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a b s t r a c t

Sufficient dimension reduction is an important branch of dimension reduction, which
includes variable selection and projection methods. Most of the sufficient dimension
reduction methods are sensitive to outliers and heavy-tailed predictors, and require
strict restrictions on the predictors and the response. In order to widen the applicability
of sufficient dimension reduction, we propose BCov-SDR, a novel sufficient dimension
reduction approach that is based on a recently developed dependence measure: ball
covariance. Compared with other popular sufficient dimension reduction methods, our
approach requires rather mild conditions on the predictors and the response, and is
robust to outliers or heavy-tailed distributions. BCov-SDR does not require the specifi-
cation of a forward regression model and allows for discrete or categorical predictors and
multivariate response. The consistency of the BCov-SDR estimator of the central subspace
is obtained without imposing any moment conditions on the predictors. Simulations and
real data studies illustrate the applicability and versatility of our proposed method.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Sufficient dimension reduction is an important branch of dimension reduction research, which draws much attention in
the era of big data. Early sufficient dimension reduction methods, including the seminal sliced inverse regression (Li, 1991),
sliced average variance estimation (Cook and Weisberg, 1991), inverse regression (Cook and Ni, 2005) and directional
regression (Li and Wang, 2007), require the linearity condition or the constant variance condition or both to hold, which
are not easy to verify in practice. Although methods like minimum average variance estimation (Xia et al., 2002), sliced
regression (Wang and Xia, 2008) and ensemble method (Yin and Li, 2011) can avoid the restrictions aforementioned, they
need continuous predictors and smooth link functions instead. Besides, the Fourier transform method proposed by Zhu
and Zeng (2006) and Zeng and Zhu (2010) and the Kullback–Leibler based approach proposed by Yin et al. (2008) also
require the predictors to be continuous. Other methods of sufficient dimension reduction, such as the likelihood based
dimension reduction method proposed by Cook and Forzani (2009), the method proposed by Cook and Li (2009) for
exponential family predictors, and the methods suggested by Bura and Forzani (2015) and Bura et al. (2016) for elliptically
contoured inverse predictors and exponential family inverse predictors respectively, impose different assumptions on the
distribution of X|Y , where X and Y denote the predictors and the response respectively. Sheng and Yin (2016) achieved
sufficient dimension reduction via distance covariance, which does not need any conditions mentioned above and can
work well when some predictors are discrete or categorical. However, their method requires the first order moments of
X and Y to be bounded. Hence, this method seems to be sensitive to outliers and heavy-tailed predictors.
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Problems related to heavy tails arise frequently from a variety of applications, especially those in finance, economics,
genomics and bio-imaging. In the field of variable selection, which is another line of dimension reduction, researchers
have began to realize the importance of robust estimation. For example, Li et al. (2012a) suggested a robust screening
method based on the Kendall-τ correlation coefficient, and Pan et al. (2018) proposed a generic sure independence
screening procedure via ball correlation, which is robust to heavy-tailed predictors. Moreover, in principal component
analysis, which is a vigorous unsupervised dimension reduction method, heavy-tailed phenomenon is drawing more
and more attention. To name a few, Croux et al. (2013) proposed a robust space method for principal component
analysis based on a robust measure of variance. Han and Liu (2018) proposed the elliptical component analysis, which
is an alternative to principal component analysis, to tackle high dimensional elliptically distributed data. However, in
sufficient dimension reduction, robustness has not received due attention, and few works have been done to address
this problem. Dong et al. (2015) proposed two robust inverse regression methods, which are insensitive to outliers and
heavy-tailed predictors. Zhou et al. (2015) proposed a robust version of the estimating equation based sufficient dimension
reduction method by constructing a robust nonparametric regression estimator of the central subspace (Cook, 1994,
1996). Rekabdarkolaee et al. (2017) suggested a robust extension of the minimum average variance estimation by means
of modal regression to alleviate the influence of outliers. Nevertheless, these methods are only extensions of existed
sufficient dimension reduction approaches, thus they also rely heavily on the conditions mentioned above, which are
usually difficult to test and validate. Hence, the corresponding conclusions may be misleading if some of the conditions
are violated.

In this paper, we propose BCov-SDR, a novel sufficient dimension reduction method that is based on a recently
developed dependence measure: ball covariance. Thanks to the robust property of the empirical ball covariance, we
are able to obtain an estimator of the central subspace, which is robust to outliers and heavy-tailed predictors. In
addition, we do not need to assume a number of conditions to hold, such as the linearity condition, the constant
variance condition, the continuity condition of X and the special distribution condition of X|Y and so on, nor do we
need to involve any complex nonparametric estimation. Specially, compared with the distance covariance based sufficient
dimension reduction method (Sheng and Yin, 2016), which seems similar to ours, the proposed method avoids the moment
restrictions on the predictors and the response, thus it enjoys robustness to heavy tailed variables. All these advantages
mentioned above ensure the practicability and versatility of our proposed method. Under mild conditions, we prove the
validity of BCov-SDR as a sufficient dimension reduction method and construct the consistency of the BCov-SDR estimator
of the central subspace. Simulation and real data analysis are conducted to exhibit the priority of our proposed method.

