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a b s t r a c t

Principal component analysis (PCA) is widely used in various fields to reduce high
dimensional data sets to lower dimensions. Traditionally, the first a few principal
components that capture most of the variance in the data are thought to be important.
Tipping and Bishop (1999) introduced probabilistic principal component analysis (PPCA)
in which they assumed an isotropic error in a latent variable model. Motivated by a
general error structure and incorporating the novel idea of ‘‘envelope" proposed by
Cook et al. (2010), we construct principal envelope models (PEM) which demonstrate
the possibility that any subset of the principal components could retain most of the
sample’s information. The useful principal components can be found through maximum
likelihood approaches. We also embed the PEM to a factor model setting to illustrate its
reasonableness and validity. Numerical results indicate the potentials of the proposed
method.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) is a popular data processing and dimension reduction technique. First introduced
by Pearson (1901), PCA has a long history and is now widely used in various areas, including agriculture, ecology, genetics
and economics. PCA seeks uncorrelated linear combinations of the original variables that capture maximal variance.
Suppose we have n observations on p features x1, . . . , xp. Let x(i) = (x(i)1 , . . . , x(i)p ) denote the ith observation, i = 1, . . . , n,
and x = (x1, . . . , xp)T be the vector variable. Let x̃(i) denote the centered observation vectors, i = 1, . . . , n, and X be the
n×p centered data matrix with row x̃(i) and rank r ≤ min(n, p). Since there is no response involved, this article is mainly
about unsupervised multivariate dimension reduction method.

Let ĝ1, ĝ2, . . . , ĝr be the eigenvectors of the sample covariance matrix Σ̂ = XTX/n corresponding to its non-zero
eigenvalues. Without loss of generality, ĝ1, ĝ2, . . . , ĝr are ordered by descending eigenvalues. Let λ̂1, λ̂2, · · · , λ̂r be the
non-zero eigenvalues with descending order. The principal component directions ĝk, k = 1, . . . , r , can also be obtained
by maximizing αT

k (X
TX)αk successively subject to αT

kαk = 1 and αT
hαk = 0, ∀h < k. This demonstrates that PCA pursues

the linear combinations of the original variables such that the derived variables capture maximal variance. The sample
variance of the ith principal component (PC) equals λ̂i (Anderson, 1963). There are many methods for selecting the number
of principal components, depending on specific requirements for different applications, see Jolliffe (2002).

PCA enjoys high popularity, but it is not based on a probability model. Tipping and Bishop (1999) introduced
probabilistic principal component analysis (PPCA) in which the first few principal component directions can be obtained
through maximum likelihood estimation. However, the assumption of an isotropic error in the PPCA model is quite limited.
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By assuming a general error structure and incorporating the novel ‘‘envelope" idea of Cook et al. (2010), we establish
principal envelope models that encompass PPCA as a special case and demonstrate the possibility that any subset of
principal components could retain most of the sample’s information. Since the introduction of ‘‘envelope" into statistical
literature by Cook et al. (2010), various envelope models have been developed, including partial envelopes (Su and Cook,
2011), inner envelopes (Su and Cook, 2012) and simultaneous envelopes (Cook and Zhang, 2015a). Cook and Zhang (2015b)
provides a comprehensive overview of ‘‘envelope" development.

We revisit PPCA in Section 2.1 to investigate the link between PPCA and principal envelope models. In Section 2.2 we
describe the concept of an envelope and demonstrate the possibility that any subset of principal components could retain
most of the sample’s information. We build some intermediate models in Section 2.3. The log-likelihood function of one
specific principal envelope model has the same form as probabilistic extreme components analysis (PXCA) (Welling et al.,
2003) if the dimension of the envelope is the same as the minimum dimension reduction subspace. However, the concepts
and statistical meanings of these two approaches are quite different. In Section 2.4, we employ the likelihood ratio test to
determine the dimension of the envelop. Results of simulation studies are presented in Section 3. An extension to factor
model is given in Section 4. Real data analysis is presented in Section 5. A brief discussion about the proposed methods
can be found in Section 6. Technical details are given in Appendix.

2. Principal envelope model

2.1. Probabilistic principal component analysis revisited

Tipping and Bishop (1999) proposed a probabilistic principal component model as follows:

x = µ + βν + σϵ, (1)

where µ permits x to have non-zero mean and the p×d matrix β relates the observable variable x and the latent variable
ν, which is assumed to be normally distributed with mean 0 and identity covariance matrix. The error ϵ ∼ N (0, Ip) is
assumed to be independent of ν and d is assumed to be known. The parameter β is not identified since βν = (βO)(OTν)
for any orthogonal matrix O, resulting in an equivalent model. However, the subspace B = span(β) is identified and
estimable. Tipping and Bishop showed that the maximum likelihood estimator of B is the span of the first d eigenvectors
of Σ̂ . A Grassmann manifold, which is defined as the set of all d-dimensional subspaces in Rp, is the natural parameter
space for B. For more background on Grassmann manifold optimization, see Edelman et al. (1998).

We reformulate model (1) as

x = µ + Γδν + σϵ, (2)

where Γ is a p × d semi-orthogonal matrix (Γ TΓ = Id), δ is a full rank d × d coordinate matrix, ν and ϵ are defined
previously. Let SΓ denote the column space of Γ . The population covariance matrix of x is

ΓδδTΓ T
+ σ 2Ip = Γ (δδT + σ 2Id)Γ T

+ σ 2Γ 0Γ
T
0 = ΓVΓ T

+ σ 2Γ 0Γ
T
0

where V = δδT + σ 2Id. The full log-likelihood function L0(SΓ ,V, σ 2) can be calculated straightforwardly:

−
np
2

log(2π ) −
n
2
log |ΓVΓ T

+ σ 2Γ 0Γ
T
0 | −

1
2

n∑
i=1

x̃Ti (ΓVΓ T
+ σ 2Γ 0Γ

T
0)

−1x̃i

= −
np
2

log(2π ) −
n
2
log |V| −

n
2
trace(Γ T Σ̂ΓV−1) −

n
2
(p − d) log(σ 2) −

n
2σ 2 trace(Γ

T
0Σ̂Γ 0).

In the above expression, |A| denotes the determinant of the matrix A. In later sections, we will ignore the common constant
−(np/2) log(2π ) in the log-likelihood functions.

If we maximize over V and σ 2 separately, we arrive at the same partially maximized likelihood function as Tipping
and Bishop (1999). However, the parameters V and σ 2 are not in proper product spaces because the eigenvalues of V are
bounded below by σ 2. Thus it seems inappropriate to maximize over V and σ 2 separately. The result of Proposition 1 is
the same as Tipping and Bishop (1999), but we present a totally different proof in the appendix.

Proposition 1. The maximum likelihood estimator ŜΓ in L0(SΓ ,V, σ 2) is the subspace spanned by the first d principal
component directions and can be obtained by maximizing trace(Γ T Σ̂Γ ) subject to Γ TΓ = Id.

2.2. Motivation: general error structure

Instead of assuming an isotropic error structure, which is very limiting, we assume

x = µ + βν + Φ1/2ϵ, (3)

where Φ is a general positive definite matrix. The latent variable ν represents extrinsic variation in x, while the error ϵ
represents intrinsic variation. Traditional PCA reduces dimensionality while keeping most of its total variation. Our goal
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is different and we reduce the dimension of x accounting for its extrinsic variation. Under this case, we can show that
x ⊥⊥ ν|βTΦ−1x (Cook, 1998, 2007). Thus R = βTΦ−1x is the reduction we would like to estimate because x contains no
further information about ν given βTΦ−1x. Let T = span(Φ−1β). Since any full rank linear transformation A of R results
in an equivalent reduction; x ⊥⊥ ν|R if and only if x ⊥⊥ ν|AR, it is sufficient to estimate T . Additionally, if T is minimal
and if x ⊥⊥ ν|BTx, then T ⊆ span(B).

Remark 1. Under Model (3) with an isotropic error structure, reducing dimensionality to keep most of x’s total variation
is equivalent to reducing dimensionality to keep most of its extrinsic variation. Here, the extrinsic variation echoes
the exogenous variables in linear regression, and the intrinsic variation comes from the noise. The reason is that the
isotropic error does not disrupt the order of the eigenvalues. When x is contaminated with non-negligible noise, it is
more reasonable to reduce dimensionality with respect to extrinsic variation in comparison with total variation, which
can be demonstrated to some extent by the factor model in Section 4. Intuitively, extrinsic variation represents the true
sample information. Thus, dimension reduction in terms of the total variation may be misleading.

Under model (3), we see that x is normal with mean µ and variance Σ = Φ+ββT . The maximum likelihood estimator
of µ is simply the sample mean of x, however Φ and β are confounded, thus T cannot be estimated without assuming
additional structure. The principal envelope idea is to estimate an upper bound on T . By doing so, we do not lose any
information on its extrinsic variation. Before we explain the concept of an envelope, we review the concept of reducing
subspace.

Definition 1 (Conway, 1990). A subspace R is a reducing subspace of M ∈ Rp×p if MR ⊆ R and MR⊥
⊆ R⊥ where R⊥

stands for the complement of R in the usual inner product.

Definition 2 (Cook et al., 2007, 2010). Suppose that the symmetric matrix M ∈ Rp×p and let the subspace K ⊆ span(M).
The M-envelope of K, to be written as EM(K), is the intersection of all reducing subspaces of M that contain K.

with a little abuse of notation, let Γ be an orthonormal basis of EΦ(T ) and Γ 0 be the orthogonal complement of Γ
where Γ ∈ Rp×u, Γ 0 ∈ Rp×(p−u) and u ≥ d. By definition, we have T ⊆ EΦ(T ) and Γ Tx ⊥⊥ Γ T

0x|ν. Then model (3) can be
re-written as

x = µ + Γην + Φ1/2ϵ, (4)
Φ = ΓΩΓ T

+ Γ 0Ω0Γ
T
0,

where β = Γη, η is a u × d matrix with rank d, and Ω and Ω0 are positive definite matrices. This model is referred as
principal envelope model (PEM). Of note is that this model has been mentioned in Section 8.3 of Cook et al. (2010) but
without any detail discussion. We also note that SΓ is the same as EΦ(T ). In the likelihood function, we prefer to use
SΓ so that it is clear that what parameter we are going to estimate. The estimate of SΓ provides an upper bound on the
estimate of T . The parameter d is not estimable under this model. When u = d, Ω = σ 2Id and Ω0 = σ 2Ip−d, model (4)
reduces to PPCA.

The population covariance of x can be calculated straightforwardly:Σ = Γ (Ω+ηηT )Γ T
+Γ 0Ω0Γ

T
0 . LetΨ = Ω+ηηT .

The parameter η is confounded with Ω and cannot be estimated here and in later sections, but Ψ can be estimated. After
some algebra, we have the log-likelihood function

−
n
2
log |ΓΨΓ T

+ Γ 0Ω0Γ
T
0 | −

1
2

n∑
i=1

x̃Ti (ΓΨΓ T
+ Γ 0Ω0Γ

T
0)

−1x̃i

= −
n
2
log |Ψ | −

n
2
log |Ω0| −

1
2

n∑
i=1

x̃Ti (ΓΨ−1Γ T )x̃i −
1
2

n∑
i=1

x̃Ti (Γ 0Ω
−1
0 Γ T

0)x̃i

= −
n
2
log |Ψ | −

n
2
trace(Γ T Σ̂ΓΨ−1) −

n
2
log |Ω0| −

n
2
trace(Γ T

0Σ̂Γ 0Ω
−1
0 ).

Maximizing over Ψ and Ω0, we have the partially maximized log-likelihood function

L1(SΓ ) = −
n
2
log |Γ T Σ̂Γ | −

n
2
log |Γ T

0Σ̂Γ 0| −
n
2
p

= −
n
2
log |Γ T Σ̂Γ | −

n
2
log |Γ T Σ̂

−1
Γ | −

n
2
p −

n
2
log |Σ̂ |

The function L1(SΓ ) requires n > p as Γ T Σ̂Γ must not be singular.

Proposition 2.

(i) We have L1(SΓ ) ≤ −(np)/2 − (n/2) log |Σ̂ | for all Γ TΓ = Iu.
(ii) Let J be a subset with u elements of the index set {1, . . . , p}. Define ŜΓ = span(gJ1 , . . . , gJu ) where gJ1 , . . . , gJu

denotes any u principal component directions, then L1(ŜΓ ) = −(np)/2 − (n/2) log |Σ̂ |.
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From Proposition 2, we see that the span of any u principal component directions is the maximum likelihood estimator
of SΓ . In other words, any subset with cardinality u of principal component directions is equally supported by the
likelihood function. It also tells us that we need extra information to tell which subset is useful.

Remark 2. Proposition 2 seems a bit strange, but it makes sense. Note that

Σ = Γ (Ω + ηηT )Γ T
+ Γ 0Ω0Γ

T
0

= ΓΨΓ T
+ Γ 0Ω0Γ

T
0

= ΓGΛGTΓ T
+ Γ 0G0Λ0GT

0Γ
T
0,

where GΛGT and G0Λ0GT
0 are the spectral decompositions of Ψ and Ω0 respectively. The principal component directions

under Model (4) can be written unordered as ΓG and Γ 0G0 with eigenvalues given by the corresponding elements of
the diagonal Λ and Λ0. SΓ is just the column span of ΓG. If the smallest eigenvalue in Λ is bigger than the largest
eigenvalue in Λ0, ŜΓ is the subspace spanned by the first u principal component directions. Whereas, if nothing is known
about the structures of Ψ and Ω0, we can certainly not discern which subsets of the principal component directions
would represent most of the extrinsic variation, thus all the subsets yield the maximum likelihood.

2.3. Specific principal envelope models

Assuming that we can model Ψ = σ 2Iu and Ω0 = σ 2
0 Ip−u, we have the log-likelihood function:

−
n
2
log |σ 2ΓΓ T

+ σ 2
0Γ 0Γ

T
0 | −

1
2

n∑
i=1

x̃Ti (σ
2ΓΓ T

+ σ 2
0Γ 0Γ

T
0)

−1x̃i

= −
n
2
u log(σ 2) −

n
2
(p − u) log(σ 2

0 ) −
1

2σ 2

n∑
i=1

x̃Ti (ΓΓ T )x̃i −
1

2σ 2
0

n∑
i=1

x̃Ti (Γ 0Γ
T
0)x̃i

= −
n
2
u log(σ 2) −

n
2σ 2 trace(Γ

T Σ̂Γ ) −
n
2
(p − u) log(σ 2

0 ) −
n

2σ 2
0
trace(Γ T

0Σ̂Γ 0).

Maximizing over σ 2 and σ 2
0 , we have the partially maximized log-likelihood function

L2(SΓ ) = −
n
2
u log(trace(Γ T Σ̂Γ )) −

n
2
(p − u) log(trace(Γ T

0Σ̂Γ 0))

−
n
2
p +

n
2
u log(u) +

n
2
(p − u) log(p − u)

= −
n
2
u log(trace(Γ T Σ̂Γ )) −

n
2
(p − u) log(trace(Σ̂ ) − trace(Γ T Σ̂Γ ))

−
n
2
p +

n
2
u log(u) +

n
2
(p − u) log(p − u)

The function L2(SΓ ) requires n > p − u + 1 to ensure trace(Γ T Σ̂Γ ) > 0.

Proposition 3. When Ψ = σ 2Iu and Ω0 = σ 2
0 Ip−u, the maximum likelihood estimator ŜΓ is the span of either the first u

principal component directions (σ 2 > σ 2
0 ) or the last u principal component directions (σ 2 < σ 2

0 ).

It is quite restrictive that Ψ is modeled as isotropic (Cook, 2007), however we demonstrate a situation where the last
a few principal component directions can retain most of the sample’s information.

Assuming that only Ω0 = σ 2
0 Ip−u, we have the model

x = µ + Γην + Φ1/2ϵ (5)
Φ = ΓΩΓ T

+ σ 2
0Γ 0Γ

T
0 .

Then we have the log-likelihood function of model (5):

−
n
2
log |ΓΨΓ T

+ σ 2
0Γ 0Γ

T
0 | −

1
2

n∑
i=1

x̃Ti (ΓΨΓ T
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0Γ 0Γ
T
0)

−1x̃i
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n
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n
2
(p − u) log(σ 2

0 ) −
1
2

n∑
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x̃Ti (ΓΨ−1Γ T )x̃i −
1

2σ 2
0

n∑
i=1

x̃Ti (Γ 0Γ
T
0)x̃i

= −
n
2
log |Ψ | −

n
2
trace(Γ T Σ̂ΓΨ−1) −

n
2
(p − u) log(σ 2

0 ) −
n

2σ 2
0
trace(Γ T

0Σ̂Γ 0).
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Maximizing over Ψ and σ 2
0 , we have the partially log-likelihood function

L3(SΓ ) = −
n
2
log |Γ T Σ̂Γ | −

n
2
(p − u) log(trace(Γ T

0Σ̂Γ 0))

−
n
2
p +

n
2
(p − u) log(p − u)

= −
n
2
log |Γ T Σ̂Γ | −

n
2
(p − u) log(trace(Σ̂ ) − trace(Γ T Σ̂Γ ))

−
n
2
p +

n
2
(p − u) log(p − u).

The function L3(SΓ ) requires n > p as Γ T Σ̂Γ must not be singular.

Proposition 4. Under model (5), the maximum likelihood estimator ŜΓ is the span of the first k and last u − k principal
component directions that maximizes L3(SΓ ) subject to Γ TΓ = Iu where k needs to be determined.

Let λi, i = 1, 2, . . . , u be the population eigenvalues of Ψ , λ1 < λ2 < · · · < λu. The setting of model (5) basically
says that the signals can have different scales but the noises have the same magnitude. If λi > σ 2

0 for all i = 1, 2, . . . , u,
then we have the same solution as the usual principal component analysis. It is equivalent to say that if the signal is
strong enough, the usual principal component analysis is doing a sensible thing. If σ 2

0 > λi for all i = 1, 2, . . . , u, then we
have the last u principal component directions as the solution. If σ 2

0 lies among λi for i = 1, 2, . . . , u, then the solution
is the span of the first k principal component directions and u − k last principal component directions where k ranges
from 1 to u. This provides a fast algorithm to search the maximizer of L3(SΓ ) which was also addressed by Welling et al.
(2003). Welling et al. (2003) proposed a probabilistic model for ‘‘extreme components analysis’’ (PXCA) which extracts an
optimal combination of principal and minor components at the maximum likelihood solution. Instead of adding isotropic
Gaussian noise in all directions in the probabilistic PCA model, PXCA adds the noise only in the directions orthogonal to
the column space of β:

x = µ + βν + Φ1/2ϵ

Φ = Ip − β(βTβ)−1βT ,

where ν ∼ N (0, Id) and ϵ ∼ N (0, σ 2
0 Ip). Notice that the covariance matrix of x in this model is

Σ = ββT
+ σ 2

0 {Ip − β(βTβ)−1βT
},

which is equivalent to the covariance matrix in Model (5):

Σ = Γ (ηηT
+ Ω )Γ T

+ σ 2
0Γ 0Γ

T
0,

when u = d, where Γ 0 ∈ Rp×(p−u) is the orthogonal complement of Γ .
Therefore, the log-likelihood function of Model (5) has the same form as that of PXCA when u = d, which means

that Model (5) reduces to the PXCA model (Model (6) or (8) in Welling et al. (2003)) when u = d. The main difference
between these two approaches lies in the fact that model (5) aims to estimate an upper bound on the minimum dimension
reduction subspaces.

If we assume Ω0 in model (4) to be a diagonal matrix, it is equivalent to model (4) because Γ 0ΩΓ T
0 can always be

re-parameterized as Γ ′

0ΛΓ ′

0
T . The positive definite matrix Ω0 in model (4) can be considered as the covariance matrix

for Γ T
0x and it may not be always a diagonal matrix given Γ 0. Suppose we can model Ω0 as

σ 2
0

⎛⎜⎜⎜⎜⎝
1 c c . . . c
c 1 c . . . c
c c 1 . . . c
...

. . .
...

c c c . . . 1

⎞⎟⎟⎟⎟⎠ . (6)

This means that the correlation coefficients for Γ T
0x are modeled as constant c where −1/(p − u − 1) < c < 1. We

can represent Ω0 as σ 2
0 {(1 − c)Q1 + (1 + (p − u − 1)c)P1} where P1 is the projection matrix onto the (p − u) × 1 vector

of ones and Q1 = Ip−u − P1. The log-likelihood function can be calculated as

−
n
2
log |Ψ | −

n
2
trace(Γ T Σ̂ΓΨ−1) −

n
2
log |Ω0| −

n
2
trace(Γ T

0Σ̂Γ 0Ω
−1
0 )

= −
n
2
log |Ψ | −

n
2
trace(Γ T Σ̂ΓΨ−1) −

n
2
(p − u) log σ 2

0 −
n
2
(p − u − 1) log(1 − c)

−
n
2
log(1 + (p − u − 1)c) −

n
2σ 2

0
trace{Γ T

0Σ̂Γ 0

(
Q1

1 − c
+

P1

1 + (p − u − 1)c

)
}.
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Table 1
PEM models.
Model setting Structure specification under model (4) ŜΓ (Span of)

Model (3) Φ is a general positive definite matrix Cannot be estimated
Model (4) None Any u principal component directions
None Ω0 = (6) A subset of the first k′ and last u + 1 − k′ principal component directions
Model (5) Ω0 = σ 2

0 Ip−u The first k and last u − k principal component directions
Ψ = σ 2Iu and Ω0 = σ 2

0 Ip−u The first or the last u principal component directions
Model (1) or (2) (PPCA) Ω = σ 2Id and Ω0 = σ 2

0 Ip−d The first d principal component directions

Maximizing over Ψ and σ 2
0 first, we have

−
n
2
log |Γ T Σ̂Γ | −

n
2
(p − u − 1) log(1 − c) −

n
2
log(1 + (p − u − 1)c)

−
n
2
log{trace(Γ T

0Σ̂Γ 0

(
Q1

1 − c
+

P1

1 + (p − u − 1)c

)
)} −

n
2
p +

n(p − u)
2

log(p − u).

Then maximizing above over c , we have the partially maximized log-likelihood

L5(SΓ ) = −
n
2
log |Γ T Σ̂Γ | −

n(p − u − 1)
2

log trace(Γ T
0Σ̂Γ 0Q1)

−
n
2
log trace(Γ T

0Σ̂Γ 0P1) −
n
2
p +

n(p − u − 1)
2

log(p − u − 1),

where the maximum likelihood estimators σ̂ 2
0 = trace(Γ T

0Σ̂Γ 0)/(p − u) and

ĉ = 1 −
(p − u)trace(Γ T

0Σ̂Γ 0Q1)

(p − u − 1)trace(Γ T
0Σ̂Γ 0)

.

Proposition 5. When Ψ ≻ 0 and Ω0 = (6), the maximum likelihood estimator ŜΓ is the span of one subset of u principal
component directions that maximizes L5(SΓ ) subject to Γ TΓ = Iu.

In this setting, the coordinate matrixΩ0 has two different eigenvalues, one with p−u−1 replicates. From Proposition 5,
we have a simple algorithm to find the maximum likelihood estimator ŜΓ . Among the first k and last u+ 1− k principal
component directions where k ranges from 0 to u + 1, we record any subset with dimension u as a possible candidate.
The total number of candidates is less than (u + 2)(u + 1). Then we search among all candidates and find the one that
maximizes L5.

We summarize all the results of the above models in Table 1.

2.4. Selection of the dimension u

We use the likelihood ratio test to determine the dimensionality of the envelope denoted by u. For example, let us
consider model (5). The hypothesis u = u0 can be tested by using the likelihood ratio statistic Λ(u0) = 2(L̂fm − L̂(u0)),
where L̂fm denotes the maximum value of the log likelihood for the full model (u = p), and L̂(u0) the maximum value of
the log likelihood when u = u0. In fact, L̂fm = −(np)/2−(n/2) log |Σ̂ |. The total number of parameters needed to estimate
model (5) is

df (u) = p +
u(u + 1)

2
+ u(p − u) + 1.

The first term on the right hand side corresponds to the estimation of the grand mean µ. The second term corresponds
to the estimation of the unconstrained symmetric matrix Ψ . The third term corresponds the number of parameters
needed to describe the subspace SΓ (Edelman et al., 1998). The last term corresponds to σ 2

0 . Following standard
likelihood theory, under the null hypothesis, Λ(u0) is distributed asymptotically as a chi-squared random variable with
(p − u0 + 2)(p − u0 − 1)/2 degrees of freedom.

3. Simulation studies

Two small simulation studies are conducted in this section. We generate data from model (5). Γ and Γ 0 are generated
randomly by R function ‘‘randortho’’ in Package ‘‘pracma’’ with dimensions p × u and p × (p − u) respectively. η is a
u × d matrix with stand normal distributed elements and rank d. Ω = Iu, µ = (0, . . . , 0)T and σ0 = 2. In this setting,
Ψ = Iu + ηηT . We set dimensions (p, u, d) to be (20, 2, 1), (50, 5, 3) and (80, 8, 5).

There is no maximum likelihood estimator for β = Γη, however we can estimate EΦ(T ), an upper bound of T . By
Proposition 4, the population maximum likelihood estimator, denoted as SΓ , is the span of the first k and the last u − k
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Fig. 1. Maximum angles versus n.

eigenvectors of Σ where k is need to be determined. It is clear to see that the usual principal component analysis fails.
On each of 100 replications with fixed n we compute the maximum angle between ŜΓ and span(β). Fig. 1 summarizes
the maximum angles for n = (100, 1000; 100). It can be seen clearly that the span of the principal envelope solution is
very efficient at estimating an upper bound of span(β). Moreover, the maximum angle tends to become smaller when d
gets larger.

In the second simulation study, we generate data from

x = Γν + Φ1/2ϵ, Φ = 0.1ΓΓ T
+ 10Γ 0Γ

T
0,

where

Γ =

(
1 1 . . . 1 1
1 −1 . . . 1 −1

)T

/
√
20 ∈ R20×2

and ν is generated as points on a 2 × 2 square instead of a normal distribution to visualize the effectiveness of principal
envelope model (5). We have p = 20, u = 2 and d = 2. Fig. 2 shows the scatter plot of PE2 = Xê2 versus PE1 = Xê1, and
the scatter plot of PC2 = Xĝ2 versus PC1 = Xĝ1 for two different sample size n = 200 and n = 400 with one replication
where ê1 and ê2 represent the two directions of ