (2017) is unable to capture nonlinear serial dependence.

Nowadays, time series of moderate or high dimension are routinely collected or generated owing to the advance in
science and technology. For example, S&P 500 index measures the stock performance of 500 large companies listed on
stock exchanges in the United States, and it is tempting to ask whether the stock returns of the 500 companies are
predictable at the daily or weekly frequency for a given time period (say, 5 years). The same question can be asked for
the stocks within the same sector, such as those in the real estate sector (see Section 6 for data illustration). This naturally
leads us to the regime where the dimension p is comparable to or exceeds the sample size n. To the best of our knowledge,
there is no MDS testing procedure available in the literature that allows the dimension p to exceed the sample size n.
Most of the aforementioned tests developed in the univariate setting require nontrivial modification to accommodate the
high-dimensionality. The multivariate variance ratio test in Hong et al. (2017) allows for growing dimension p in their
theory (i.e., 1/p+p/n = o(1)) but is quite limited since their test cannot be implemented when p > n and may encounter
computational problems when p is large (say, p > 120); see Section 5 for more details.

To fill this gap, we introduce a new test for the MDS hypothesis of multivariate and possibly high-dimensional time
series. We first use the element-wise max-norm of a sample-based matrix to characterize the nonlinear dependence of
underlying p-dimensional time series {X;} at a given lag j > 1, and then combine such information at different lags to
propose our test statistic. Owing to the high-dimensionality and unknown temporal and cross-series dependence, the
limiting null distribution of our test statistic is hard to derive, and it may even not have a closed form. To circumvent
such difficulty, we employ the celebrated Gaussian approximation technique (Chernozhukov et al., 2013), which has
undergone a rapid development recently, to establish the asymptotic equivalence between the null distribution of our
test statistic and that of a certain function of a multivariate Gaussian random vector. Our theoretical analysis shows that
our proposed test works even if p grows exponentially with respect to the sample size n, provided that some suitable
regularity assumptions hold. To facilitate feasible inference, we propose a simulation-based approach to generate critical
values. We also investigate the power behavior of our test under some local alternatives.

Since the seminal contribution of Chernozhukov et al. (2013), the literature on Gaussian approximation in the
high-dimensional setting has been growing rapidly. For the sample mean of independent random vectors, we men-
tion Chernozhukov et al. (2013, 2017), Deng and Zhang (2020), Fang and Koike (2021), Kuchibhotla et al. (2021),
Chernozhukov et al. (2022a), and Chernozhukov et al. (2022b). For high-dimensional U-statistics and U-processes,
see Chen (2018) and Chen and Kato (2019) for recent developments. The applicability of Gaussian approximation has also
been extended to high-dimensional time series setting by Zhang and Wu (2017), Zhang and Cheng (2018), Chernozhukov
et al. (2019) and Chang et al. (2021b). Also see Chang et al. (2017a,b,c, 2018b), and Yu and Chen (2021) among others for
the use of Gaussian approximation or variants in high-dimensional statistical inference.

Zhang and Wu (2017) and Zhang and Cheng (2018) considered the Gaussian approximation for maxij<p n-1/2 ZL] X j
with the physical dependence measure (Wu, 2005) imposed on {X;}, and Chernozhukov et al. (2019) considered the
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same problem when {x;} is a B-mixing sequence. Chang et al. (2021b) studied the Gaussian approximations for
P(n~1/2 Zf:] X, € A) over some general classes of the set A (hyper-rectangles, simple convex sets and sparsely convex
sets) under three different dependency framework («-mixing, m-dependent, and physical dependence measure), which
include the results obtained in Zhang and Wu (2017), Zhang and Cheng (2018) and Chernozhukov et al. (2019) as
special cases. Compared to the use of Gaussian approximation results for high-dimensional time series in the existing
works, our test statistic is considerably more involved and motivates us to develop new techniques for establishing the
asymptotic equivalence between the null distribution of our test statistic and that of a certain function of a multivariate
Gaussian random vector. More specifically, the theoretical analysis in this paper targets on the Gaussian approximation
for some function of the high-dimensional vector (n — K)~"/2Y"/_ y,, where 5, is a newly defined vector based on
{X¢, X¢ 41, - - -, Xeqx ) and K is the number of lags involved in our test statistic. Since K is allowed to grow with the sample
size n in our setting, the dependence structure among {#,} will vary with K which cannot be covered in the frameworks
of above mentioned works, and the existing Gaussian approximation results cannot be applied here. Some nontrivial
technical challenges need to be addressed in our theoretical analysis.

From a methodological and practical viewpoint, we highlight a few appealing features of our proposed test:

(a) Our approach is nonparametric as the null hypothesis only assumes the time series concerned is martingale
difference without specifying any parametric forms of its conditional moments. Hence, it is robust to second-order and
higher-order conditional moments of unknown forms, including conditional heteroscedasticity, a prominent feature of
many financial time series.

(b) It allows the dimension p to grow exponentially with respect to the sample size n, and works well for a broad range
of dimension p even at a medium sample size (e.g., n = 300) as shown in our simulation studies. We have developed an
R-function MartG_test in the package HDTSA which implements the test in an automatic manner.

(c) There is no particular requirement on the strength of cross-series dependence in our theory, so our test is applicable
to time series with cross-series dependence of unknown magnitude. Strong cross-series dependence has been commonly
observed in many real high-dimensional time series data.

The rest of this paper is organized as follows. The methodology and theoretical analysis are given in Sections 2 and 3,
respectively. Section 4 extends the proposed test to more general settings. Section 5 studies the finite sample performance
of our proposed test. A real data analysis is presented in Section 6. Section 7 concludes the paper. Section 8 includes the
mathematical proofs of our main results. Some additional technical arguments and numerical studies are given in the
supplementary material. At the end of this section, we introduce some notation that is used throughout the paper. For
any positive integer q > 2, we write [q] = {1, ..., q} and denote by S9! the g-dimensional unit sphere. For any q; X ¢,
matrix M = (M )g,; xq,. et [M| o, = MaXic(q, ) jeiqg,1 1Mijl and [Mlq = {1, 32, I(m;; # 0), where I(-) denotes the indicator
function. Specifically, if g, = 1, we use |M|,, = maXie[q,] IM;1| and M|, = Z?;] I(m; 1 # 0) to denote the L,,-norm and
Lo-norm of the q;-dimensional vector M, respectively. For any g-dimensional vector a = (ay, ..., aq)T, write ir(a) as the
g-dimensional vector {(ay), ..., ¥(aq)}" for given function ¥ : R — R, and denote by a, the subvector of a collecting
the components indexed by a given index set £ C [q].

2. Methodology
2.1. Test statistic and the associated critical values
Let {X;} be a p-dimensional time series with E(X;) = 0 for any t. Given the observations {X;};_,, we shall develop a

martingale difference hypothesis test that can capture certain nonlinear dependence between X; and X; for j € N,.
To this end, we let ¢(-) : R? — RY represent a map that is provided by the user. For example, ¢(x) = x is the

linear identity map; ¢(x) = {x',(x*)"}" includes both linear and quadratic terms, where x> = (x{,...,x5)" with
X =(x1,..., xp)T; ¢(x) = cos(x) captures certain type of nonlinear dependence, where cos(x) = {cos(x1), ..., cos(xp)}T
with X = (X1, ..., xp)". _

Denote y; = (n — i)! ?;’1 ]E[vec{(b(x[)xjﬂ}] for each j > 1. Our proposal for testing the martingale difference

hypothesis consists in checking all the pairwise covariance between ¢(xX;) and X;;, namely, our null hypothesis is now

Hy:yj=0forallj>1. (2)

It is easy to see that Hy in (1) implies H} in (2) but not vice versa. In theory, it would be ideal to develop a test that is

consistent with any violation of Hy but this is very challenging in a model free setting, since the alternative we target is
huge owing to the high-dimensionality and nonlinear serial dependence at all lags. As argued in Phillips and Jin (2014),
“Typically, the information set includes the infinite past history of the series, .... If a finite number of lagged values is included
in the conditioning set, some dependence structure in the process may be missed due to omitted lags. However, tests that are
designed to cope with the infinite lag case may have very low power (e.g., de Jong, 1996) and may not be feasible in empirical
applications.” Thus even in the low-dimensional setting, it is not clear whether there is a practical benefit for a test that is
consistent with all alternatives. This motivates us to relax the null hypothesis Hy and focus on the directional alternatives
encoded by the function ¢(-), which is pre-specified by the user and can incorporate some prior information.
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Note that if the time series {x} is strictly stationary, then y; = E[vec{ ¢(xo)x }] which represents the population-level
nonlinear dependence measure at lag j. In our asymptotic theory, no statlonarlty assumption needs to be imposed. To test
Hy, it is natural to consider a test statistic with the following form

K
To=n) |9, (3)
j=1

where yi= Z vec{¢ X;) x 4} is the estimator of p;. Here K = o(n) is a truncation lag and is allowed to grow
with respect to the sample size n. ThlS ex1b111ty is important when there exists nonlinear serial dependence at large lags.
Intuitively, a large value of T, provides evidence against Hj in (2) and then we can reject Hy in (1) if

T, > CV, , (4)

where cv,, > 0 is the critical value at the significance level ¢ € (0 1). To determine cv,, we need to derive the distribution
of T, under Hy. Write y = (;31 O 2 )T and y = (y1 N < )T, For fixed (p, d, K) and under suitable moment and
weak dependence conditions, it follows from the central limit theorem that f n(y—y) —q MO, Zg) as n — oo for some
positive definite matrix 7 € RKPDXKPD) et §:= (g, ..., k)T ~ N(0, 3. By the continuous mapping theorem, the
distribution of T, under Hy can be approximated by that of its Gaussian analogue Gy = Z}K:l |§£j|io in the scenario with

fixed (p, d, K), where £; = {(j — 1)pd + 1, ..., jpd}. Write n = n — K and let

= ([vec{d(x)x 117, ..., [Vec{d(x)x/  JT)T (5)
for any t € [n]. Define

Yok = Cov(} Z 77:) (6)

L

which is the long-run covariance matrix of the sequence {7, ?21. For fixed (p, d, K), the asymptotic covariance 3k of
J/n(y — y) is essentially the limit of X, x specified in (6) as n — oo. In the high-dimensional scenarios, i.e., when
(p, d, K) is diverging with respect to n, Proposition 1 indicates that such approximation for the null distribution of T, is
still valid even when p and d grow exponentially with respect to the sample size n.

Proposition 1. Assume Conditions 1-3 in Section 3 hold and Gy = ZJK 1 |gLJ|2 where g = (g1, . . . ,ngd) ~ N(0, X k)
and £j = {(j— Dpd + 1, ..., jpd}. Let K = O(n %) for some constant 0 < 8 < fi(t1, T2) with fi(t1, ©o) defined as (14) in
Section 3. Then it holds that sup,. o |Py,(T, > x) — P(Gx > X)| = o(1) as n — oo, provided that log(pd) = o(n®) for some
constant ¢ > 0 only depending on (t1, 12, 8).

Proposition 1 reveals that the Kolmogorov-Smirnov distance between the null distribution of the proposed test statistic
T, and the distribution of Gy converges to zero, even when p and d diverge at some exponential rate of n. Letting

eV, =inf{x > 0 : P(Gx <x)>1—a) (7)

in (4), Proposition 1 yields that Py (T, > cv,) - a asn — 0. Since the long-run covariance matrix X', x is usually
unknown in practice, we need to replace it by some estimate Z’ x and then use ¢V, defined below to approximate the
desired critical value cv, specified in (7):

&, =inf{x > 0: IP(GK X)) =>1—a}, (8)

where X, = (X4, ..., X,} and Gy = 271 8., ? Wlth g:=081...,8pa)" ~ N(O, :Vn,K) and £j = {G—1)pd+1, ..., jpd}.
Then we reject the null hypothesis Hy spec1ﬁe°a in (1) if

T, > &V, . (9)
We defer the details of 5?,.,,,( to Section 2.2.

Remark 1. If we select the function ¢(x) = X, the test statistic T,, defined in (3) can also be applied for testing the
high-dimensional white noise hypothesis, i.e., Hy : {X;};cz is white noise versus Hy : {X;};cz is not white noise. Chang
et al. (2017a) considered this hypothesis testing problem with L., -type test statistic using the maximum absolute
autocorrelations and cross-correlations of the component series in X, over all lags k € [K]. It is well known that
the L,-type test statistic is powerful against the sparse alternatives, that is, only a small fraction of the elements in
y= (le, R y,I)T are nonzero, while it can be powerless for the dense but faint alternatives, i.e., when most elements
iny = (y1T, e y,I)T are nonzero but with very small magnitudes. To remedy such weakness, our proposed T, in
(3) combines the signals from different lags together using the sum of squares and is expected to improve the power
performance in case of dense but faint alternatives. On the technical side, constructing the Gaussian approximation to
the null distribution of T, defined in (3) is more challenging than that for the L, -type statistic used in Chang et al.
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(2017a). Chang et al. (2017a) only considered the case with fixed K under the 8-mixing assumption. The null distribution
of their test statistic can be easily obtained by the associated Gaussian approximation results developed in Chernozhukov
et al. (2019). In this paper, we only impose the «¢-mixing assumption on {X;} and the corresponding «-mixing coefficients
of {»,} become a triangular array owing to the divergence of K. To the best of our knowledge, our paper is the first attempt
to derive the Gaussian approximation results in such a complex setting.

Remark 2. As we mentioned earlier, the only paper that allows growing dimension for the martingale difference
hypothesis testing is Hong et al. (2017), which generalized the variance ratio test to multivariate time series. In their
asymptotic theory, they considered both finite/fixed horizon (i.e., fixed K) and increasing horizon (i.e., K — oo but
K?/n — 0), which is also allowed in our theory. In their Theorem 7, they presented the limiting null distribution of
a particular test statistic Zd,; under the restriction that the dimension p grows but p/n — 0. Their another two test
statistics Z, and Zge; for the setting of fixed p cannot be implemented in practice when p > \/n. By contrast, our test
statistic can work for a much broader range of p, including the case p >> n, and thus is advantageous in dealing with the
martingale difference hypothesis testing for high-dimensional time series. In addition, we can capture nonlinear serial
dependence owing to the flexibility of user-chosen ¢(-), which yields a nonlinear dependence measure. In practice, we
need to set the lags K and the user-chosen map ¢(-), which can incorporate some prior information we have. For example,
if the time series is expected to exhibit seasonal dependence, then K should be large enough to include some seasonal lags.
If we are dealing with stock return data, then including quadratic terms in ¢(-) might help to capture potential nonlinear
dependence.

Remark 3. If the time series {x;} is strictly stationary, we know the transformed data {5} is also strictly stationary
and our test statistic T, given in (3) essentially converts the MDS testing problem for X; to testing zero mean for the
transformed data #,. There are indeed several papers in the literature of Gaussian approximation that tackle the mean
testing problem for high-dimensional time series; see Zhang and Wu (2017), Zhang and Cheng (2018), Chernozhukov
et al. (2019) and Chang et al. (2021b). Zhang and Wu (2017) and Zhang and Cheng (2018) considered the Gaussian
approximation theory in the framework that assumes the physical dependence (Wu, 2005) for {5,}. Chernozhukov et al.
(2019) and Chang et al. (2021b) considered the Gaussian approximation theory, respectively, in the frameworks that
assume the B-mixing assumption and «-mixing assumption for {,}. Notice that the dependence structure among {»,}
will vary with K. The dependence frameworks for {5,} assumed in these existing works do not cover our current setting,
thus the existing Gaussian approximation results cannot be used for approximating the null distribution of our proposed
test statistic Tj,.

2.2. Estimation of long-run covariance matrix

In the low-dimensional setting, long-run covariance matrix estimation (or heteroscedastic-autocorrelation-consistent
estimation) is a classic problem in econometrics and time series analysis and there is a rich literature. We refer the readers
to two foundational papers by Newey and West (1987) and Andrews (1991). In the high-dimensional setting, the estimator
proposed in the low-dimensional environment can still be used, but establishing the proper probabilistic bounds for the
difference is very challenging. Recall 1 = n — K. Following Chang et al. (2017a), we adopt the following estimate for the
long-run covariance matrix X', k:

n—1 .
= K )R (10
n

j=—it+1

where H; = 7 1Zt (=), —7)"ifj > 0Oand H; = ii~! Z[ 1 (M=) — )" otherwise, with j = ™! Zt ;-
Here K(-) is a symmetrlc kernel function that is continuous at 0, andl b, is the bandw1dth diverging with n. The theoretical
property of X', x defined as (10) is summarized in Proposition 2 in Section 3. As indicated in Andrews (1991) to make
Z‘n_K given in (10) be positive semi-definite, we can require the kernel function K(-) to satisfy f K(x)e™ ™ dx > 0 for
any A € R, where i = +/—1. The Bartlett kernel, Parzen kernel and Quadratic Spectral kernel all satlsfy thlS requirement.
See Section 5 for the explicit forms of these kernels. R R
Given X, x, to compute ¢V, given in (8), we need to generate § := (&1, . . ., 8kpa) ' ~ N0, , X'n). Notice that 2n Kk is

a (Kpd) x (Kpd) matrix. The standard procedure is based on the Cholesky decomposition of Z‘n x and generating g is a
computationally (nK?p*d® + K3p3d?)-hard problem that requires a large storage space for En . In practice, p and d can
be quite large. As suggested in Chang et al. (2017a), we can generate g as follows:

Algorithm 1 Procedure for generating g

Step 1. Let © be a i1 x it matrix with (i, j)th element K{(i — j)/b,}.
Step 2. Generate £ = (£, ..., &) ~ N(0, @) independent of X;,.

Step 3. Let § = (&1, ..., &) = 230 &, — 7)-
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We can show that g obtained in Algorithm 1 satisfies g| A, ~ A(0, :S‘nJ(). The computational complexity of Step 2 in
Algorithm 1 is just O(n®) which is independent of (p, d). When p and d are large, the required storage space of Algorithm 1
is also much smaller than that of the standard procedure since it only requires to store {5, }{_, and # rather than X k. In

practice, we can draw g1 ..., gp independently by Algorithm 1 for some large integer B and then take the |B« Jth largest
value among G 1, . . ., Gk g to approximate ¢v, defined as (8), where Gy ; = Z}(:I |Qi,£j|io with & = (81, ..., 8ixpa)' and

={(— Npd+1,...,jpd}.
3. Theoretical property

Recall T, = n ]K:] |;7j|io. Since the distribution of y = (;‘llT, el iz;)T can be well approximated by that of =

a~1>7_, n, with i = n — K, the difference between the distributions of T, and T, = ﬁZ _1 10 | is expected to be
asymptotically negligible. See Lemma L2 in Section 8 for details. The key step in our theoretlcal analy51s is to approximate
the null distribution of T, by Gaussian approximation.

For anyji,...,jkx € [pd] and x > 0, let Ajl k(%) = {b e RKPI ; bT ijSfleK <x}with S, g = Ui, ja+pd, ...k +

(K — 1)pd}. Define A(x; K) ﬂp ﬂ 1 Ay, i (X). We then have {T, < x} = {2} € A(x; K)}. Note that the set
jx (%) is convex that only depends on the components in S, ;.. We can reformulate A4;, ;. (x) as follows:

Kpd . T 1/2
A () = N {b e R :aTh < x'?).
aeSKPdflzasj i esk-1

««««««

Define ¥ = U]1 . UJK fa e skt as; € S¥1}. Then A(x; K) = ,c~{b € R®? : aTb < x'/?} and

{(To<xt= ZaTm <x'? for anyaef} (11)

{ Vit
for any x > 0. As indicated in (11), to construct the Gaussian approximation of IP’HO(Tn < X), we need to impose the
following assumption on the tail behavior of a” ;. See also Chernozhukov et al. (2017) and Chang et al. (2021b).

Condition 1. There exist some universal constants C; > 1, C; > 0 and t; € (0, 1] independent of (K, p, d, n) such that

sup supP(la’ 5, > x) < C; exp(—Cox™)

te[n] acF
for any x > 0.

Condition 1 is stronger than necessary for the theoretical justification of our proposed method, and it can be weakened
at the expense of much lengthier proofs. For example, Condition 1 can be replaced by the assumption:
max max P(|n.¢| > x) < G exp(—Cox™) (12)
te[n] £€[Kpd]
for any x > 0. Recall n; ¢ = ¢y, (X¢)Xe4x,1, for some I; € [d],l, € [p] and k € [K]. If ¢(-) is selected as some bounded
functions, then (12) holds provided that maXejn maxy,efp) P(1%c,1,| > X) < G exp(—C,,x™) for any x > 0. If ¢(-) and x;
satisfy maXepn maxy, efa) P{|ér, (Xc)| > x} < C; exp(—Cy.¥™ ) and maXepn) Maxy, efp) P(1%¢,1,| > X) < G, exXp(—Ciyx™*) for any
x > 0, by Lemma 2 of Chang et al. (2013) we know (12) holds with 71 = 7,7,./(7« + T.s). For any a € F, there exists

(1, - -+ jk) € [pd] such that 3°5_, @ _1pa = 1and @ = 0 for j ¢ Sj, ., which implies SN 16,1 —1pal < VK. By
Bonferroni inequality and (12), for any given a € F, it holds that

K

X
P(la’ g | > x) < ZP{|nt,j4+(l—1)pd| > }

=1 Zz 118j,4e—1pdl

K
X _
< ZP{ImW-Wl > ﬁ} < CK exp(—CKT/2x) (13)

=1

for any x > 0, which provides a rough upper bound for maxc, sup,c » P(|a’ ,| > x). When K is a fixed positive integer,
by (13), we know Condition 1 is satisfied provided that (12) holds. If we only assume (12), we can still establish the
associated Gaussian approximation results based on (13) rather than Condition 1 but the associated arguments will be
quite cumbersome.

Condition 2. Assume that {X.} is a-mixing in the sense that

o(k) == sup sup [P(AN B) — P(A)P(B)] = 0 as k — oo,
U (ABeFl  x ?j:jj
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where #! __ and Froo wx are the o-fields generated respectively by {X;}r<y and {X;}roy k. Furthermore, there exist some universal
constants C3 > 1, C4 > 0 and 1, € (0, 1] independent of (K, p, d, n) such that a(k) < C3 exp(—C4k™) for all k >

The o-mixing assumption in Condition 2 is weaker than the S-mixing assumption considered in Chernozhukov et al.
(2019). Restricting 7, € (0, 1] is just to simplify the presentation. If the «-mixing coefficients satisfy Condition 2 with some
constant 7, > 1, then Condition 2 will be satisfied automatically with o = 1. Under certain conditions, VAR processes,
multivariate ARCH processes, and multivariate GARCH processes all satisfy Condition 2 with 7, = 1; see Hafner and
Preminger (2009), Boussama et al. (2011) and Wong et al. (2020). In addition, if we only require sup;c, SUp,c = P(laTy,| >
x) = O{x~("*9} for any x > 0 in Condition 1 and a(k) = O{k="("*¢/C)} for all k > 1 in Condition 2 with some
constants v > 2 and € > 0, we can also apply the Fuk-Nagaev-type inequalities to construct the upper bounds for
the tail probabilities of certain statistics for which our testing procedure still works for Kpd diverging at some polynomial
rate of n. We refer to section 3.2 of Chang et al. (2018a) for the implementation of the Fuk-Nagaev-type inequalities in
such a scenario.

Condition 3. There exists a universal constant Cs > 0 independent of (K, p, d, n) such that
1 &
inf Var[ — T, ) >
Inf ar<\/ﬁ ga n[> G

Condition 4. The kernel function K(-) is continuously diﬂ“erentiable with bounded derivatives on R satisfying (i) K(0) = 1,
(i) K(x) = K(—x) for any x € R, and (iii) |KX(x)| < Cs|x|~" as |x] — oo for some universal constants Cg > 0 and ¥ > 1.

Condition 3 is a mild technical assumption for the validity of the Gaussian approximation which requires the long-run
variance of the sequence {a'5,} to be non-degenerate. Note that there are no explicit requirements on the cross-series
dependence, and both weak and strong cross-series dependence are allowed in our theory. Condition 4 is commonly used
for the nonparametric estimation of the long-run covariance matrix; see Newey and West (1987) and Andrews (1991).
For the kernel functions with bounded support such as Parzen kernel and Bartlett kernel, we have ©# = oo in Condition 4.

For 7, and 1, specified in Conditions 1 and 2, we define

1 771172 (2
15° 1871 + 181, — 31112 9 — 31, ’

Such defined fi(71, t2) is used to control the divergence rate of K which is determined from the technical proofs of Gaussian
approximation theory. See Proposition 1 in Section 2. Notice that 7q, 7, € (0, 1]. When 7y = 7, = 1, then fi(7q, 7o) = 1/15.

Assume that the bandwidth b, involved in (10) satisfies b,, < n” for some constant 0 < p < (¢ — 1)/(39% — 2) with ¢
specified in Condition 4. Let

p 20+0—1—-3p0
5° 60 —3

Such defined f5(p, ©) is also used to control the divergence rate of K which is obtained from the estimation of long-run
covariance matrix X, x. See Proposition 2 below. For given kernel function K(-), the parameter ¢ is determined. Since
¥ = oo if K(-) is selected as the kernel functions with bounded support such as Parzen kernel and Bartlett kernel, then
folp, 00) = min{p/5, (1 — 3p)/6}. For given ¥ > 1, the optimal selection of p that maximizes f,(p, ) with respect to p
is (50 — 5)/(219 — 13) and the associated f,(p, ¥) = (0 — 1)/(219 — 13).

At )= mln( (14)

falp, ) = mm( (15)

Proposntlon 2. Assume that Conditions 1, 2 and 4 hold. Let b, < n” for some constant 0 < p < (¢ — 1)/(3¢ — 2), and
K = 0(n®) for some constant 0 < § < fo(p, ) with fo(p, ) defined as (15). Then |Z‘n,K — Yhkle = 0plK™ 3{log(npd)} 2]
provided that log(pd) = o(n )for some constant ¢ > 0 only depending on (11, 72, p, ¥, 8).

Different from the existing literature of high-dimensional covariance matrix estimation, our procedure does not
require X, ¢ to be consistent under the matrix L,-operator norm and therefore it can work without imposing any
structural assumptions on the underlying long-run covariance matrix ', x. More specifically, our procedure only requires
|Z‘n,,< — Ykl = 0plK™ 3{log(npd)} 2], which is a quite mild requirement and our proposed Z‘n k in Section 2.2 satisfies
this even when p and d grow exponentially with n. Now we are ready to present the theoretical guarantees of our testing
procedure (9).

Theorem 1. Assume Conditions 1-4 hold. Let b, =< n” for some constant 0 < p < (® — 1)/(39% — 2). Select K = 0(n®)
for some constant 0 < § < min{fi(tq, ©2), fo(p, ¥)} with fi(tq, ©2) and fo(p, ) defined as (14) and (15), respectively. Then
Py, (Ta > ¢&Vy) — a as n — oo, provided that log(pd) = o(n°) for some constant ¢ > 0 only depending on (t1, 2, p, ¥, 8).

Theorem 1 reveals the validity of our proposed test in the sense that the testing procedure maintains the nominal
significance level asymptotically under the null hypothesis, where pd is allowed to diverge exponentially with respect to
the sample size n. In Theorem 2, the asymptotic power of the proposed tests is analyzed.
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Theorem 2. Assume the conditions of Theorem 1 hold. Let o be the largest element in the main diagonal of X, k, and
write A(K, p, d, @) = {2log(pd)}'/? + {2 log(4K Ja)} /2. If Z - |y] > n"'KoA%(K, p, d, a)(1 + €,)? under the alternative
hypothesis for some €, > 0 satisfying €, — 0 and oA*(K, p, d, @)K~ (logK)‘leﬁ — 00, then Py, (T, > ¢&v,) - lasn — oo.

Theorem 2 shows that our proposed test is consistent under local alternatives. Recall y = (le, ce Yk )T with each
Vi € RPY. When K is fixed and ¢ = O(1), the latter of which holds under suitable assumptions on the data generating
process, the condition that |y|,, > Cn~'?{log(Kpd)}'/? for some positive constant C, is sufficient for Zj’; |Vj|io >
n~'KoX2(K, p, d, )1 + €,)>. As we have discussed in Remark 3, if the time series {x;} is strictly stationary, we know
the transformed data {»,} is also strictly stationary and the proposed test statistic T, given in (3) essentially tests whether
y = E(x,) = 0 or not. As shown in Theorem 3 of Cai et al. (2014), n~"?{log(Kpd)}'/? is the minimax optimal separation
rate of any tests for the (Kpd)-dimensional mean vector hypothesis testing problem Hy : y = 0 versus H; : y # 0 based
on the data {#,};_; if the smallest eigenvalues of Var(»,) are uniformly bounded away from zero. That is, for any «, 8 > 0
satisfying o + 8 < 1, there exists a constant 8o > 0 such that infyc y((s,) SUPg, e 7, Pr, (reject Ho based on &,) < 1 — g for
all sufficiently large n, p and d, where M(8y) = {y € R*? : |p|, > Son~/?{log(Kpd)}'/?}, and T, is the set of all a-level
tests for the test Hy : y = 0 versus H; : ¥ # 0. Hence, if the time series {x,} is strictly stationary, our proposed testing
procedure with fixed K will share some minimax optimal property.

4. General martingale difference hypothesis and specification testing

Our test procedure can also be extended to a more general martingale difference hypothesis, that is
Ho : E(X; | Fi—1) = p, forany t € Z, (16)

where u, € RP is an unknown vector. In this scenario, we can consider the test statistic
T“EW—an“eWz (17)

where " = (n —j)~ TS vec (X )(Xeyj — X) T} with X = n! Zt | X¢. Write X, = X, — . In comparison to T, given
in (3), we replace x.; there by its mean-centered version X;4; — X in T;*". Notice that

1 &
f’;ew _ Z VGC( t-H |:n—] ZE{¢(XS)}:|X;F)
s=1

lj

1 n—j —j 1 n
+veC<[n_].§1E{¢(Xf)}]< gj - 1&))

t=

1I;

n—j
—vec{(n%ijm x:) — E((x.) )( xt) }
t=1 t=1

111

=

S| =

2~ new

Since K = o(n) and j € [K], I; is the leading term of p
Define

, and II; and III; are the negligible terms in comparison to I;.

vec(p(x )k, — [(n — 17" 02) E(G(x:)}I%,)

"new _ .
t .
-1 n—K °T
Vec(¢(xt) t+K [(n - K) Zs:l E{¢(XS)}]X[ )
Write 1 = n — K. If Conditions 1 and 3 hold for ", together with Condition 2, we know the null distribution of T,
can be approximated by that of its Gaussian analogue Gi*" = Z]K:] |g‘}§‘”|2 , where £; = {(j — 1)pd + 1, ..., jpd} and
J? 00 R

g = (g1, ..., gie)T ~ N(0, X% with Z1S¢ = Cov(i="/2 Y1, ppe™). Write X, = x; — X and
vec[p(x )X, — {(n — 1) 0! p(x)I%/ 1

Anew

vecp(x X, — BN TSI
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Identical to (10), we can adopt the following estimate for X7%":
fi-1 i
Shew “Snew
= K(b—>ﬂj :
j=—fi+1 "
where Hnew — ! Zt—]+1 ﬁ?ew _ f?newxﬁ?i\]lv _ fyneW)T ifj > 0and ﬁjnew — 7! le:_”l(;]?i‘j\l _ f,newxﬁ?ew _ ﬁneW)T

otherw1se with "W = =1 Y jrew
hypothesis test in practice.

. Algorithm 2 states how to implement the proposed general martingale difference

Algorithm 2 Testing procedure for general martingale difference hypothesis

Step 1. Compute the test statistic T/ as in (17), and let @ be a 1 x i1 matrix with (i, j)th element K{(i — j)/bn}.

Step 2. Generate £ = (£1,..., &) ~ N(0, @) independent of X,, and let g% = 7i~1/2 Zt L& — Amew).
Step 3. Draw g7, ..., g5°" independently by Step 2 for some large integer B.

Step 4. For given significance level o € (0, 1), take the |BoJth largest value among GK H 6;}?1“; as the critical value
&y, where @,‘}e:” = Z - |g“e""|2 with g2 = (g7{", ... ,gl“,e(pg) and £; ={(j — 1)pd + 1, ..., jpd}.

Step 5. We reject Hy defined as (16) if T?W > cv,.

Below we shall provide some detailed discussion about potential extension of our test to the specification testing
framework. Let y; and u; be observable p-dimensional and g-dimensional time series, respectively. Consider the time
series model

y: = h(ug; 6p) + x¢, (18)

where x; is the error process, and h(-; -) € RP is a known link function with unknown truth 6, € R™. Without loss of
generality, we assume E(X; | u;) = 0. Model (18) is quite general for our analysis where we can select u; asy;_1, ..., Vi_¢
for some integer £ > 1. For the model diagnosis, we are interested in the hypothesis testing problem:

Hp : {X¢}tez isa MDS  versus  Hjp : {X¢}tez is not a MDS. (19)

Based on the conditional moment restrictions E(x; | u;) = 0, for given basis functions ¥(-) : R? — R/ with pl > m, we can
identify the unknown truth 6y by the pl unconditional moment restrictions

E[{y; — h(u;; 60)} ® ¥(u,)] =0,

where ® denotes the Kronecker product.
Case 1. If m is fixed or diverges slowly with the sample size n, applying the estimation procedure suggested in Chang
et al. (2015), we can obtain a consistent estimator ), for 6y and it admits the following asymptotic expansion:

A 1
0, — 0, =— Zw(y[, u;) + high order term, (20)
n

where w(-) is the influence function such that E{w(y;, u;)} = 0. Write X; = y; — h(u;; 9,1). Together with (20), it holds
that

X; = X; — Vgh(ug; 09) - Z w(ys, ug) + high order term.

s=1

Based on obtained {X;}]_,, we can propose the following test statistic for (19):

K
2
Ti=n) ¥l . (21)
j=1

where yg (n—j)~ Z vec{¢ X; ) r+} In comparison to the original test statistic T, given in (3) based on observed
{x;}f_,, we replace x; there by its estimate X,. By Taylor expansion, under some regularity conditions, it holds that

n—j
Yy = L vec{e(x; )XL ZA] w(y:, u;) + high order term,
o t=1 d t=1
980
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where A; = I EfXey © [Vad(X)Voh(ug; 69)] + [Voh(u,j; 60)] ® ¢(x,)). Define

vec{d(x )X/} — Aw(ye, u;)
f .
N =

vec{p(x, )X/, }' — Agw(y;, u;)

Recall n = n— K. Following the same arguments in Section 2.1, the null distribution of T can be approximated by that of
its Gaussian analogue G = ZJ 1 |g£ | ,where £; = {(j— 1)pd+ 1, ..., jpd} and g° = (g]”, e ,g,”(pd)T ~ N(O Ei‘K) with

Z‘u K= = Cov(n~1/? Zt 1 77[ ). The key challenge here is to construct a valid estimate Z’n ¢ satisfying |2 2;”('00 =
op[K™ 3{log(npd)}—2] with unknown A, ..., Ak and unobserved {x;}.
Case 2. If m > n, we need to assume the unknown truth 6y = (6o 1, .. ., Qo,m)T in (18) is sparse. Let S = {k € [m] :

Bo,k 7 O}. Using the penalized estimation progedure, for example, Chang et al. (2A018c), we can obtain a sparse estimate
0, for 6, satisfying the oracle property: (i) P(6, sc = 0) — 1 as n — oo, and (ii) 8, s follows the asymptotic expansion:

. 1
0,5 —0ps—&, = - Zw(yt, u;) + high order term, (22)
t=1

where w(-) is the influence function such that E{w(y;, u;)} = 0, and &, is the asymptotic bias satisfying |&,|,, = Op(8s)
for some 8, = o(1) but 8, > n~!/2. To propose the testing procedure in the setting with m > n, we need to do the next
three steps first: (a) identify the index set S, (b) estimate the asymptotic bias §,, (c) obtain the bias corrected estimate 6,
for 6y based on the estimate of &,. Write X, = y; — h(u,; n) We can still use the test statistic Tn given in (21) in current
setting. To determine the associated critical value, we only need to replace w(-) and Vgh(-; ) by W(-) and Vg h(:; 6y),
respectively, in the procedure for the setting with fixed or slowly diverging m. However, as commented in Chang et al.
(2021a),if h(-; @) is a nonlinear function of #, the asymptotic bias &, may include some unknown information which makes
the estimation of &, extremely difficult (if not impossible). How to address this problem requires further study.

5. Simulation studies

In this section, we examine the finite sample performance of our proposed test in comparison with the ones proposed
by Hong et al. (2017). All tests in our simulation are implemented at the 5% significance level using 4000 Monte Carlo
replications, and the number of bootstrap replications used to determine the critical value ¢v, in our procedure is chosen
as B = 2000. We set the sample size n € {100, 300} and lags K € {2, 4,6, 8}. The dimension p is set according to
the ratio p/n € {0.04, 0.08, 0.15, 0.4, 1.2}, which covers low-, moderate- and high-dimensional scenarios. Two types
of maps are considered, i.e., (i) linear function (d = p), ¢(X;) = X; (ii) both linear and quadratic functions (d = 2p),
d(x;) = {xtT, (xf)T}T. Furthermore, we use three kernel functions for the estimation of long-run covariance matrix X, g,
ie,

(a) Quadratic Spectral (QS) kernel: Kqs(x) = 25(127%x%)~1{(67rx/5)~ ! sin(67x/5) — cos(67x/5)}.
(b) Parzen (PR) kernel: Kpr(x) = (1 — 6x% + 6]x|>)I(0 < |x| < 1/2) +2(1 — |x|)*I(1/2 < |x| < 1).
(c) Bartlett (BT) kernel: Kgr(x) = (1 — |[xI(]x] < 1).

Recall n = n—K. We use the data-driven bandwidth formulas developed in Andrews (1991) to determine the associated
bandwidth b, involved in these three kernel functions, that is, bgs = 1.3221{a(2)i}"/>, bpr = 2 6614{a(2 )ﬁ}”5 and
bgr = 1.1447{a(1)i}"/3, where a(2) = {3 4p264(1 — pe) 8}{2/"11 GM1 — o)t and a(1) = (N ap2éi(1 —
0e)78(1 + f)[)fz}{zl'(pd] 61— py) } , with p, and &7 being, respectively, the estimated autoregresswe coefficient and
innovation variance from fitting an AR(1) model to time series {n, g}t 1» the Zth component sequence of {n,};_, defined in
(5). Denote the test statistics based on the three kernels with linear map by TPR and TBT, respectively, and denote the
ones with both linear and quadratic map by TQS, T and TgT, respectively. Note that the data-driven formulas by Andrews
(1991) are based on AR(1) model assumption and also deliver an estimation-optimal bandwidth in the low-dimensional
setting. Here we apply it to determine the associated bandwidth b, in both moderate- and high-dimensional settings since
there are no other known formulas and the numerical studies in Chang et al. (2017a) show such formula seems to work
well when the dimension is large. We also include three tests proposed by Hong et al. (2017) in our simulation comparison,
i.e,, the trace-based test Z, the determinant-based test Zge, and the large-dimensional test Zd,;. Note that Hong et al.
(2017) only examined the finite sample performance of Z;, and Zge;, which cannot be implemented when p > /n, whereas
Zdy, is shown to be valid under the assumption p/n — 0 and its implementation becomes infeasible when p > n. The
tests of Hong et al. (2017) require the matrix normalization which is computationally prohibitive in the high-dimensional
setting. See Section S.4 in the supplementary material for the comparison of computational cost between our test and the
tests of Hong et al. (2017).
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5.1. Empirical size
To examine the empirical size, we consider the following models:

Model 1. i.i.d. normal sequence: x; Hg- N(0, A) where A = (ay)pxp With ay = 0.995%! for any k, I € [p].

Model 2. Stochastic volatility model: x; = &; exp(o;) with oy = 0.250,_1+0.05u;, &; Sy N(0, £2,.) and u; Hg- N(O, £2,),
where £2, = (wek)pxp and 2, = (Vyk)pxp With @y = I(k = ) + 0.4I(k # 1) and w,y = 0.9%! for any
k,l € [p].

Model 3. Bivariate constant conditional correlation GARCH(1,1) model: x; = bt]/2 o & withb, =ag+Ab,_; + Azxf_l

and &; i N(0, £2.), where o denotes the Hadamard product, ay = (0.2,0.11)_,)", Ay = 0.91,, Ay =
diag(0.05, 0.08, 0.03 1;72), and 2, = (e u)pxp With w, g = I(k = 1) + 0.5I(k # I) for any k, I € [p]. Here 1,
and I, denote, respectively, the g-dimensional vector with all components being 1 and g-dimensional identity
matrix for any given integer q.

A few comments are in order. Model 1 was used by Chang et al. (2017a) in their simulation for high-dimensional white
noise testing problem. Model 2 is the multivariate extension of the univariate stochastic volatility model considered
in Escanciano and Velasco (2006) for the univariate martingale difference hypothesis testing problem. Model 3 is
motivated from Hong et al. (2017), which reduces to the bivariate GARCH model considered in Hong et al. (2017) when
p=2

As seen from Table 1, our tests have quite accurate size when the dimension p is low for all models. For a fixed sample
size n, the rejection rates tend to decrease as the dimension p increases, showing the impact on the bootstrap-based
approximation from the dimension p. For a fixed dimension p, enlarging sample size from n = 100 to n = 300 helps
to bring down the size distortion to some extent for most kernels and maps, e.g., the empirical sizes for Models 1-3 are
undersized when n = 100 and p/n = 1.2 (p = 120), and the empirical sizes increase and become much closer to the
5% nominal level when n = 300 and p/n = 0.4 (p = 120). Overall our tests show reasonably good size control and the
undersize phenomenon for the moderate- and high-dimensional scenarios could be due to the bandwidth choice, which
is always a difficult issue in practice. The three tests of Hong et al. (2017) also show quite accurate size for Models 1 and
2, and there is some noticeable over-rejection for Model 3 when n = 100. When n = 300 and p/n = 0.4, we are unable to
implement the test Zd,, even though p < n. The reason is that the computation of Zd, requires to store five 1202 x 1202
matrices, and product of three 1207 x 120 matrices during the calculation, which results in running out of the memory
(RAM: 8158 MB). This indicates the difficulty of implementing their tests for p = 120 and beyond.

In order to investigate the influence of the data-driven bandwidth used in our simulation, we examine the sensitivity
of our size and power results by replacing the data-driven bandwidth b, by its scaled version c - b, with ¢ €
(273,272,271, 21 22,23}, Simulation results for Bartlett kernel are displayed in Tables 2 and 4. Simulation results for
Quadratic Spectral kernel and Parzen kernel are reported in the supplementary material. For different multiplies c, the
sizes and powers are relatively robust. In addition, we find that the results for ¢ < 1 perform a little better than these
for ¢ > 1 in general, but not by much. Therefore, the choice of ¢ = 1 in our simulation is reasonable.

5.2. Empirical power

To study the empirical power of the proposed method, we consider the following models:

Model 4. First-order exponential autoregressive model: x, = 0.15x;_1 + exp(—2xf_1) + &; with &; Sy N(O, £2.), where
2, = (a)gykl)pxp with We kI = I(k =1)+ 0.25I(k #* I) for any k, [ € [p].

Model 5. The sum of a white noise and cosine of the first difference of an autoregressive process: X; = &; + 0.8 cos(z; —
z 1) withz, = 0.852,_1+u, &, = A0, £2,) and u, " A0, £2,), where £2, = (. 1)pxp and £24 = (@uii)pxp
with we g = I(k = 1) 4 0.31(k # 1) and w, y = 0.7*7! for any k, I € [p].

Model 6. Threshold autoregressive model of order one: X; = (1, .. .,xt,p)T with x;j = —0.45%;_1jI(x;—1j > 1) +

, id.
0.6x;—1jI(x;—1j < 1) + & for each j € [p], where &; = (&1, ..., st,p)T S N(0, I).

Models 4-6 can be regarded as multivariate extensions of the univariate models considered in Escanciano and Velasco
(2006) (see Models 7-9 there). Table 3 shows that for Models 4-6, the powers based on three different kernels are similar
for the same map with the use of Bartlett kernel exhibiting slightly more power in most cases. When n = 100 and for
Model 4, using the linear and quadratic map leads to more power when p/n < 0.15, but less power when p/n > 0.15.
This can be explained by the impact from the high dimension. The additional nonlinear serial dependence captured by
the quadratic map is apparent when p < 15, but as the dimension p increases to 120, the signal related to nonlinear
dependence is likely dominated by that related to linear dependence and possibly the noise, so using linear map alone
yields more power. Similar phenomena occur for Models 5 and 6. As expected, when we increase the sample size n from
100 to 300, we see the appreciation of the power as both linear and nonlinear serial dependence get strengthened at the
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Table 1
ivical si | ol ol 4 4 T4 i
Empirical sizes (%) of the tests Tos, Tpr, Tgro Tgss Tprs Tgrs Zors Zaer and Zdy for Models 1-3 at the 5% nominal level.
Model 1 Model 2 Model 3
| 1 [ q q q | 1 1 q q q 1 1 1 q q q

noop/n K Tos Teg Tgr Tos Tpr Tgr Zw Zdet Zdw Tog Tpg Tgr Tos Tpr Ter Zw Zdet Zr Tos Tpg Tgr Tgs Ter Ter Zr Zdet Zdiw
100 004 2 42 45 45 43 43 44 52 44 55 42 44 47 22 24 25 52 47 48 35 36 42 29 28 32 67 63 52
4 51 50 52 46 43 45 52 52 54 31 33 35 29 28 32 43 49 63 32 32 35 30 31 34 69 69 63

6 46 44 48 45 45 46 50 47 60 30 29 35 28 27 29 54 44 60 31 31 36 39 40 41 65 68 61

8 44 44 47 50 49 51 56 49 62 28 28 33 29 28 31 54 45 65 33 33 40 45 44 49 67 79 69

008 2 41 41 41 31 32 34 48 49 52 38 39 40 19 18 18 44 49 52 33 32 35 27 25 27 59 80 52

4 39 38 40 44 43 47 60 48 52 30 30 35 18 19 21 54 51 60 26 25 30 27 27 27 71 87 52

6 46 44 46 44 44 47 67 63 62 22 21 25 22 22 24 55 59 56 22 23 28 44 42 45 75 82 71

8 48 49 52 40 39 42 74 57 54 23 20 30 21 22 24 72 55 69 28 28 33 44 44 49 82 89 76

015 2 42 44 44 40 38 42 NA NA 46 34 34 37 19 19 23 NA NA 48 34 34 41 19 19 19 NA NA 51

4 43 42 46 32 32 35 NA NA 43 25 25 27 17 18 21 NA NA 59 22 22 27 25 24 27 NA NA 58

6 42 40 44 38 38 40 NA NA 52 27 29 33 17 16 19 NA NA 57 22 21 28 28 27 30 NA NA 74

8 40 41 45 44 45 48 NA NA 63 27 26 31 21 22 24 NA NA 64 18 18 26 34 36 36 NA NA 83

040 2 38 40 41 21 23 26 NA NA 48 34 35 39 20 23 25 NA NA 47 27 25 30 18 18 19 NA NA 55

4 28 29 32 25 26 26 NA NA 53 32 32 36 21 21 23 NA NA 54 17 17 21 20 22 19 NA NA 66

6 29 30 34 28 28 32 NA NA 56 26 26 31 21 20 21 NA NA 60 11 11 17 24 26 23 NA NA 79

8 32 30 34 32 31 34 NA NA 58 28 28 32 26 25 28 NA NA 52 15 14 22 33 36 34 NA NA 92

120 2 22 23 25 11 12 13 NA NA NA 38 38 43 26 28 27 NA NA NA 16 16 20 29 33 25 NA NA NA

4 20 21 26 11 12 12 NA NA NA 29 31 32 25 25 27 NA NA NA 11 11 18 39 41 31 NA NA NA

6 20 21 24 11 11 13 NA NA NA 33 33 39 23 24 24 NA NA NA 11 11 15 49 53 39 NA NA NA

8 14 17 20 12 12 14 NA NA NA 31 32 38 29 31 32 NA NA NA 11 10 15 63 67 55 NA NA NA

300 004 2 56 55 58 42 41 44 51 55 58 41 41 42 38 37 39 49 56 47 40 40 40 36 34 38 62 75 52
4 39 42 45 47 46 50 59 54 50 37 39 42 29 28 32 61 59 56 38 37 41 33 34 39 62 66 55

6 42 41 42 55 52 55 64 67 56 39 36 39 39 40 42 66 68 64 37 37 41 47 47 49 73 79 56

8 47 48 50 60 60 63 71 69 58 37 38 40 41 40 43 71 64 51 32 30 34 44 44 48 86 80 63

008 2 48 48 50 40 40 41 NA NA 55 42 43 44 35 36 38 NA NA 48 36 35 38 32 32 32 NA NA 56

4 38 38 39 41 40 42 NA NA 52 38 35 38 37 36 39 NA NA 50 37 35 40 32 30 34 NA NA 54

6 46 44 50 50 50 54 NA NA 50 36 33 38 41 42 44 NA NA 54 33 32 37 34 33 37 NA NA 53

8 39 42 43 57 59 61 NA NA 54 37 36 41 38 37 40 NA NA 54 30 30 34 36 37 1 NA NA 59

015 2 47 46 48 38 39 43 NA NA 60 44 44 47 37 36 39 NA NA 46 39 40 42 31 29 33 NA NA 50

4 44 44 46 44 43 46 NA NA 46 37 39 39 42 42 44 NA NA 51 32 32 36 32 30 33 NA NA 53

6 39 39 41 46 44 48 NA NA 51 35 35 38 34 37 38 NA NA 53 32 30 34 36 35 38 NA NA 638

8 39 40 42 44 44 47 NA NA 56 35 35 37 42 43 44 NA NA 56 30 30 34 36 34 41 NA NA 59

040 2 42 42 43 26 26 28 NA NA NA 45 46 48 31 30 34 NA NA NA 38 38 41 28 27 31 NA NA NA

4 35 35 36 32 32 35 NA NA NA 42 43 45 38 37 40 NA NA NA 31 31 35 27 26 30 NA NA NA

6 37 39 42 41 41 47 NA NA NA 41 40 44 39 40 42 NA NA NA 27 26 30 24 23 27 NA NA NA

8 32 33 38 41 40 46 NA NA NA 41 41 42 42 42 44 NA NA NA 23 23 28 28 29 31 NA NA NA

120 2 31 30 34 18 17 20 NA NA NA 40 42 42 39 39 40 NA NA NA 38 38 40 24 24 28 NA NA NA

4 23 22 24 18 18 20 NA NA NA 38 39 40 39 39 42 NA NA NA 27 27 31 18 19 20 NA NA NA

6 13 12 17 17 17 19 NA NA NA 38 35 39 42 44 47 NA NA NA 21 22 26 21 21 22 NA NA NA

8 11 13 18 17 18 21 NA NA NA 42 44 46 40 39 42 NA NA NA 18 17 24 20 20 25 NA NA NA

sample level. Overall, the powers of our tests are quite encouraging for the three models, and all combinations of kernel
and map under consideration.

By contrast, the three tests of Hong et al. (2017) mostly fail to reject the martingale difference hypothesis for Models
4 and 5 in all settings. This is presumably due to the inability of their tests to capture nonlinear serial dependence. For
Model 6, their tests exhibit great power, which is probably due to the fact that the model implies strong linear serial
dependence although it is a nonlinear model per se. Indeed, the sample ACF at lag 1, 2, 3 are 0.324, 0.120 and 0.046,
respectively, based on our simulation. Again their tests cannot be implemented when p is too large relative to n, as their
ability of handling the high dimension is quite limited.

5.3. Power curve

In this subsection, we perturb Models 1-3 so that the new sequence is not a MDS and present power curves. For given
constant a € {0, 0.5, 1, 1.5, 2, 2.5}, the model settings are as follows:

Model 1'. Let x; follow Model 1 andy; = Xx; + a exp(—fofl).
Model 2'. Let x; follow Model 2 and y; = X; + acos(&;_; o 6:_1), Where &;_; and o;_ are specified in Model 2.

Model 3'. Let x; follow Model 3 and y; = X; + a log(xf_z).

We aim to test whether {y;};c7 defined in Models 1'-3" is a MDS. When a = 0, y; = X, and Models 1'-3’ become Models
1-3, respectively, which follow the null hypothesis. Figs. 1-3 display the empirical sizes and powers of our proposed tests
(TéT, TgT) and Hong et al. (2017)’s test (Zd;;) when the sample size n = 100. Notice that Zd, is feasible when p < n. Thus
when p/n = 1.2, there is no power curve for Zd.. As seen from Fig. 1, our tests and Hong et al. (2017)’s test control
the empirical sizes well under the null hypothesis with a = 0 and the empirical powers increase for larger values of
the distance parameter a. But our tests outperform Hong et al. (2017)’s test especially for large K. In Fig. 2, Hong et al.
(2017)'s test almost cannot detect the alternative hypotheses, but our tests still work well. This is presumably due to the
inability of their test to capture nonlinear serial dependence. Based on Fig. 3, similar phenomenon is observed that the
empirical powers increase as the distance a grows. Somewhat counter-intuitively, the empirical powers of Zd,, decrease
when a increases from 2 to 2.5, which means the power is non-monotonic. In addition, comparing the results of our tests
for two maps, we find that the test based on linear and quadratic map is more powerful than the test only based on
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Table 2
Empirical sizes (%) of the tests T}, and Tg; for Models 1-3 at the 5% nominal level, where ¢

represents the constant which is multiplied by Andrews’ bandwidth.

: |
Model 1 with Tgr

: q
Model 1 with Tgr

: 1
Model 2 with Tgr

Model 2 with T3 Model 3 with T}

: q
Model 3 with Tgr

BT
c c Cc c c c

noopm Kk 273 272 271 20 o1 52 53 573 572 5=1 50 1 52 53 53 5=2 51 0 1 52 3 =3 =2 51 R0 51 52 53 53 =2 51 R0 1 52 53 53 52 51 0 51 2 3
100 004 2 46 49 47 43 53 61 94 42 43 42 40 43 45 79 42 44 41 40 40 41 55 30 30 28 25 24 28 43 41 40 36 36 37 39 50 39 37 28 28 29 30 39
4 51 50 48 45 43 53 66 50 42 44 46 38 48 64 43 43 34 38 29 24 34 28 35 31 34 23 22 27 44 44 38 35 26 25 27 39 40 40 32 29 30 34

6 51 50 41 48 45 41 60 53 50 49 51 51 45 58 38 40 32 28 20 21 21 31 32 35 30 29 23 27 42 43 40 38 28 19 22 44 46 45 42 37 36 36

8 57 53 49 54 45 41 40 53 56 50 61 48 55 51 35 36 41 32 23 20 15 37 33 35 37 33 31 32 38 41 47 39 27 19 15 60 58 53 52 40 43 42

008 2 49 42 43 46 49 59 92 42 43 41 42 43 52 72 43 40 34 41 35 41 57 25 26 22 22 23 22 37 40 38 42 34 32 40 45 31 33 30 27 30 25 43
4 54 48 51 42 37 46 50 45 40 44 46 38 39 57 39 35 35 30 23 21 25 28 27 18 20 22 19 24 37 37 37 31 26 22 24 36 38 32 33 28 23 3.1

6 47 47 51 41 37 45 47 49 50 55 46 45 38 53 33 36 37 31 27 13 21 25 25 26 22 22 17 22 43 39 37 29 22 15 14 43 45 34 40 34 23 27

8 48 52 46 40 45 33 43 48 50 53 52 50 42 44 32 30 34 26 21 15 08 25 29 27 21 20 23 21 45 40 37 34 20 13 12 50 55 48 44 41 34 40

015 2 53 45 44 45 45 56 89 42 32 33 40 37 41 61 43 44 43 33 39 48 51 25 22 21 24 22 20 27 42 38 36 40 31 29 39 33 30 25 24 18 24 31
4 50 47 43 39 37 38 56 43 40 40 38 32 35 46 38 39 36 30 24 26 27 24 19 22 19 20 19 22 29 33 35 28 19 16 18 34 36 29 25 23 25 26

6 40 45 47 39 43 36 36 37 41 39 41 39 39 38 32 36 33 29 23 14 16 23 20 22 16 26 18 20 32 36 35 32 17 13 10 38 37 26 35 24 31 32

8 48 47 45 39 39 30 3.1 45 49 45 48 43 37 41 33 35 31 30 20 10 09 24 29 24 21 20 18 20 30 36 32 23 15 09 07 39 41 36 39 34 30 34

040 2 46 41 42 42 47 45 64 31 31 27 26 27 29 51 41 38 40 36 38 40 59 24 26 22 26 20 29 38 35 39 30 31 27 22 23 18 26 23 15 22 24 32
4 35 36 38 32 34 26 35 27 29 31 29 30 27 31 40 35 41 36 29 25 33 25 27 25 23 22 21 25 30 28 26 22 14 10 09 23 22 24 20 21 24 31

6 40 42 41 38 28 22 28 30 37 29 32 22 23 32 39 40 32 34 28 20 22 25 29 24 24 21 20 22 32 32 29 20 12 06 05 29 28 32 26 27 29 43

$ 38 37 40 38 3.1 23 17 35 32 33 35 30 28 25 35 39 37 32 21 19 14 28 29 32 21 21 25 25 29 31 23 19 13 07 06 30 31 37 34 40 40 48

120 2 39 44 31 31 29 31 41 18 18 14 14 11 14 22 45 40 39 41 43 51 65 31 24 27 26 25 29 47 31 34 26 24 18 18 15 18 21 21 21 30 46 50
4 29 30 25 24 14 13 21 18 17 16 13 12 12 16 45 37 42 36 38 40 41 27 28 30 28 24 24 33 23 21 17 14 08 06 04 14 20 24 29 42 54 63

6 28 30 23 22 16 09 09 18 18 18 17 12 14 16 38 42 38 32 30 30 32 27 33 29 31 27 22 27 20 17 16 12 07 05 05 19 24 29 39 47 65 87
8§ 29 28 24 23 14 08 05 19 19 20 17 14 14 11 40 41 41 37 29 24 24 32 32 32 29 32 27 28 17 20 17 14 06 05 04 23 30 37 53 69 84 106

300 004 2 52 48 52 47 49 46 56 47 46 50 44 48 48 56 44 49 40 40 38 44 43 37 39 35 36 32 37 34 42 50 44 44 38 41 39 40 41 38 34 29 30 30
4 45 46 52 43 48 46 46 56 54 43 49 48 46 41 42 40 38 37 33 32 30 42 36 46 40 34 29 29 45 41 46 35 33 27 24 45 41 46 40 31 23 24

6 49 46 43 47 46 34 36 57 57 51 50 43 45 39 49 35 40 40 33 23 18 39 41 47 42 39 38 24 43 50 38 35 26 21 17 50 57 49 43 32 25 22

8 51 50 56 43 37 35 32 68 65 63 56 54 54 47 44 45 41 35 33 17 17 53 46 44 44 39 31 34 37 42 38 33 32 17 12 52 57 50 49 35 29 21

008 2 48 47 41 49 42 46 51 44 48 44 43 45 45 43 46 49 49 44 45 44 48 40 41 38 31 33 33 37 45 47 42 43 34 38 29 39 32 35 32 36 30 26
4 52 46 46 41 43 37 43 51 51 50 48 44 38 37 42 41 39 44 37 3.1 31 48 39 44 42 36 31 29 47 45 39 39 33 24 23 42 46 42 32 33 23 20

6 43 44 51 46 39 35 27 62 58 56 56 51 44 31 47 42 41 42 30 27 24 49 48 42 43 35 32 27 42 36 40 40 30 19 15 45 48 43 41 34 24 21

8 51 48 50 41 38 27 20 62 57 53 54 45 47 40 40 43 44 36 34 21 16 48 44 45 36 45 33 31 41 42 39 27 25 16 07 56 52 50 40 35 34 17

015 2 43 43 54 50 44 51 50 45 42 40 36 36 38 43 50 40 44 44 46 48 47 37 42 38 34 32 36 38 40 48 38 40 40 29 27 44 36 37 29 26 26 27
4 46 43 44 45 33 3.1 34 44 44 49 42 43 35 35 48 48 47 42 36 43 36 44 41 37 39 31 28 29 41 40 40 35 29 24 17 40 35 32 33 21 22 16

6 52 43 41 46 37 29 29 51 50 50 50 40 35 28 46 48 48 39 33 29 28 55 43 46 36 39 31 31 42 37 36 35 20 16 10 45 43 43 43 28 21 15

8 43 41 42 37 27 25 22 53 50 57 55 49 35 31 38 42 43 48 34 27 17 43 45 47 45 39 37 30 40 37 37 31 22 14 04 49 50 42 39 36 22 14

040 2 42 42 47 38 37 42 35 38 38 29 32 31 27 30 52 45 51 48 50 49 53 35 42 44 35 33 36 36 43 45 38 38 41 30 28 39 34 35 28 25 20 20
4 38 38 39 39 34 30 17 42 46 32 32 27 24 21 49 44 43 45 46 37 37 49 46 46 42 41 34 26 40 39 36 26 33 21 13 38 34 35 29 24 17 16

6 38 41 31 34 29 21 14 37 41 44 33 29 29 17 46 45 42 44 40 32 31 49 41 44 42 41 32 34 36 39 36 34 20 14 09 39 37 31 31 26 18 15

8 38 32 38 34 26 15 07 37 40 43 38 35 26 19 42 47 43 37 35 28 24 58 51 46 44 42 40 36 34 34 31 26 18 10 04 45 39 39 30 24 16 13

120 2 30 36 34 34 32 24 19 20 19 18 18 13 15 12 46 54 49 52 48 44 57 46 44 46 43 40 42 45 43 45 39 35 27 32 21 31 27 28 23 22 20 16
4 36 29 29 3522 12 08 20 19 22 16 14 10 06 46 48 45 41 38 37 37 41 43 42 41 34 38 38 32 36 40 28 22 13 09 28 28 25 23 17 13 09

6 26 24 26 21 15 06 02 23 23 18 16 14 09 07 47 41 44 44 36 35 35 54 44 44 43 42 39 37 32 29 27 26 17 10 03 32 32 27 23 22 13 13

8 21 27 26 16 12 06 01 22 20 21 22 19 08 07 45 36 40 45 43 36 25 51 45 50 45 46 38 37 29 28 28 21 14 08 02 35 36 30 26 23 16 10

onys X pup Subif D ‘Subyd |
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Table 3
i [l ol 74 T4 i
Empirical powers (%) of the tests Tog, Tpg, Ters Tos, Tprs Tgro Zers Zder and Zdy for Models 4-6 at the 5% nominal level.
Model 4 Model 5 Model 6
| 1 1 q q q 1 1 1 q q q | [ 1 q q q
noop/m K Tos Top Tar Tos Tpp Ty Zr Zdet Zdw Tos Top Tar Tos Tpr Ter Zw Zdet Zdwr Tos Tpr  Tpr Tos Tpr Ter Ar Zdet Ztr
100 004 2 790 78.1 812 935 935 945 61 55 60 657 652 69.1 942 943 955 45 47 56 770 774 844 805 813 854 100 639 100
4 878 875 892 978 978 983 67 60 59 815 803 834 983 984 986 45 46 66 667 665 777 757 762 818 997 624 994
6 911 909 926 987 987 990 64 50 66 87.1 868 891 990 990 992 50 54 73 647 638 768 756 768 823 977 596 97.0
8 935 930 945 993 99.1 994 46 57 68 909 908 923 992 991 994 49 53 79 666 651 78.0 778 779 848 942 525 911
008 2 822 816 848 930 932 947 64 70 57 718 717 763 949 950 960 43 50 49 750 751 852 710 723 787 100 517 100
4 918 914 930 977 978 982 67 69 63 867 860 892 979 978 984 57 56 69 658 652 799 656 676 753 100 633 100
6 939 936 953 986 987 989 54 74 67 907 904 927 990 991 993 65 63 82 636 627 786 650 657 750 100 660 999
8 953 950 963 99.1 992 993 58 67 70 926 926 949 990 989 992 66 61 9.1 616 604 778 658 665 759 997 614 997
015 2 842 841 872 908 910 927 NA NA 59 747 746 801 917 919 937 NA NA 53 713 716 833 603 624 699 NA NA 100
4 922 916 944 968 967 973 NA NA 63 881 875 913 968 968 976 NA NA 66 584 585 767 531 548 649 NA NA 100
6 952 950 966 977 977 979 NA NA 79 915 914 942 977 979 981 NA NA 94 555 546 754 501 515 629 NA NA 100
8 960 958 97.1 983 982 986 NA NA 82 944 944 962 984 985 988 NA NA 112 543 532 753 489 508 617 NA NA 100
040 2 850 845 887 788 797 824 NA NA 63 737 734 796 805 814 847 NA NA 59 620 628 817 445 477 553 NA NA 100
4 915 911 943 884 890 904 NA NA 70 876 870 914 900 907 926 NA NA 92 472 470 729 346 377 449 NA NA 100
6 946 942 969 917 922 934 NA NA 67 917 912 945 918 922 937 NA NA 128 404 388 695 323 341 411 NA NA 100
8 952 949 972 922 927 933 NA NA 94 929 928 958 936 939 952 NA NA 145 363 351 654 320 341 398 NA NA 100
120 2 785 780 839 443 456 488 NA NA NA 676 683 779 525 550 588 NA NA NA 493 491 773 437 468 458 NA NA NA
4 876 869 918 570 586 618 NA NA NA 828 821 838 643 662 701 NA NA NA 300 294 608 469 494 435 NA NA NA
6 892 888 932 583 600 627 NA NA NA 87.01 864 922 686 710 736 NA NA NA 217 209 523 497 531 448 NA NA NA
8 908 903 945 626 642 669 NA NA NA 889 886 929 694 714 748 NA NA NA 175 167 444 539 562 479 NA NA NA
300 004 2 100 100 100 100 100 100 136 83 86 100 100 100 100 100 100 5.0 53 52 100 100 100 994 99.5 99.7 100 99.0 100
4 100 100 100 100 100 100 151 89 104 100 100 100 100 100 100 5.1 59 57 998 998 999 989 99.0 993 100 986 100
6 100 100 100 100 100 100 104 89 79 100 100 100 100 100 100 6.1 65 61 998 997 999 986 985 99.1 100 97.0 100
8 100 100 100 100 100 100 97 92 62 100 100 100 100 100 100 65 69 62 100 100 100 992 992 996 100 957 100
008 2 100 100 100 100 100 100 NA NA 93 100 100 100 100 100 100 NA NA 48 100 100 100 986 986 993 NA NA 100
4 100 100 100 100 100 100 NA NA 117 100 100 100 100 100 100 NA NA 59 999 999 100 982 982 991 NA NA 100
6 100 100 100 100 100 100 NA NA 83 100 100 100 100 100 100 NA NA 60 999 999 100 983 984 991 NA NA 100
8 100 100 100 100 100 100 NA NA 73 100 100 100 100 100 100 NA NA 70 100 100 100 983 983 990 NA NA 100
015 2 100 100 100 100 100 100 NA NA 102 100 100 100 100 100 100 NA NA 56 100 100 100 982 984 988 NA NA 100
4 100 100 100 100 100 100 NA NA 111 100 100 100 100 100 100 NA NA 61 999 999 100 970 970 983 NA NA 100
6 100 100 100 100 100 100 NA NA 99 100 100 100 100 100 100 NA NA 68 999 999 100 972 973 986 NA NA 100
8 100 100 100 100 100 100 NA NA 7.0 100 100 100 100 100 100 NA NA 73 999 100 100 968 97.0 986 NA NA 100
040 2 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 964 964 982 NA NA NA
4 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 999 100 943 944 974 NA NA NA
6 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 999 999 100 920 921 969 NA NA NA
8 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 925 923 969 NA NA NA
120 2 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 929 927 970 NA NA NA
4 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 829 832 930 NA NA NA
6 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 760 761 896 NA NA NA
8 100 100 100 100 100 100 NA NA NA 100 100 100 100 100 100 NA NA NA 100 100 100 693 693 871 NA NA NA

linear map for the three models. This should not be surprising. Since the alternatives in the three models are nonlinear
transformations, the linear and quadratic map can capture both linear and nonlinear dependence. Generally speaking,
both of the two maps perform well in the three models.

6. Real data analysis

In this section, we apply our proposed tests to a real dataset, which collects weekly closing prices from 17 September
2004 to 26 December 2008 for 394 stocks. The returns of the stocks are obtained by the log difference of the data. And
the sample size n for the returns is 223. These stocks can be classified into 9 major sectors, which consist of materials
(22 stocks), real estate (25 stocks), utilities (26 stocks), consumer staples (30 stocks), healthcare (55 stocks), industrials
(56 stocks), financials (58 stocks), IT (60 stocks), and consumer discretionary (62 stocks). Here we examine the validity of
the martingale difference hypothesis within each sector and for all stocks using our tests and the ones proposed in Hong
et al. (2017). Note that neither Z, nor Zge is applicable here, since p < /n is violated for each sector. Hence we only
present the results of Zd,; for each sector, as it is not usable when we apply to all stock returns. Denote by x; the returns
of these stocks at time t. Financial theory usually assumes the stock prices follow geometric Brownian Motion which
implies E(x;) = 0 under the efficient markets hypothesis. We can propose the test statistic Tyean = |n~"/? Z?:] x|, for
the null hypothesis Hy : E(x;) = 0. Using the method given in Section 4.1 of Chang et al. (2021b) with three kernels (QS,
PR, BT) to estimate the associated long-run covariance matrix, the associated p-values for such null hypothesis are 0.759,
0.749 and 0.753, respectively, which means there is no strong evidence against the zero-mean assumption of X; in our
real data.

Table 5 reports the p-values of Zd,, and our tests with assuming E(x;) = 0 and without assuming E(x;) = 0. It
appears that there is no strong evidence against the martingale difference hypothesis based on all tests, except for a
marginally significant p-value of Zd;; when K = 2 for the sector of consumer staples. Generally speaking, the martingale
difference hypothesis is expected to hold for the weekly returns data, so in a sense both our tests and Zd,; help confirming
this property. For the same map, the use of different kernels do not seem to affect the p-values much, indicating the
insensitivity of our results with respect to the kernel. For this particular dataset, the use of linear and quadratic maps also
produces p-values that are not far away from the use of linear maps alone, for most sectors. The p-values corresponding to
Zdy. seem to monotonically decrease as K goes down from 8 to 2 for all sectors, an interesting phenomenon worthy of some
theoretical investigation. In addition, the results of our tests with assuming E(x;) = 0 and without assuming E(x;) = 0
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Table 4
Empirical powers (%) of the tests TéT

and Tg, for Models 4-6 at the 5% nominal level, where ¢

represents the constant which is multiplied by Andrews’ bandwidth.

p/n

K

: 1
Model 4 with Tgr

: q
Model 4 with Tgr

Model 5 with T

BT

: q
Model 5 with Tgr

: 1
Model 6 with Tgr

: q
Model 6 with Tgr

oy

oy

Cc

Cc

c

c

23

22

2—1

20

21

22

23

23

2—2

-1

20

21

22

23

23

2—2

-1

20

21

22

23

23

2—2

21

20

21

22

23

23

2—2

-1

20

21

22

23

23

2—2

-1

20

21

22

23

100

0.04

0.08

0.15

0.40

120

81.2
89.9
93.2
94.4

87.0
93.7
96.7
97.1

88.4
95.6
97.2
97.8

89.7
95.6
97.2
97.8
86.7
93.6
95.3
96.4

818
89.8
93.2
94.7

86.7
93.5
96.2
96.9

88.5
95.4
96.8
98.0

90.9
96.3
97.8
97.8
86.2
93.6
96.1
96.0

80.5
89.3
94.0
94.4

86.6
93.8
96.1
97.2

89.5
94.7
97.2
98.3

89.5
95.7
97.0
97.9
88.1
93.0
96.0
96.3

78.8
88.6
91.3
93.6

85.0
92.6
94.6
96.2

87.0
94.6
96.9
97.0

88.2
93.9
96.1
96.7
83.9
90.4
93.9
94.7

76.6
86.7
89.8
91.2

80.9
89.8
935
93.9

82.2
914
94.2
94.9

81.8
88.7
92.3
93.0
76.3
84.4
87.1
89.3

732
80.6
85.1
88.3

76.6
839
87.2
90.2

75.4
83.6
87.8
89.5

71.2
79.3
82.3
85.7

62.3
69.1
72.2
75.2

72.1
78.3
80.6
82.7

72.7
77.3
80.4
835

69.6
74.9
76.9
80.8

63.0
66.2
68.2
71.0
49.4
51.9
534
553

95.7
99.1
99.3
99.6

95.7
98.4
99.2
99.4

94.4
97.9
98.3
98.6

82.9
90.4
92.4
93.3
51.2
60.3
63.6
63.8

95.9
98.8
99.2
99.6

95.7
98.9
99.2
99.4

93.6
97.7
98.4
98.6

84.6
90.2
92.6
93.1
49.4
60.9
63.9
65.7

95.6
98.9
99.4
99.2

95.2
98.7
99.3
99.1

93.7
97.4
98.3
99.0

82.3
90.7
92.0
937
49.8
60.7
63.1
65.5

935
98.0
99.0
99.4

94.9
98.2
99.0
99.2

92.8
97.3
98.0
98.7

81.4
89.6
92.1
93.1
48.7
58.4
63.7
65.8

93.8
97.7
99.0
99.1

94.2
97.5
98.5
98.6
90.5
97.1
98.2
98.3

79.2
88.0
91.7
924
45.3
55.2
60.1
61.0

92.8
96.6
98.2
99.1

92.6
97.1
98.2
98.9

90.3
95.8
97.0
97.1

76.2
84.7
88.6
90.7
43.6
51.9
56.4
58.6

92.4
97.0
98.2
98.8

92.4
96.4
97.9
98.4

90.3
94.7
95.7
96.4

78.4
84.0
87.6
88.7
46.9
525
54.5
57.2

73.2
85.9
90.2
93.1

80.6
90.4
93.9
95.9

84.7
93.0
95.6
96.9

85.7
93.2
95.7
97.5
84.2
914
94.5
96.1

737
85.6
90.4
934

80.8
90.7
94.3
95.8

83.8
92.6
95.6
96.9

85.3
94.2
96.5
97.4
84.1
91.5
94.6
95.5

72.0
85.9
90.5
925

789
91.1
938
95.6

83.9
925
955
96.6

85.3
93.1
96.3
97.0
84.0
91.2
94.5
954

69.0
83.3
89.3
91.8

76.6
88.9
92.6
95.1

79.0
91.2
93.8
95.7

81.4
91.2
935
95.6
78.5
88.3
91.8
93.3

64.3
79.6
85.9
89.1

69.9
84.1
89.9
92.1

72.5
86.1
90.7
93.1

72.6
84.8
88.9
92.3
65.1
79.5
84.5
86.7

615
729
79.9
84.7

65.3
76.9
82.0
86.6
65.9
755
814
85.4

61.7
73.1
76.9
81.1

523
59.5
67.7
73.2

61.2
69.7
75.9
78.3

63.2
70.5
74.6
79.1

59.6
69.4
74.8
77.3

534
59.2
64.9
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Fig. 1. Empirical sizes and powers of Ty, Tg; and Zd for Model 1’ at the nominal level o = 0.05, where the sample size n = 100.

are quite similar, which is consistent with the aforementioned conclusion that E(x;) is not significantly different from
zero. Overall, our tests are preferred to the ones proposed in Hong et al. (2017) due to the fact that they can be used
regardless of whether the dimension p exceeds the sample size n.

7. Discussion

In this paper, we propose a new martingale difference test that captures nonlinear serial dependence and works in the
high-dimensional environment, as motivated by the increasing availability of high-dimensional nonlinear time series from
economics and finance. Under mild moment and weak temporal dependence assumptions, we establish the validity of
Gaussian approximation and provide a simulation-based approach for critical values. In addition to its built-in capability
of accommodating both low and high dimensions, our test also has a number of appealing features such as being robust to
conditional moments of unknown forms and strong/weak cross-series dependence. From our numerical simulations and
a real data analysis, we observe quite encouraging finite sample performance. Therefore we feel confident to recommend
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Fig. 2. Empirical sizes and powers of TéT, TgT and Zd,, for Model 2’ at the nominal level « = 0.05, where the sample size n = 100.

its use by the practitioners when there is a need to assess the martingale difference hypothesis for econometric/financial
time series of moderate or high dimension.

In the literature, testing quantile/directional predictability has been studied for low-dimensional time series; see Han
et al. (2016). It would be also interesting to extend their test to the high-dimensional setting. A sound data-driven
bandwidth choice in our simulation-based approach for generating the critical values merits additional research, especially
from a testing-optimal viewpoint. We leave these topics for future investigation.

8. Technical proofs

In this section, we provide the detailed proofs for all theoretical results stated in the paper, and also introduce necessary
lemmas and propositions with proofs. Throughout this section, we use C to denote a generic positive finite constant that
does not depend on (p, d, n, K) and may be different in different uses. For two sequences of positive numbers {a,} and
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Fig. 3. Empirical sizes and powers of T, T¢; and Zd, for Model 3’ at the nominal level o« = 0.05, where the sample size n = 100.

{bn}, we write a, < b, or b, > a, if limsup,_, ., @n/bn < co for some positive constant co. We write a, =< b, if a, < b, and
b, < a, hold simultaneously. We write a, < by, or b, > a, if limsup,_, ., a,/b, = 0. For a countable set 7, we use |F| to
denote the cardinality of F.

Write u == (uy, ..., Ugpg) | = (illT, - )A/,I with y; = (n —j)™' Z;’;l vec{¢(xt)xf+j} foranyj e [K]. Leti =n —K.
Recall 5, = ([vec{p(x;)x }I7, ..., [vec{d(x)x }]T)T. Since {X} is an a-mixing process satisfying Condition 2, we know
the newly defined process {7,} is also ¢-mixing with the «-mixing coefficients {d&x(k)}x-1 satisfying

)’ )’

ax (k) < Cyexp(—Calk — K|2), (23)
where the positive constants 7, C3 and C, are specified in Condition 2. Write 3 := (1, ..., 1'7Kpd)T =n! Z?:] 1. For
eachj € [K], define Z; = n MaXeer; u% and Z; =n MaXeg; ﬁf with £; .= {(j— 1)pd+ 1, ..., jpd}. Then the test statistic can
be written as T, = n Y"1, |7,>. = Y_f , Z;. Furthermore, we let T, :== Y% | Z,.
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Table 5
P-values of our tests and Hong et al.’s test for the weekly stock returns.
MDS test General MDS test Hong et al.’s test
Sectors p K Th The Tl Tgs To Tar Tis Tie i Tgs Th T Zdy
Joint test 394 0.334 0.308 0311 0403 0393 0364 0322 0303 0292 0371 0349 0.357 NA
0523 0517 0.546 0440 0462 0443 0524 0508 0.520 0465 0465 0450 NA
0558 0.543 0.570 0522 0526 0499 0574 0513 0589 0506 0510 0512 NA
0612 0.602 0.643 0553 0538 0.521 0639 0600 0.643 0518 0527 0546 NA
Materials 22 0.687 0.676 0.723 0723 0.691 0.687 0.707 0.697 0.696 0.719 0701 0.696 0.500

0741 0729 0772 0749 0726 0.763 0749 0732 0776 0753 0730 0.779 0.759
0582 0.563 0.608 0.586 0566 0.607 0.602 0565 0.609 0595 0572 0594 0.844
0513 0510 0562 0511 0513 0559 0530 0519 0542 0520 0533 0546  0.879

0610 0.610 0.603 0629 0591 0.646 0622 0603 0.614 0610 0600 0.643 0.305
0537 0.518 0.594 0578 0535 0599 0570 0512 0612 0554 0541 0.600 0.385
0464 0.440 0491 0475 0440 0488 0474 0454 0498 0476 0450 0475 0510
0.457 0421 0472 0465 0447 0472 0467 0450 0489 0458 0418 0489 0.612

Real estate 25

Utilities 26 0710 0.683 0.721 0.706 0.687 0.707 0.679 0659 0.698 0.716 0691 0.674 0.166
0755 0.744 0.766 0761 0.737 0.800 0.750 0.745 0.773 0.746 0743 0792 0.173
0756 0.736 0.782 0761 0.736 0.770 0.755 0.747 0.757 0.752 0732 0777 0.171
0565 0.561 0.579 0577 0545 0569 0561 0564 0588 0.594 0560 0587  0.193
Consumer 30 0.804 0.803 0.838 0650 0.648 0.685 0804 0786 0.843 0683 0650 0713 0.042
staples 0411 0.400 0458 0417 0394 0421 0420 0426 0438 0.393 0404 0444 0.170

0446 0466 0462 0358 0346 0.385 0446 0436 0501 0380 0393 0380 0.226
0498 0.516 0.520 0412 0406 0422 0504 0493 0518 0387 0415 0409 0291

0835 0.808 0.846 0813 0816 0.855 0803 0794 0.838 0809 0796 0.848 0.131
0.611 0.603 0.618 0549 0543 0.544 0590 0626 0590 0537 0542 0559 0.172
0636 0.626 0.665 0592 0578 0.591 0625 0616 0.642 0597 0616 0.605 0.188
0.661 0.641 0.657 0615 0.621 0636 0626 0626 0.656 0618 0595 0.614 0351

Healthcare 55

Industrials 56 0588 0.541 0595 0579 0547 0.603 0575 0549 0588 0553 0547 0590 0365
0.642 0.640 0.677 0665 0.617 0.69 0676 0625 0.697 0670 0657 0.686  0.485
0.637 0.630 0.676 0650 0.626 0.665 0666 0629 0.678 0639 0637 0692 0573
0.697 0.698 0.739 0694 0.680 0.730 0706 0.692 0.742 0.705 0683 0723 0.631
Financials 58 0675 0.641 0.676 0265 0254 0.244 0677 0656 0.675 0273 0268 0250 0.148
0715 0.704 0.726 0360 0379 0.347 0719 0703 0.734 0367 0361 0362 0.290
0710 0.708 0.724 0429 0441 0416 0706 0674 0730 0429 0422 0406 0370
0740 0.715 0.763 0485 0497 0478 0.737 0728 0739 0486 0501 0472 0.498
IT 60 0276 0.293 0293 029 0292 0307 0295 0277 0306 0283 0267 0288 0.121
0550 0541 0586 0531 0537 0595 0551 0545 0569 0532 0541 0590  0.299
0610 0.599 0615 0611 0577 0.623 0593 0566 0.634 0583 0583 0.610 0454
0.637 0.588 0.636 0622 0583 0613 0624 0599 0.619 059 0586 0.629 0.629
Consumer 62 0273 0.273 0264 0286 0316 0.303 0267 0274 0260 0318 0306 0308 0.407

0350 0.344 0351 0366 0359 0377 0355 0363 0355 0384 0335 0362 0648
0372 0342 0.385 0407 0393 0409 0358 0363 0360 0387 0395 0390 0.800
0377 0360 0.359 0405 0401 0405 0358 0351 0378 0406 0391 0403 0.888

discretionary

AN COCOARAN OCADRN COCARAN COAOARN OCOARAN COCARN AN COARMN|IRD AN

8.1. A key proposition

Let {z;}{_, be a d,-dimensional dependent sequence with E(z;) = 0 for any t € [n]. Define s, , = n=1/2 ZL] z; and
E =Var(n™"?Y"[_,z,). Write z; = (z¢.1, ..., 2r,4,) . We assume {z,}!_, satisfy the following three assumptions:

AS1. There exist universal constants by > 1, b, > 0 and ry € (0, 1] such that sup;cpn; Supje(q, P(12ci1 > ) < by exp(—byu™)
for any u > 0.

AS2. There exist universal constants a; > 1, a, > 0 and r, € (0, 1] such that the «¢-mixing coefficients of the sequence
{z:}}_,, denoted by {a,(k)}k>1, satisfying o, (k) < a1 exp(—az|k — m|rj) for any k > 1 and some m = m(n) > 0, where
m = o(n) may diverge with n.

AS3. There exists a universal constant ¢ > 0 such that E(jn""2 " | zt,j|2) > c for any j € [d,].

Let's,, ~ N(0, ) be independent of Z, = {z1, ..., Z,}. Define

on:=sup [P(VVsp;+V1—vs;, <u)—P(s,, <u)|. (24)

ueR% ve(0,1]

Chang et al. (2021b) gives an upper bound for o, when m is a fixed constant. Proposition 3 presents a more general result
that allows m diverging with n, whose proof is presented in the supplementary material.
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Proposition 3. Assume d, > n® for some sufficiently small constant @w > 0. Under AS1-AS3, it holds that
_ m'/3(logd,)*?
e~ n1/9

provided that logd, <« min{m3/(6+2rp7r/(18+6r) 1y =3r1/(6+2r1)y7r1/(18+6r1) pra/O=3r2)} with m < n'/°(logn)V/3, where r =
riry/(ry 4+ r2) and ry and r, are specified in AS1 and AS2, respectively.

{m"®(logd,)"/* + m'? + (logd,)"/®"2)}

Proposition 3 requires m involved in Assumption AS2 cannot diverge faster than n'/°(logn)'/3. The proof of Proposi-
tion 3 is based on the widely used “large-and-small-blocks” technique in time series analysis. The key step for the proof
of Proposition 3 is to establish the associated Gaussian approximation result for the partial sum over the large blocks, see
Lemma L4 in the supplementary material. The restrictions on log d, given in Proposition 3 are derived from the conditions
of Lemma L4 with suitable selections of the lengths of large and small blocks. In the proofs of Propositions 2 and 3, and
Theorem 2, we need the following lemma whose proof is given in the supplementary material.

Lemma L1. Under AS1-AS3, it holds that

a+k
max max P(max Z Zj| = x) < exp(—Cq~'m™'x?) 4+ gx~exp(—Cx") + gx ! exp(—Cm~"1x™) (25)
0<asn—q jeldz] kelq] teat1

forany x > 0 and m < q < n, where r = r1ry/(r1 +132).
8.2. Proof of Proposition 1

Recall T, = ZK Zand T, = Z 1 Zi. To construct Proposition 1, we need the following lemma whose proof is given
in the supplementary material.

Lemma L2. Assume Conditions 1-3 hold. Let T = 1172 /(t1 + ©2). If log(Kpd) = o(n*/?) and K™ log(Kpd) = o(n™/?), then

- K3?{log(Kpd)}/?

o — Tal < 7 max[{log(Kpd)}"/*, K {log(Kpd)}'/™]

with probability at least 1 — C(Kpd)~! under Hy.

Recall § = =" Y'_ 5, and Gx = ZJK y MaXeer, |ge|* with g = (g1, ..., 8ipa) T ~ N(0, X k) where X, x = RE{(7 —
w)(ip—p))and p = a~! Zt 1 E(n;). Under Hy, we have u = 0. Thus X, x = nIE(my ). Define v := (vq, ..., vad)T =
1/277 Our proof includes two steps: (i) using Proposition 3 to show sup,_ [P(T, < x) — P(Gx < x)| = o(1), and (ii) using

Lemma L2 to show sup,.¢ |P(T, < x) — P(Gx < x)| = o(1).
Step 1. For any ji,...,jx € [pd] and x > 0, let 4, ; (x) = {b € R : bl by, . < xpwithsS, j =

1wl 1o JK
{i1,jo +pd, . .., jx + (K — 1)pd}. Define A(x; K) ﬂ“ z ﬂ]K 1 Ajy i (®). We then have {T, < x} = {v e A(x; K)} and
{Gk < x} = {g € A(x; K)}. Note that the set A, _;j (x) is convex that only depends on the components in Sj, ;.. For a
generic integer q > 2, denote by S7! the g-dimensional unit sphere. We can reformulate Aji....i (%) as follows:

Ay i) = N {be R :aTh < Vx).

acfaeskpd—1a5 = esk-1y
) JK

Define ¥ = Uﬁdﬂ . --Uf”f:]{a e skpd-1 . ag, € SK71}. Then A(x; K) = (N, (b € Rf : aTb < +/x}. For the unit
sphere S~ equipped with | - |,, it is well-known that its e-covering number Ngx-1 . satisfies € * < Ngk-1, < (1+2¢7 1),
see Lemma 5.2 of Vershynin' (2012). Let S, be an e-net of S¥~! with cardinality Ngk-1 .. Without loss of generality, we
assume S, C SK—1. Then V1) .= {a e skpd-1 . as . € Sc} provides an e-net of {a e skpd-1 . ag i e sk=1)
for any given (ji, ..., jx) € [pd]¥, and |$9""F)| = Ng_: . Furthermore, we know 7, = U“ - Up Ui -
is an e-net of F with || satisfying e * < || < {(2 + €)e 'pd}¥. Recall A(x;K) = (,.-{b € RKI"’ : aTb < WX
Define A1(X) = MNaer (b € R® 2 aTh < (1 — €)y/x} and Ay(x) = N,z (b € R - aTh < /x}). We can show that
Aq(x) C A(x; K) C Ay(x). Define

P1.g(x) = [P{v € A1(x)} — P{g € A1(x)}| Vv |P{v € Ax(x)} — P{g € Ax(x)}],

p2,5(x) = |P{g € Ax(x)} — P{g € Ai(x)}].
It then holds that

P{v € A(x; K)} < P{v € Ay(x)} < P{g € Ax(x)} + p1,g(X)
< Plg € Ai(X)} + p2.g(x) + p1.g(x)
< P{g € A(X; K)} + p1,g(x) + p2g(x).
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Analogously, we also have P{v € A(x; K)} > P{g € A(x; K)} — p1,4(X) — p2,¢(x). Hence, we have

IP(v € Ax; K)} — Plg € A(x; K)}| < prg(X) + pg(x). (26)

We set € = n~! throughout the following arguments. Then |F,| > nX. Due to 7, € (0, 1], it holds that K < (log |F.|)"/".
Note that K < n'/°(logn)!/3. By Proposition 3 with m = K, d, < (npd)¥ and (ry, ry) = (71, To), we have

P(max a'vg x) — P(max aTg < x)
acFe acFe

S n—1/91<5/3{10g(npd)}7/6 + n—]/9K(1+3r2)/(3T2){log(npd)}(1+2r2)/(31:2) ,

sup p1 g(x) = sup

x>0 x>0

provided that log(npd) < min{K(*=6)/(6+20)y7t/(18+67)  =(6+571)/(6+2m1)7r1/(18+671) | k—1p72/(9=3%2)} T make sup,. o p1.¢(X)
= 0(1), we need to require log(npd) < min{n?/21K=10/7 pr2/G+6w2)g-(1+322)/(1+202)} Notice that p g(x) = P{(1 — €)y/x <
MaXae £, a'g < x). If x < K3{log(npd)}?, by Nazarov's inequality (Lemma A.1, Chernozhukov et al., 2017), we have
02.6(%) < Ce/xTog|Fe| < n~1K?{log(npd)}?. If x > K3{log(npd)}?, by Markov inequality, we have

P24(0) < {(1 — WA <maxa'g S < log(npd)} ",

acFe

E(maxacr, [a'g])
(1= €)K>/2{log(npd)}

where the last step is based on Lemma 7.4 in Fan et al. (2018). Hence, sup,. o p2.4(x) = o(1) if log(npd) < min{n®?1K~19/7
n72/BG+6n) g -(1+302)/(1+2120) Dye to |P(T, < x) — P(Gg < x)| = [P{v € A(x; K)} — P{g € A(x; K)}|, (26) implies

sup [P(T, < x) — P(Gx < X)| = o(1)
x>0
provided that log(npd) < n.lin{K(z'76)/(6+21)n7r/(18+61:)7 K7(6+511 )/(G+211)n711/(18+61'1), [(711’112/(97312), K*(1+31’2)/(l+2t2)nr2/(3+6r2)’
K710/7n2/21}_
Step 2. For any ¢ > 0, we have
sup [P(T, < x) — P(Gx < X)| < sup [P(T, < x) = P(G < X)| + P(|Ty — To| > ¢)+supP(x — ¢ < G <x+¢).  (27)

x>0 x>0 x>0

Note that K = o(n). Selecting ¢ = CK*/?{log(npd)}"/?n~"/? max[{log(npd)}"/*, K {log(npd)}"/*1] for some sufficiently large
constant C > 0, Lemma L2 yields that P(|T, — T,| > ¢) = o(1). In the sequel, we will c0n51der Px—¢ <Gy <x+4+¢)
under the scenarios x < ¢ and x > ¢, respectively. Notice that (1,0,...,0)"T € Fand (—1,0,...,0)" € F. Recall that
g=I(g,... ,g,(pd) N(0, X, k) and {Gx < x} = {Maxaera' g < X} for any x > 0. Then we have

supP(x — ¢ < Gg <X+ ¢) < supP(Gg x—i—;)_supP(maxag \/x—i-{)

X<g X< X<g

<supP(—y/x+ 7 <g < VX+2) SV, (28)

X<¢

where the last step is due to the anti-concentration inequality of normal random variable. For any x > ¢, it holds that
P(x—¢ <Gk <x+¢)=P(Gk <x+¢)— PGk <x—

P(maxa g < ) {maxa g < 1—6)4){—{}

acF,

IP( axa g<«f+f) {ngtxaTg«l—e)(f—\/E)}
]P{l—ef f<maxag 1—e)ﬁ}
+P{(1—e)ﬁ<£1;afxaTg<«/§+/E}.

Recall | 7| < {(2+€)e~'pd}* with € = n~'. By Nazarov's inequality, we have sup,., P{(1—€)(v/X—+/) < MaXscr, a' g <
(1 — €)v/x} < ZKlog(npd) and sup,., P(v/x < maxser, a'g < /x + /) < +/ZKTog(npd). Due to P{(1 — €)y/x <
MaXaer, '8 < /X + +/T} = p24(X) + P(v/X < Maxacr, a'g < /X + +/T), together with (28), we have

supP(x — ¢ <Gk <x+¢) < sup,ozg (x) + +/¢K log(npd) = o(1 ¢K log(npd) .

x>0
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If log(npd) < min{K —>7/Gt+2)pv/Gr+2) g=701/Bu+pn/Bnu+2)) then ¢K log(npd) = o(1). By (27), to make sup,. o |P(T, < X)
—P(Gk < x)| = o(1), we need to require K < n'/°(logn)!/® and

K7(671)/(6+2‘r)n7‘r/(18+6r) ,

K —(6+5e)/(6+201) 771 /(18+671)

K~ 1n%2/(9-3%) ,

K—10/72/21

K—(1430)/(1420) g0 /(3-+672)

K—Sr/(3r+2)nr/(3t+2) ,

I(—7'[1/(3r1+2)nr1/(31:1+2) .

log(npd) «

Due to log(npd) — oo as n — oo, K should satisfy the restriction K <« n1("-%2) with fi(z, 7o) specified in (14). If
K = 0(n®) for some constant 0 < 8§ < fi(7y, 72), there exists a constant ¢ > 0 only depending on (zy, 72, 8) such that
sup,-o |P(T, < x) — P(Gk < x)| = o(1) provided that log(pd) <« n°. O

8.3. Proof of Proposition 2
Write g = (@1, ..., fipa) = 1Zt 1 E(n,). Define X7 = Z]"_JHH K(j/ba)H;, where H; = A~! Zt—j«H (g, —
w)(me_j — )T} ifj>0and H; = ﬁ“ thfjﬂ IE{(nH] wn)n, — )"} if j < 0. By the triangle inequality, we have
|En,K - En,Kloo < |§n,K - 2;1('00 + |2:,K - 2”*K|oo
Let 7, = (t172)/(71 + 2712). As we will show later in Sections 8.3.1 and 8.3.2, |2ﬁ,1< - Ykl S n~"K?, and

" {log(npd)}>m17—m1)/CGro=m1) {log(npd)}*/™ {log(npd)}'/™
kloe =0 (2o 0 —1-3p9)/(20 1) Pl nloto—2p0-1)/ Op ni-»

1Tk —

provided that K < n(209+1-20)/@7=D{log(npd)}4="/@n10 =) A n(1=p++9)/? Therefore, K3{log(npd)}*| Znx — Znk o
0p(1) provided that 0 < p < (¥ — 1)/(3% — 2) and
K=5/2nel>
{Kf(ﬁﬂ73)n(2p+197173p19)}11/(2+51'119731’1)
log(npd) < ’
{K7319n,0+1972p07]}11/(20+21:117) ,

K—3r*/(1+2r*)n(r* —pt4)/(14274) .

Due to log(npd) — oo asn — oo, K should satisfy the restriction K <« n2>?) with fo(p, ®) specified in (15). If
K = 0(n®) for some constant 0 < 8§ < fy(p, ©), there exists a constant ¢ > 0 only depending on (71, T2, p, ¥, §) such
that K3{log(npd)}2|2n k — Xl = 0p(1) provided that log(pd) <« n°. O

8.3.1. Convergence rate of |§‘n k= Xkl
Without loss of generallty, we can assume g = 0. Recall that ZJn K= 27—1n+1 K(j/bn )H,, where HJ =n" Zt_]H N —

nm,_—n)'"ifj >0, HJ =n" Zr7—1+1 ; — 1)(m, — )" otherwise, i =n —K and 7 = i Zt:] n;. By the triangle
inequality, it holds that

fl

n—1 .
zc( )[ S o — (mn:_jn]\
0 n

& = t=j+1 o

1

2 K(i)(ﬁj _H)

Jj=

n—1 ] 1 l n—1 j 1 l T
2G| 2 GG 2 )

j=0 n t=j+1 00 j=0 n =j+1 oo

11 11

-1 - . .
B

o\ bn ©

v
In the sequel, we will specify the convergence rates of I, II, Il and IV respectively. Recall 5, = (.1, - - - » Ne.kpd) -
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Convergence rate of 1. Given {1, £, € [Kpd], we define vV = neij oM., — BNt eqMe,¢,)- For any M = o(n) — oo
N
2 K(E) |:ﬁ Z (e.eyMe—je, — E(Ur,emtjfzz)}}
. "} (29)
2
for any x > 0. Lemma 2 of Chang et al. (2013) yields maxo<j<ji— : max;e(i—j) P(1¥ej| > x) < Cexp(—Cx"/2) for any x > 0.

satisfying M > K and b, = o(M), we have
IP’( > x)
= t=j+1
M j 1 fi—j X i—j
(Tl 1= R 2

j=0 t=1 j=M+1 =1
By Condition 4 and b, < n” for some p € (0, 1), we have ", M+l K(/by) < Z—M+l(]/b ™% < n?M'~?. Analogous to
Lemma 4 of Chang et al. (2018b), we can show that

n—1 J 1 n—j X n—1 Mﬁ 1
(S (D3]« & e(iDn]- %)
j=M+1 t=1 j=M+1
i-1 fi—j CM?—1x X CMT1(®—1)/2471/2
Z Z]P(h”[] ne? ) <n exp{— nrot1/2 } (30)
j=M+1 t=1

for any x > 0. Write D,, = ijo [K(G/bn)| and 7, = (t172)/(71 + 2713). It is easy to see D, < b, =< n”. For each

given j, we observe that {y;;} is also an «-mixing sequence and its «-mixing coefficients aw[ (k) < ak(lk—jly) <
Csexp(—Cylk —j — K| %), where ag(-) is the a-mixing coefficients of the process {5,} defined in (23). By Bonferroni
inequality and Lemma L1 withq=n—jm=j+ K, r = 11/2, 1, = 1; and r = t,, we have

LRS- 2} S 2)

=0
Cnl 2042 Cn(1=p)t1/2471/2
<M exp( ) [exp{—Cn“”)’*x’*} + exp{— ”

M7t1/2
- x)

for any x > 0. Together with (29) and (30), it holds that

Pl > x) < Z Z (Z ( >[ Z{mzmuzz (nt,hntﬁ',éz)}]

£1€[Kpd] £;€[Kpd] j=0 t=j+1
CMT1(0=1)/2571/2 Cnl—2rx2
< (Kpdn)? eXp{ _11/"971/2} + M(Kpd)? exp(—M)
Mn?(Kpd)? ey s Cn1=P)e1/2x71/2
+ — exp{—Cn x™} + exp ———pE

for any x > 0, which implies that

! 2/m 1/2 172 2/ 1/,
- op[%} +OD[M} +Op[w} +OD[M} '

M?-1 n(1-2p)/2 nl-»r nl-r (31)

To make I converge as fast as possible, we need to specify the optimal M in (31). If log(npd) < n('=P@-1a/IPE-1} with
selecting M < n(20?+1-20)/20=1){]og(npd)}(4—71)/C117=71) e have

[{log(npd)}‘z““’f”/rl ]”m_”} o [{log(npd)}”f* ]
o| P

=0, 209 —1-3p0 nl-»r

If log(npd) > n(1—PX0=D11/0(A-1)} with selecting M < n'~P+#%)/? 'we have

r 2/7q 1/«
{log(npd)} ] +Op[{log(npd)} }

I=0 | nlo+9—200-1)/9 ni-»

Therefore, we can conclude that

(24119—11)/71 71/(29-1) 2/11 1/74
[{log(npd)} } }+o [{log(npd)} ]+Op[{log(npd)} }

=0, 209 —1-3p0 P| ploto—2p0—1)/9 ni-»

provided that K < n(2pz9+172p)/(219—1){log(npd)}(4—r1)/(21'119—1'1) A n(17,0+,019)/z9.
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Convergence rates of I and IIl. Given ¢4, ¢, € [Kpd], write

BT

j=0 t=j+1
By Bonferroni inequality and the triangle inequality, it holds that

AV o x
K(m)Hﬁ > ey —E(m,el)}‘lﬂzzl > 5}

t=j+1
J
]C -
()

for any x > 0. Note that Zj‘__ol |K(i/bn)| < by, < n. By Bonferroni inequality, the triangle inequality and Lemma L1, we

(¢4, £2) =

n—1
P{lI(¢4, £) > X} < P[Z
j=0

104,05 (%)
il

=3 Bnee,)

t=j+1

1 | 0 |
n >
t 2

+e|
=0

[

13, ¢4,¢5 (%)

have
fi-1 i
1 _ Cx
le,.,(%) < ZPHﬁ D ey =BG} ey > np}
j=0 t=j+1
fi-1 i
1 Cx1/2 . 1/2
< PHﬁ Z {Ut.zl —E(ﬂt,é1)} > W] +HP(|WZ| > W)
j=0 t=j+1
Cnlfpx n/’/2+1 Cnfl(zfp)/zxfl/z
< _ _(nt(2—p)/2,7/2 _
< nexp( K ) 72 |:exp{ Cn X }+exp{ ) H

for any x > 0, where t = 7172/(71 + 72). Condition 1 yields that sup;[z; SUpsekpa E(17:,¢1) < C. Analogously, it holds that

Cnl—2px2 nlte (1—p) Cn1=PT1xm1
< _ _ —p)T T _
Iy0,6,(%) < nexp( I ) + " [exp{ Cn X} + exp{ e ”

for any x > 0. Therefore, by Bonferroni inequality, we have

PUI>x)< Y P{I(Ly, £) > x)
£1,£2€[Kpd]

) Cn'=x Cnl=2rx?
< n(Kpd)“{exp| — X + exp .

n1+p Knd 2 Cn“*ﬂ)flel
+ n T (Kpd) [exp{—Cn““’)’x’} + exp{— ”
X

K%
np/2+1(l(pd)2 . Cnt12—p)2x1/2
_Cnt2—p)/2,7/2 _
7 |:exp{ Cn P }—i—exp{ e ”

for any x > 0, which implies that

K log(npd) K'2{log(npd)}'/? {log(npd)}'/* {log(npd)}*/*
11=op{nl_p O~ iap |t 0| iy | 0| —

K{log(npd)}"/™ K?{log(npd)}?/™
Note that M > K, 71 € (0, 1] and 7, < 7 in (31) and K = o(n). Then

{log(npd))+1?—m)/m /71 {log(npd)}>/™ {log(npd)}"/™
=0, 2ot —1-3p0 +0, noto o075 | T Op ni—»

provided that K < n(2P?+1-20)/(20={]gg(npd)}4-11)/R119—11) A n(1=p+e2)/? Similarly, we also have

(2410 —11)/7 T1/29-1) 2/ 1/7
mzop{[{log(npd)} } } . Op[{log(npd)} } .\ OP[{log(:f)dp)} }

n2p+0—1-3p0 (ot —200-1)/0

provided that K < n(2/)z9+172p)/(219—1){log(npd)}(4—r1)/(21'119—1'1) A n(17,0+,019)/z9.
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Convergence rate of IV. Given ¢4, ¢, € [Kpd], write

(i (]

K1 = )ne,10, 1.
>(") (b)’”]"‘z
j=0

By Bonferroni inequality and the triangle inequality, it holds that

V(£y, £;) =

fi—1

P{IV(£1, £2) > X} < P{Z K(;ﬂ)‘melll?—nzl > X}

j=0

for any x > 0. Identical to the arguments for deriving the upper bound of II; ¢, ¢, (x), we know the same upper bound also
holds for P{IV(¢1, £;3) > x}. Hence, we have

2+ —11)/1y TV (20-1) 2/1 1/
W= o,{| 08 | o S ] o, e

n2e+9—1-3p» Pl plo+o—2p0—-1)/0 ni-»

provided that K < n(Z"ﬁ“*2’))/(217*U{log(npd)}(“”‘ /@uY—11) A pl1=p+pD)/9
Therefore, we can conclude that

1

> K(i)(ﬁj ~ H))

Jj=

I+ +1IT+1v

o0

n(2p+z9—1—3pz?)/(21971) n(,o+1972p19—1)/19 nl-r

{log(npd)}@ 17 =m1)/2n? =) {log(npd)}*/™ {log(npd)}"/™
=0, X 0, 2|

Identically, we can also show

-1 .
3 K(é)(ﬁj _H)

j=—fit1 n

n2o+0—1-3p9)/(20 1) Pl plo+9—2p0-1)/9 ni-»

(24119 -11)/(2T19—11) 2/1 1/14
_ OP[{IOg(ﬂPd)} + } [ {log(npd)} ] n Op[{log(npd)} ] '

Hence, we have

—~ log(npd (24119 —11)/(2T10—17) log(npd 2/ log(npd 1/7
|A‘7n,l<—221<|00=0[{ g(npd)} } p[{g(p)} ]+op[{ g(npd)} ]

n2p+0—1-3p9)/(20—1) nlp+0—=2p9-1)/9 ni-r
provided that K < n(2#?+1-20)/(22 =N {]gg(npd)}4-11)/Cr1?—11) A n(1=p+e?)/9
8.3.2. Convergence rate of |§J,1 K — S,,,K|oo

Note that X, x = AE{(f— )i — )"}, Hj =i~ 0 B{(n,— p)(m_;— ) }ifj > Oand Hy = ' 30 B{(n,y—

r)n, —p)'}ifj < 0, where p = 7' g, p = 71> [, E(y,) and y, = (nt,l’---sﬂt,Kgd)T- We write X, =
{on,k(€1, €2)}kpdyxkpdy, Hi = {Hj(€1, £2)}kpdyx(kpay and 7e.e = 0. e — B(ny,¢). For any £4, £, € [Kpd], it holds that

O'n,]((e]a 62) = ﬁE{ (% ; ﬁl’,E]) (% Z ﬁt,€2> }

1 fi-1fi-ty fi-1 fi-t
= ﬁ Z E(f?t,lz]ﬁt,zz Z Z IE( 77[1 0 Utlﬂ L’z Z Z IE( 77t2+] umz {72)
t=1 [1 1 j=1 t2 1 j=1
fi-1 fi-1
= Ho(£1, €2)+ ) H_j(€q,£3) + ZHj(Kl,fz)-
j=1 Jj=1
By Davydov’s inequality, |H;(£1, £2)| < i1 Zt i1 [E(7e, 0, Me—jyey)] S T (71 — j)exp(—Clj — K| ) for any j > 1. This bound

also holds for [H_j(£y, £2)] with j > 1. Observe that X7 = {07 (€1, €2)}kpdyx(kpd) = Zf__]nﬂ K(/bn)H; and K(-) is
symmetric with £(0) = 1. By the triangle inequality and Condition 4,

et .
log (€1, £2) — onk (€1, £2)] < Z K(bi> - 1‘{|Hj(£1, 6)] + [Hj(eq, £)]}
e n

Z]( ) exp(—Cli — KI)
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;[ZH Z]exp —C(— K)TZ}}

j=K+1
< b K.
Thus | X} ¢ — Xkl S b K2 O

2

8.4. Proof of Theorem 1

Recall Gy = Y maxees, |g|* and Gk = Y maxees; [&I° with g = (g1.....8kpa) ~ N(0, Zpk) and § =
(&1, ---»8ipa) T ~ N(0, Xy, ). As shown in Proposition 1, supy. ¢ |P(T, < x) — P(Gx < x)| = o(1). Write X, = {Xy, ..., Xq}.
To construct Theorem 1, it suffices to show sup,_q [P(Gx < X) — P(Gx < X | &,)| = o(1). Recall py ¢(x) = |P{g € Ax(x)} —
P{g € A(x)}| for A1(x) and A,(x) defined in Section 8.2. Here we also define

p3.5(x) = [P{g € A1(x)} — P(g € A1(x) | Xu}| v [P(g € Ax(x)} — P{g € Ax(x) | A}l

Identical to the result {Gx < x} = {g € A(x; K)} stated in Section 8.2, we also have {Gx < x} = {§ € A(x; K)} for any
x > 0, where A(x; K) is defined in Section 8.2. Then it holds that
P(Gk < x| %) = P{§ € A K) | X} < P{§ € Ap(x) | Xn}
P{g € Ax(x)} + p3g(X)
Pl{g € A1(X)} + p2,4(X) + p3,6(x)
P{g € A(x; K)} + p2.6(x) + p3,4(X)
P(Gk < x) + ,02,g(x) + P3,g(x)

for any x > 0. Similarly, we can also obtain the reverse inequality. Notice that we have shown in Section 8.2 that
SUPy..o P2.¢(x) = 0(1). Therefore,

<
<
<
<

sup [P(Gx < X) — P(Gk < x| %,)| < Sup 2 &(X) 4 sup p34(x) = 0(1) + sup p3 g(x).

x>0 x>0 x>0

By Lemma 13 of Chang et al. (2021b), it holds that
sup [P{g € Ai(x)} — P(g € Ai(x) | Xn}

x>0

= sup
x>0

P{maxaTg <(1- e)ﬁ} —P{maxaTg <(1-— e)\/;c’)(,,}
acFe acF,

< AY3{K log(npd)}y*/?

with A, = max;ll aeF |a (X — E‘n Kk)az|, where F is defined in Section 8.2. Recall |al, < K and |a|, = 1 for any
ac F.Thus, |a] (X x — En l<)32| 1] 11az2l| Zni — Znkle < KIZnk — Znklo. Then we have sup,.q [P(g € Ai(x)} —
P{g € Ai(x)] Xn}l SKIZnk — nxlo I log(npd)}*/>. Analogously, we also have sup,.. [P(g € A2(x)} — P(& € Ax(x)] )| <
K| Znk — Znls {log(npd)}?/>. Hence,
o~ 13
sup [B(Gy < x) — B(Gy < x| A0 S K| Znx — Snils, (log(npd)}/> + o(1). (32)
x>0

By Proposition 2, we complete the proof. O

8.5. Proof of Theorem 2

Recall that X, = {Xi, ..., Xy} and Gx = Z};l MaXee g 18:)° with & = (&1, ..., &xpa)" . By Bonferroni inequality, we have
K N K (172
~ A 2 ~
P(Gk > x| X,) < P{ max >— X, )| = P{ max > —— | X
(Gx [ %) 21 (kq . X ‘ n) ‘E] (leﬁj I8¢l e n)
j= Jj=

for any x > 0. Since g ~ N/(O0, :":’,LK) with En,K = {60,k (€1, £2)}kpdxkpd, then

E<max 18| Xn) < [1+ {2log(pd)} " 1{2 log(pd)}'/? max {6y (¢, o2
€Lj

J
for any j € [K]. Recall X, x = {on,k(€1, £2)}kpdxkpd aNd @ = MaXe(kpd) Ok (¢, £). Define an event

6n,K(Ea€) _ < v}

&olv) = k(@ 0)

max
te[Kpd]
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where v > 0 and v < {K log(pd)}~". As shown in Proposition 2, maXeefxpd) |6k (£, £) — onx (€, £)| = 0,[K3{log(npd)} 2] =
op(v). From Condition 3, we have minye(kpq) on (£, £) > C, where C is a positive constant. It holds that

Gni(€, ) 1l < maxle[l(pd'] |Gnk (€, £) — ok (L, L) — 0,(v).

onk(€, ) MiNgekpd) On,k (€, £)

Thus P{&(v)‘} — 0 as n — oo. Restricted on &y(v), it holds that

ax
Le[Kpd]

maxE(max 18 \ xn) < (14v)"20"?[1+ {2log(pd)} {2 log(pd)} /2.
JEIK] Zeﬁj

By Borell inequality for Gaussian process, it holds that

2
Xyt <2expy— =
n} p{ 2maXeer; Un,K(Z,E)}

for any x > 0. Let x,, = K(1 + v)o([1 + {2 log(pd)}~11{2 log(pd)}/? + {2 log(4K /a)}!/?)?. Restricted on &(v), we have

Xl/z 1/2 .1/2 4K v
K1/2 525()]( (Zeégj( |g£| n) + ( * v) ¢ { 0g< (04 ) }

which yields that

P{max 2l > E(max 2l Xn> +x
lECj lEE]'

K 1/2
A A A Xy
P(Gk > o, €0(0)| T} < Z;P{max 2| —E(g;agjc |gz|\xn) > 2 —E(max |gz|\xn), &olv)| }

]:
- 4K\

— & 172,172 -
Zp[max & (max & |X) > (1+)"0 {ZIog( )} &) xn]
p lel; o

2(1 log(4K
< 2K expy — (1 + vle log(4K/a) :E_
2(1+v)e 2

Since P{&(v)° | X} = op(1), then P{&(v)° | A4} < o/4 with probablllty approaching one. Hence, P (f?K > X | Xp) < 5¢/6
with probability approaching one. Following the definition of ¢v,, it holds with probability approaching one that

&y < (14 vIKAA(K, p, d, @)[1 + {2 log(pd)}~']* (33)
with A(K, p, d, &) = {2 log(pd)}/? + {2 log(4K /a)}'/2.

We next specify the lower bound of T,. Recall that T, = n J 1y, = Z maxgeﬁ (n"2u,)?, where u =
(Ug, ..., Ugpa) " = (i']T,-..,i';) with 7; = (n — j)~ Y17 vec{(x)x], ). Let it = (u1,-- Jga)” = (. v)T
with y; = (n — ! t 1 [vec{(b(x[)xtﬂ}] Define Z* = arg maXee; |u(| for j € [K]. By Cauchy-Schwarz inequality, it
holds that

K K K ,
T — 12 2 > N2y = 12y, a1/25 125
= > g = Yl g g i)

K K K
=n Z(Ue.* — ) +n E flf* +2n Z Ugr(Upr — Upx)
J i i i J
j=1 j=1 j=1
K K K 1/2 K 1/2
~ 2 ~2 ~2 ~ 2
>n Y (Up —Upx) +n Uy —2n Ups (Ugrx — Upx) .
J J ' i J J
j=1 j=1 j=1 j=1

According to the definition of u and @, we have nl/z(l.l[f — ﬂg]{k) =n"2n—j)' Y= [d),* Xe et — E{¢r (X Xerj )] for
some [ € [d] and I; € [p]. Note that K < n'/7. By Bonferroni inequality and Lemma L1, it holds that for any x > 0
K K

y nl/2 n—j X172
el 7 = « (] Sontuoness - siounngh| = 2oy
t=1

j=1 j=1

nl/2K3/2 Cn/2xt/2 Cnmi/2x71/2 . Cx

iz exp ko + exp T Tona + K exp e
with T = 7112/(11 + 12), which implies that n ZK 1(u(»« - ﬁee«)z = 0,(K?logK). Choose u > 0 such that (1 + v)V?[1 +
{2log(pd)}~' + u] = 1 + €, for some €, > 0. Due to ZJ 1ﬁ§* > n 'Kor%(K, p,d, a)(1+ €,)? and an:](u(; - ﬁZ; Y =

998



J. Chang, Q. Jiang and X. Shao Journal of Econometrics 235 (2023) 972-1000

0,(K?logK), by (33), it holds with probability approaching one that

K
Tu>ny (e =) +(1+v)Ker*(K, p, d, o)1 + (2log(pd)) ™ + ul?
j=1

— 0p{K>*(logK)"?0"*M(K, p. d, a)(1+ €n)}
> (14 v)Ko*(K, p, d, a)[1+ (2log(pd)}']* + 2KoA*(K, p, d, a)u
— 0p{K>*(logK)"?0"*M(K, p. d, a)(1+ €n)}
> Qg + 2KoA (K, p. d, a)u — O, {K*?(log K)o ?A(K, p. d, &)} .
Notice that €, — 0 and 0A*(K, p, d, «)K~'(logK)~'e? — oo. Then it holds that
K'?(log K)/? 1 1
> Toglpd)} 2 + (logK) 2 ~ Tog(pd) ~ Klog(pd) "

which implies that u < e,. It yields that KoA*(K, p, d, a)u > K3/?(logK)/20'2 (K, p, d, «) and KoA*(K, p, d, a)u — oo.
Therefore, we have T, — &, > KoA%(K,p,d, a)u with probability approaching one. Hence, Py, (T, > V) — 1as
n—oo. O

Appendix A. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.09.001.
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