The rest of the paper is organized as follows. In Section 2, we introduce the BCov-SDR method and investigate its
asymptotic properties. Simulations are carried out to compare our method with other popular sufficient dimension
reduction methods in Section 3, and real data analysis is conducted in Section 4. Section 5 concludes the paper, and
all the proofs are deferred to the Appendix.

2. Method

2.1. Ball covariance

Ball covariance is a novel measure of the dependence between two random vectors proposed by Pan et al. (2018). Let
U and V be two random vectors defined respectively in two separable Banach spaces (U , ζU ) and (V , ζv), where ζU and ζV
are norms defined on U and V respectively. Let θ , µ and ν be Borel probability measures on U ×V , U and V , respectively.
(U, V ) is a Banach-valued random vector defined on a probability space (Ω,F, P) such that (U, V ) ∼ θ , U ∼ µ and V ∼ ν.
Denote a closed ball with center u1 and radius ζU (u1, u2) in U by B̄ζU (u1, u2). B̄ζV (v1, v2) is then similarly defined in V .
Ball covariance is defined by

BCov(U, V ) =

{∫∫
U ×V

[θ − µ ⊗ ν]
2(B̄ζU (u1, u2) × B̄ζV (v1, v2))θ (du1, du2)θ (dv1, dv2)

}1/2
,

where µ ⊗ ν is the product measure on U × V .
Under some mild conditions, it can be shown that BCov(U, V ) = 0 if and only if U and V are independent. Hence,

ball covariance can identify both linear and nonlinear correlations between two random vectors. Thanks to this property,
we are able to achieve sufficient dimension reduction via ball covariance. Furthermore, ball covariance can detect non-
Euclidean dependence. Compared with distance covariance (Székely et al., 2007) and Hilbert–Schmidt independence
criterion (HSIC, Gretton et al. (2008)), which can also detect multivariate or nonlinear dependence, ball covariance requires
less conditions and can be applied to more settings. Specifically, distance covariance and HSIC require strong negative
type condition (Lyons, 2013) or positive type condition (Sejdinovic et al., 2013) to hold. Therefore, these methods can
only be applied to spaces that can be embedded into some Hilbert spaces or some reproduced kernel Hilbert spaces. Ball
covariance does not need such conditions and can be applied to various spaces.

Let {Uk, Vk}
n
k=1 be an i.i.d sample of (U, V ). Define δUij,k = I{Uk ∈ B̄ζU (Ui,Uj)}, where I(·) denotes the indicator function,

δUij,kl = δUij,kδ
U
ij,l and ξU

ij,klst = (δUij,kl + δUij,st − δUij,ks − δUij,lt )/2. ξ
V
ij,klst is defined in the same way as that of ξU

ij,klst . The empirical
ball covariance is then defined by

BCovn(U, V ) =

( 1
n6

n∑
i,j,k,l,s,t=1

ξU
ij,klstξ

V
ij,klst

)1/2
.
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Define the ball correlation

BCor(X, Y ) =
BCov(X, Y )

BCov1/2(X,X) × BCov1/2(Y , Y )
,

and the sample ball correlation

BCorn(X, Y ) =
BCovn(X, Y )

BCov1/2n (X,X) × BCov1/2n (Y , Y )
.

Pan et al. (2018) shows that

• if X and Y are standard normal random variables, BCor(X, Y ) is a nondecreasing function of the absolute value of
the Pearson correlation of X and Y .

• BCor(X, Y ) ∈ [0, 1] and BCorn(X, Y ) ∈ [0, 1].
• BCorn(X, Y ) = BCor(X, Y ) = 1, provided that there exists a vector a, a nonzero real number b and an orthonormal

matrix C such that Y = a + bCX or Y = a + bX.

Notice that the empirical ball covariance is in fact a rank statistic, which is a complex function of indicator functions.
Hence, compared with the sample distance covariance (Székely et al., 2007), the empirical ball covariance enjoys
robustness to outliers and heavy-tailed random variables. Consequently, robust sufficient dimension reduction via ball
covariance is promising.

2.2. Sufficient dimension reduction

Let Y be a random scaler and X = (X1, . . . , Xp)T be a p-dimensional random vector. If

Y ⊥⊥ X|BTX, (2.1)

where B is a p × q matrix with q ≤ p, and ⊥⊥ denotes independence, we say that BTX is a sufficient dimension reduction
of X regarding Y . The column subspace of B, denoted by S(B), is called a dimension-reduction subspace (Li, 1991). The
central subspace is then defined by the intersection of all the dimension-reduction subspaces, see Cook (1994, 1996) for
details. We assume that the central subspace exists, and its dimension is known to be d(d ≤ p). Our goal is to estimate a
basis matrix of the p× d-dimensional central subspace. Of note is that Y can also be a multi-dimensional random vector.

2.3. Ball covariance based sufficient dimension reduction

We try to estimate a basis matrix of the central subspace by solving the following optimization problem:

η = argmax BCov(βTX, Y ), subject to βT
ΣXβ = Id, (2.2)

where β is an arbitrary matrix with dimension p×d, and Σx is the covariance matrix of X. We call this method BCov-SDR.
Let B denote a basis of the central subspace which satisfies BΣXB = Id, and (B1, B2) be any partition of B. We need the
following conditions to construct the theory.

(1) BCov(BT
iX, Y ) < BCov(BTX, Y ) for i = 1, 2.

(2) PT
B(ΣX)

X ⊥⊥ Q T
B(ΣX)

X, where PB(ΣX) = B(BTΣXB)−1BTΣX and QB(ΣX) = I − PB(ΣX).
Condition (1) is assumed to guarantee an increasing order of the objective function when the effective dimension

grows. This condition is not necessary but assumed here to facilitate the proof of Theorem 1. Nevertheless, we find that
this condition holds for most of our simulation scenarios, except Model (D) where the link function is of the form of a
fraction. Condition (2) is mild, and it asymptotically holds when the dimension of X gets reasonably high, see Sheng and
Yin (2013) for details.

Theorem 1. For any β satisfying βT
ΣXβ = Id and S(β) ̸= S(B), where B is a basis of the central subspace which satisfies

BΣXB = Id. If Conditions (1) and (2) hold, we have BCov(βTX, Y ) < BCov(BTX, Y ).

Theorem 1 guarantees the validity of BCov-SDR as a sufficient dimension reduction method. When the dimension of
the central subspace d is known, we can obtain a basis of the central subspace by solving the optimization problem (2.2).

In practice, we use the empirical ball covariance BCovn to implement the optimization, i.e. ,

ηn = argmax BCovn(βTX, Y ), subject to βT
Σ̂Xβ = Id, (2.3)

where Σ̂X is the sample covariance matrix of X.

Theorem 2. For η and ηn defined in (2.2) and (2.3), we have ηn →p η, provided that Conditions (1) and (2) hold.
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Theorem 2 establishes the consistency of the BCov-SDR estimator of the central subspace. The convergence rate and
the asymptotic normality of the estimator depend heavily on the differentiability of the objective function with respect to
β. As mentioned above, the empirical ball covariance 2.1 is a function of indicator functions, thus it is not differentiable.
Hence, it is difficult to achieve some convergence rate and the asymptotic normality with a non-differentiable objective
function. However, if we can smooth the empirical ball covariance by substituting the indicator function by some kernel
alternatives, the convergence rate and the asymptotic normality can be achieved by some routine techniques. We leave
this point for further research.

We solve the optimization problem (2.3) by R package ‘‘Rdonlp2’’, which is designed to solve constrained nonlinear pro-
gramming problems, on ‘‘R x64 3.3.2’’. The basic algorithm behind the package is the sequential quadratic programming,
which is one of the most successful methods for the numerical solution of constrained nonlinear optimization problems.
The initial value is estimated by the distance covariance based sufficient dimension reduction method suggested by Sheng
and Yin (2016). Despite the non-differentiability of the objective function, ‘‘Rdonlp2’’ is capable of finding a stable solution
quickly.

Remark 1 (On the Decision of the Dimension d Of the Central Subspace). The dimension, d, of the central subspace is assumed
to be known above. In practice, we have to estimate d by some criterion or tests. There have been several methods in
the literature which may also be applied to our BCov-SDR method. Li (1991, 1992) proposed a chi-squared sequential
test. Following their work, Bura and Cook (2001) proposed a general weighted sequential test based on the chi-squared
statistic. Zhu et al. (2006) suggested a procedure based on the Bayes information criterion to estimate the dimension
of the central subspace. Permutation and bootstrap methods were employed to determine the dimension of the central
subspace by Cook and Yin (2001), Ye and Weiss (2003), Zhu and Zeng (2006) and Sheng and Yin (2016). Chen et al. (2015)
utilized conditional distance covariance to check the goodness-of-fit of a given dimension reduction subspace. Bootstrap
method suggested by Sheng and Yin (2016) can be readily extended to our BCov-SDR, and it is employed to estimate the
dimension d of the central subspace in the real data analysis below.

3. Simulation

In this section, we compare our method (BC, for simplicity) with 8 popular dimension-reduction methods in the
literature: SIR (Li, 1991), SAVE (Cook and Weisberg, 1991), PHD (Li, 1992; Cook, 1996), IRE (Cook and Ni, 2005), PFC (Cook
and Forzani, 2008), LAD (Cook and Forzani, 2009) and DC (Sheng and Yin, 2016). Among them, the PHD method includes
PHDy and PHDres, using residuals and response respectively. Of note is that not all these methods can be applied to cases
with a multivariate response. Hence, in Model (E) below, we only present the results of a part of the above methods.
Here, we assume that the dimension d of the central subspace is known, and we choose its real value as the working
dimension. Five models are investigated to illustrate the efficacy of our proposed method:

(A) Y = (βT
1X)

2
+ βT

2X + 0.1ϵ,
(B) Y = sign(2βT

1X + ϵ1) × log |2βT
2X + 4 + ϵ2|,

(C) Y = exp(βT
3X)ϵ,

(D) Y = βT
1X/(0.5 + (βT

2X + 1.5)2) + 0.1ϵ, and
(E) Y1 = (βT

1X)
2
+ βT

2X + 0.1ϵ1
Y2 = βT

1X/(0.5 + (βT
2X + 1.5)2) + 0.1ϵ2,

where in Model (E), Y = (Y1, Y2)T is a 2-dimensional responsible vector. These models frequently appear in the
literature of sufficient dimension reduction (see e.g. , Li (1991), Sheng and Yin (2016)). Throughout all the five models,
we set (n, p) = (100, 6), β1 = (1, 0, 0, 0, 0, 0)T, β2 = (0, 1, 0, 0, 0, 0)T, and β3 = (1, 0.5, 1, 0, 0, 0)T. For each model,
M = 100 data sets are simulated to calculate the mean and standard errors of ∆m, which is a commonly-used measure
of the distance between two spaces defined by Li et al. (2005). For each simulated data set, we calculate ∆m by

∆m(S1, S2) = ∥PS1 − PS2∥,

where Si indicates a d-dimensional subspace of Rp, PSi is the orthogonal projection on to Si for i = 1, 2, and ∥ · ∥ denotes
the biggest singular value of a matrix. The distance between the true central subspace and its estimated counterpart of a
specific dimension reduction method is calculated to evaluate the efficacy of the method. Clearly, the smaller the distance
is, the better the estimator is.

For each model, six different kinds of X = (X1, . . . , Xp)T are generated: Part (1), X ∼ N(0, Ip); Part (2), non-normal
covariates; Part (3), discrete covariates; Part (4), X ∼ N(0,Σ) where Σ = (σij) and σij = 0.5|i−j| for i, j = 1, . . . , p; Part (5)
and (6), heavy tailed covariates, i.e. , X ∼ t(0,Σ, 3) and X ∼ t(0,Σ, 2) where Σ = (σij), σij = 0.5|i−j| for i, j = 1, . . . , p,
and the last parameter (2 or 3) of the multivariate t distribution indicates the degree of the freedom. We specify Parts (2)
and (3) for different models.

Model (A), (D) and (E): Part (2), (Xi + 2)/5 ∼ Beta(0.75, 1), i = 1, . . . , p; Part (3), Xi ∼ Poisson(1), i = 1, . . . , p.
Model (B): Part (2), Xi ∼ Uniform(−2, 2), i = 1, . . . , p; Part (3), Xi ∼ Binomial(10, 0.1), i = 1, . . . , p.
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Table 1
Mean and standard errors of ∆m in Model (A).

Method Part(1) Part(2) Part(3)

mean sd mean sd mean sd

SIR 0.87 0.18 0.57 0.22 0.43 0.18
SAVE 0.67 0.23 0.73 0.20 0.62 0.28
PHDy 0.80 0.18 0.82 0.17 0.79 0.24
PHDres 0.88 0.15 0.90 0.09 0.86 0.13
IRE 0.89 0.15 0.60 0.22 0.50 0.20
PFC 0.66 0.21 0.54 0.14 0.94 0.08
LAD 0.35 0.20 0.33 0.19 0.28 0.18
DC 0.19 0.10 0.20 0.06 0.00 0.01
BC 0.15 0.10 0.18 0.06 0.09 0.09

Method Part(4) Part(5) Part(6)

mean sd mean sd mean sd

SIR 0.80 0.22 0.90 0.13 0.94 0.07
SAVE 0.78 0.22 0.89 0.14 0.92 0.09
PHDy 0.83 0.18 0.90 0.12 0.92 0.09
PHDres 0.88 0.13 0.90 0.12 0.93 0.08
IRE 0.84 0.21 0.92 0.12 0.93 0.10
PFC 0.68 0.18 0.86 0.16 0.96 0.07
LAD 0.38 0.18 0.58 0.28 0.82 0.20
DC 0.25 0.09 0.47 0.24 0.91 0.12
BC 0.18 0.07 0.24 0.18 0.54 0.29

Mode (C): Part (2), (Xi + 1)/2 ∼ Beta(1.5, 1), i = 1, . . . , p; Part (3), Xi ∼ Poisson(1) for i = 1, . . . , 5, X6 ∼

Binomial(10, 0.3) and Xi ∼ Poisson(1) for i = 7, . . . , p.
The error term in each model is stand-normally distributed and independent of the covariates. In Model (B), ϵ1 and ϵ2

are mutually independent, but in Model (E) the two error terms are weakly correlated, and their correlation coefficient
is set to be 0.3.

Simulation results are shown in Tables 1–5. Throughout these tables, the bold numbers indicate the top three methods
with the italic one representing the best. In most cases, our proposed BC method outperforms the other 8 methods.
Compared with DC, we find that BC performs much better in most heavy-tailed scenarios, which confirms our conjecture.
Specifically, in Model (A), BC, DC and LAD rank the top three methods, and BC performs the best except in Part (3), where
the covariates are discrete. In fact, DC estimates the central subspace exactly with the mean error of ∆ms decreasing
to 0 in this model. In Model (B), BC and DC hold the first two positions and BC performs better than DC in all parts
except Part (3), where DC performs similarly to but a little better than BC. In Model (C), BC, DC and SIR are the best
three methods in Parts (1)–(3), and they perform similarly with BC working slightly better. In Parts (4)–(6), SIR and LAD
show their advantage, and BC maintains to be competitive. In Model (D), BC and DC rank the top two methods again, and
BC outperforms DC in most scenarios. Moreover, SIR seems to work well in this model. In Model (E), BC dominates all
the other methods except in Part (3). The efficiency gain of BC is significant in this model with a multivariate response.
Throughout these models, BC exhibits significant robustness to heavy-tailed predictors (Parts 5–6) in comparison with DC.
In summary, BC is a good robust alternative to DC, and shows practicality and superiority compared with other sufficient
dimension reduction methods.

The proposed BCov-SDR method is quite general, and we cannot expect it to outperform the other methods in all cases.
The fact is that some methods are in favor of some specific models. For example, SIR and LAD seems to work quite well
in the single index model (Model (C)) while BC and DC lose their efficacy, and DC seems to work quite well in presence
of discrete covariates. This may come from the comparatively high computational complexity of BC and DC.

Next, we do some changes to X in Model (A) to illustrate the robustness of our BCov-SDR method to outliers. First, we
generate n samples of X ∼ N(0,Σ), where Σ = (σij) and σij = 0.5|i−j| for i, j = 1, . . . , p. Then, we replace r% samples of
X1, X3 and X5 with 2 · t(1) randomly, where t(1) indicates the t distribution with the degree of freedom being 1. r% is set
to be 10%, 30% and 50%, and the means and standard errors of ∆m of SIR, DC and BC are given in Table 6.

From Table 6, we see that compared with SIR and DC, our BC method shows robustness to outliers. When more samples
are contaminated by outliers, all the three methods tend to lose efficiency, but our BC method performs much better than
DC and SIR. However, the standard error of ∆m of BC is bigger than that of SIR and DC in cases where r = 30 and r = 50,
which indicates that the performance of BC seems to be not stable in presence of outliers.

The stating value of the optimization procedure may influence the performance of the estimator, since the optimization
procedure may suffer from the non-differentiability of the objective function. Different starting values are tried, including
the DC based solution, and we find that our ball covariance (BC) based estimator is not sensitive to the choice of the
starting value, but using the DC solution as the starting value can always give a satisfactory BC based estimator of the
central subspace. A simulation is conducted to show the influence of starting value to the BC based estimator. We compare
the means of ∆m of SIR, DCsir, BCsir and BCdc in Models (A)–(E), where DCsir (BCsir) denotes the DC (BC) based estimator
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Table 2
Mean and standard errors of ∆m in Model (B).

Method Part(1) Part(2) Part(3)

mean sd mean sd mean sd

SIR 0.30 0.10 0.29 0.12 0.46 0.20
SAVE 0.87 0.15 0.67 0.23 0.86 0.17
PHDy 0.81 0.17 0.54 0.20 0.93 0.09
PHDres 0.72 0.19 0.46 0.14 0.90 0.12
IRE 0.37 0.13 0.33 0.13 0.49 0.19
PFC 0.38 0.17 0.38 0.19 0.41 0.15
LAD 0.37 0.15 0.33 0.12 0.40 0.26
DC 0.27 0.09 0.22 0.06 0.25 0.18
BC 0.27 0.09 0.21 0.06 0.27 0.17

Method Part(4) Part(5) Part(6)

mean sd mean sd mean sd

SIR 0.37 0.13 0.53 0.19 0.88 0.13
SAVE 0.90 0.13 0.97 0.04 0.96 0.06
PHDy 0.85 0.15 0.92 0.10 0.96 0.05
PHDres 0.80 0.16 0.88 0.14 0.92 0.09
IRE 0.42 0.13 0.57 0.20 0.88 0.12
PFC 0.54 0.22 0.65 0.22 0.90 0.13
LAD 0.45 0.17 0.68 0.23 0.88 0.15
DC 0.35 0.12 0.43 0.18 0.82 0.19
BC 0.35 0.12 0.38 0.15 0.71 0.22

Table 3
Mean and standard errors of ∆m in Model (C).

Method Part(1) Part(2) Part(3)

mean sd mean sd mean sd

SIR 0.19 0.06 0.31 0.12 0.18 0.06
SAVE 0.83 0.21 0.92 0.11 0.93 0.12
PHDy 0.68 0.19 0.80 0.16 0.65 0.17
PHDres 0.68 0.20 0.79 0.16 0.68 0.19
IRE 0.22 0.09 0.36 0.14 0.23 0.09
PFC 0.50 0.17 0.43 0.14 0.54 0.15
LAD 0.22 0.09 0.38 0.14 0.20 0.07
DC 0.19 0.06 0.30 0.13 0.19 0.07
BC 0.18 0.06 0.30 0.13 0.18 0.06

Method Part(4) Part(5) Part(6)

mean sd mean sd mean sd

SIR 0.25 0.08 0.35 0.16 0.69 0.18
SAVE 0.80 0.23 0.97 0.04 0.96 0.05
PHDy 0.80 0.13 0.86 0.12 0.91 0.10
PHDres 0.79 0.15 0.85 0.13 0.91 0.10
IRE 0.31 0.10 0.41 0.16 0.74 0.18
PFC 0.60 0.13 0.77 0.17 0.82 0.16
LAD 0.27 0.10 0.28 0.11 0.62 0.31
DC 0.32 0.11 0.69 0.22 0.88 0.12
BC 0.28 0.10 0.49 0.24 0.73 0.28

with the starting value given by SIR, and BCdc denotes the BC based estimator with the starting value given by DC. Let
X ∼ t(0,Σ, 2) where Σ = (σij) with σij = 0.5|i−j| for i, j = 1, . . . , p, where the parameter 2 denotes the degree of freedom
of multivariate t distribution. Other simulation parameters stay the same as those in Section 3. The results are shown in
Table 7.

4. Real data analysis

Auto MPG data.
We first employ the auto MPG data (MPG) to illustrate the advantage of our BCov-SDR method. The data concerns city-

cycle fuel consumption in miles per gallon (mpg), to be predicted in terms of 3 multi-valued discrete and 4 continuous
attributes: mpg, cylinders, displacement, horsepower, weight, acceleration, model year and origin, where cylinders, model
year and origin are multi-valued discrete. As done in Sheng and Yin (2016), we avoid using ‘‘origin’’, because it correlates
with ‘‘cylinders’’ closely. Missing values are deleted, and 392 observations are left for study.

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
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Table 4
Mean and standard errors of ∆m in Model (D).

Method Part(1) Part(2) Part(3)

mean sd mean sd mean sd

SIR 0.28 0.10 0.19 0.07 0.80 0.18
SAVE 0.94 0.09 0.88 0.12 0.94 0.07
PHDy 0.75 0.19 0.47 0.12 0.91 0.11
PHDres 0.70 0.20 0.40 0.96 0.93 0.09
IRE 0.80 0.18 0.52 0.20 0.92 0.10
PFC 0.70 0.17 0.50 0.15 0.91 0.11
LAD 0.86 0.14 0.52 0.25 0.93 0.11
DC 0.20 0.07 0.14 0.05 0.27 0.36
BC 0.19 0.06 0.14 0.05 0.29 0.35

Method Part(4) Part(5) Part(6)

mean sd mean sd mean sd

SIR 0.43 0.17 0.50 0.15 0.63 0.24
SAVE 0.95 0.06 0.96 0.06 0.95 0.07
PHDy 0.82 0.16 0.92 0.10 0.96 0.06
PHDres 0.80 0.17 0.89 0.14 0.94 0.08
IRE 0.88 0.14 0.86 0.13 0.94 0.10
PFC 0.88 0.13 0.87 0.14 0.94 0.08
LAD 0.87 0.14 0.92 0.09 0.94 0.07
DC 0.36 0.15 0.34 0.11 0.43 0.17
BC 0.34 0.12 0.28 0.10 0.37 0.12

Table 5
Mean and standard errors of ∆m in Model (E).

Method Part(1) Part(2) Part(3)

mean sd mean sd mean sd

SIR 0.19 0.06 0.18 0.06 0.19 0.06
SAVE 0.65 0.28 0.33 0.19 0.74 0.26
DC 0.14 0.05 0.13 0.05 0.00 0.01
BC 0.09 0.03 0.12 0.04 0.10 0.11

Method Part(4) Part(5) Part(6)

mean sd mean sd mean sd

SIR 0.27 0.10 0.44 0.18 0.89 0.12
SAVE 0.71 0.22 0.97 0.04 0.94 0.09
DC 0.16 0.07 0.39 0.22 0.92 0.10
BC 0.12 0.04 0.19 0.15 0.49 0.31

Table 6
Mean and standard errors of ∆m in Model (A) with outliers.
Method 10% 30% 50%

mean sd mean sd mean sd

SIR 0.93 0.15 0.98 0.08 0.98 0.08
DC 0.42 0.34 0.81 0.28 0.90 0.17
BC 0.34 0.30 0.66 0.33 0.76 0.27

Table 7
Mean of ∆m of BC based estimator with different starting values.

Model (A) Model (B) Model (C) Model (D) Model (E)

SIR 0.92 0.66 0.46 0.69 0.59
DCsir 0.70 0.57 0.83 0.50 0.67
BCsir 0.28 0.51 0.53 0.55 0.22
BCdc 0.30 0.47 0.58 0.44 0.26

Fig. 1 presents the box plots of the scaled predictors. It can be seen clearly that outliers exist in the variables
‘‘horsepower’’ and ‘‘acceleration’’. ‘‘cylinders’’ and ‘‘displacement’’ are heavily left-skewed, thus they are far from the
normal distributed variables. In addition, the discrete property of some covariates adds difficulty to the estimation. In
order to investigate the city-cycle fuel consumption in miles per gallon, we assume that a sufficient dimension reduction
structure indicated by (2.1) exists. The bootstrap method suggested by Sheng and Yin (2016) are used to determine the
dimension d of the central subspace, which shows d = 2. Then, DC and BC are utilized to estimate the central subspace
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Fig. 1. Boxplots of the 6 covariates.

Table 8
Regression results of ‘‘mpg’’ against the derived indexes.

DC BC

linear model nonlinear model linear model nonlinear model

Adjusted R-squared 0.19 0.51 0.64 0.85
F 46.48 81.78 343.80 446.20

and to formulate indexes for the following regression. The reason why only DC and BC are considered is that they do not
require the conditions mentioned in Section 1, which are not easy to verify.

Let η̂ = (η̂1, η̂2) and η̃ = (η̃1, η̃2) be the estimated basis matrices of the central subspace via DC and BC respectively.
Denote the derived indexes by Ẑ1 = η̂T

1X , Ẑ2 = η̂T
2X , Z̃1 = η̃T

1X and Z̃2 = η̃T
2X , where X represents the 6 predictors

aforementioned. Fig. 2 shows the scatter plots of ‘‘mpg’’ against the four derived indexes. The patterns of ‘‘mpg’’ against
the derived indexes are not very clear, so both linear and nonlinear models are tried to evaluate the efficiency of the two
sufficient dimension reduction methods. In the linear model, ‘‘mpg’’ is regressed against the indexes Ẑ1 (Z̃1) and Ẑ2 (Z̃2).
In the nonlinear model, we add the squared terms Ẑ2

1 (Z̃2
1 ), Ẑ

2
2 (Z̃2

2 ) and Ẑ1 · Ẑ2 (Z̃1 · Z̃2) to the linear model.
Table 8 summarizes the regression results. Clearly, the indexes generated by BC fit much better to ‘‘mpg’’ than those

generated by DC in both linear and nonlinear models. The significant increase of the values of the adjusted R-squared
and F statistic from DC based regressions to BC based regressions demonstrates the efficacy of our BCov-SDR method
for sufficient dimension reduction. The efficiency gain comes in part from the robustness of BC to the predictors with
outliers. For some deeper reason, we think that BC may be a more linear measure than DC. Notice that when X and Y are
standard normal random variables, BC and DC are both nondecreasing functions of the absolute value of their Pearson
correlation. Recall that the empirical ball covariance is a rank statistic. The robustness of rank statistic may force heavy
tailed distribution closer to normal distribution in a sense. Thus, we believe it is reasonable to think BC as a more linear
measure than DC. Furthermore, it seems that BCov-SDR works pretty well in presence of discrete predictors.
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Fig. 2. Scatterplots of mpg versus the derived indexes produced by DC and BC: DC-1, DC-2, BC-1, and BC-2.

Cardiomyopathy Microarray Data.
Cardiomyopathy Microarray Data is used to evaluate the robustness of BCov-SDR (or BC, for simplicity) to heavy-tailed

predictors. This data has been frequently studied (Segal et al., 2003; Zou and Yuan, 2008; Li et al., 2012b; Chen et al., 2018)
to investigate the relationship between over expression of a G protein-coupled receptor (Ro1) in mice and 6319 related
genes. Only 30 observations are collected, so we conduct feature screening as a first step. Three screening methods are
employed: SIS (Fan and Lv, 2008), DCSIS (Li et al., 2012b), and BCSIS (Pan et al., 2018). SIS is quite popular in the literature,
and DCSIS and BCSIS are both model-free feature screening methods. The basic idea of marginal feature screening is to
rank the predictors by some utility measure between the response and predictors, and then to retain the predictors with
top utilities for further study. Specifically, Let U(Y , Xj) denote the utility measure between the response Y and the jth
predictor Xj, the marginal feature screening chooses a set A of predictors:

A = {j : U(Y , Xj) > τ, j = 1, . . . , n}

where τ is some threshold. Fan and Lv (2008) suggests retaining ⌊n/log(n)⌋ predictors for a sample with size n.
SIS uses the absolute value of Pearson correlation as the utility measure, DCSIS uses distance correlation, and BCSIS uses

ball correlation. Different utility measures may select different predictors. We put all the predictors selected by SIS, DCSIS
and BCSIS together to get a conservative set of predictors for the following sufficient dimension reduction. After each
screening procedure, ⌊n/log(n)⌋ = 8 variables or genes are screened out: Msa.2877.0, Msa.964.0, Msa.2134.0, Msa.741.0,
Msa.3041.0, Msa.1590.0, Msa.15405.0 and Msa.1166.0 from SIS; Msa.2134.0, Msa.2877.0, Msa.26025.0, Msa.5583.0,
Msa.1590.0, Msa.1166.0, Msa.2400.0 and Msa.15442.0 from DCSIS; and Msa.2134.0, Msa.5794.0, Msa.2877.0, Msa.1166.0,
Msa.5727.0, Msa.15442.0, Msa.26025.0 and Msa.42131.0 from BCSIS. We then put the selected variables together and
finally get 15 variables after removing the duplicates. At the significant level 0.1, 7 variables cannot pass the Shapiro–Wilk
normality test, and most of them are characterized by heavy tails.
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Table 9
Regression results of ‘‘Ro1’’ against the derived indexes.

DC BC

linear model nonlinear model linear model nonlinear model

Adjusted R-squared 0.75 0.86 0.79 0.94
F 45.06 37.97 56.15 87.29

The following procedures are similar to those done in the auto MPG data. Two indexes are derived by DC and BC
respectively, after which linear and nonlinear regressions are constructed to measure the goodness of fit of the two pair
of indexes to ‘‘Ro1’’. The regression results are presented in Table 9. There is no surprise that the BC based indexes perform
far better than the DC based indexes considering the heavy-tailed character of the predictors.

5. Conclusion

In this paper, we propose BCov-SDR, a robust sufficient dimension reduction method that is based on the ball
covariance. This method is general and widely applicable, because it is not restricted to various conditions required by
other popular sufficient dimension reduction approaches. Moreover, it is robust to heavy-tailed predictors and outliers,
which is demonstrated by both the simulation studies and real data analysis. The asymptotic property of the BCov-SDR
estimator of the central subspace is also investigated. Although our method is now under a traditional fixed dimension
setting, it can be extended to high dimensional settings easily by conducting a screening procedure first, see Fan and Lv
(2017) for reference.
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Appendix

Lemma 1. If (W1, V1) ⊥⊥ (W2, V2), then BCov2(W1 + W2, V1 + V2) < BCov2(W1, V1) + BCov2(W2, V2).

Proof. Let (W1, V1) and (W2, V2) be two B-valued random vectors defined on a probability space (Ω,F, P) such that
(W1, V1) ∼ θ1, W1 ∼ µ1, V1 ∼ ν1, and (W2, V2) ∼ θ2, W2 ∼ µ2, V2 ∼ ν2, and (W , V ) = (W1 + W2, V1 + V2) ∼ θ , W ∼ µ,
V ∼ ν, where θ , θ1, θ2, µ, µ1, µ2, ν, ν1 and ν2 are Borel probability measures.

BCov2(W , V )

= E{[θ − µ ⊗ ν]
2(B̄ζW (w1, w2) × B̄ζV (v

1, v2)|(w1, v1), (w2, v2))}
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≤ BCov2(W1, V1) + BCov2(W2, V2),

where the first inequality is obtained by the fact that (W1, V1) ⊥⊥ (W2, V2). Thus, we complete the proof. □

Proof of Theorem 1

Proof. For β and B defined in Theorem 1, we can find a rotation matrix Q such that βQ = (Ba, Bb), S(Ba) ⊂ S(B) and
S(Bb) ⊂ S(B)⊥, where S(B)⊥ denotes the orthogonal space of S(B).

By Condition (2) and the definition of B, we get (Y ,BTX) ⊥⊥ BT
bX. Then by Proposition 4.3 of Cook (1998), (Y , BT

aX) ⊥⊥ BT
bX.

Denote W1 = (BT
aX, 0), V1 = Y , W2 = (0, BT

bX) and V2 = 0. Clearly, (W1, V1) ⊥⊥ (W2, V2). Hence, by Lemma 1 we
obtain BCov(βTX, Y ) < BCov(BT

aX, Y ). According to Condition (1), we have BCov(βTX, Y ) < BCov(BTX, Y ) and complete the
proof. □
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Lemma 2. BCovn(X, Y ) →a.s. BCov(X, Y ).

Proof. This lemma comes from Lemma 3 of Pan et al. (2018). □

Proof of Theorem 2.

Proof. If ηn is not a consistent estimator of η, there exists a subsequence of ηn∗ of ηn such that ηn∗ →p η∗, where
η∗TΣ̂Xη

∗
= Id and η∗

̸= η. Let ηn∗ = η∗
+ ϵn∗ , then when ϵn∗ gets small enough, by the definition of BCovn, we obtain

BCovn(ηT
n∗X, Y ) = BCovn(η∗TX, Y ). According to Lemma 2, BCovn(η∗TX, Y ) →a.s. BCov(η∗TX, Y ). Hence, BCovn(ηT

n∗X, Y ) →a.s.
BCov(η∗TX, Y ).

On the other hand, by (2.2), we have BCovn(ηT
n∗X, Y ) ≥ BCovn(ηTX, Y ). Let n → ∞, and we get BCov(η∗TX, Y ) ≥

BCov(ηTX, Y ), which contradicts to the definition of η (see (2.3)). Thus, ηn must be a consistent estimator of η. □
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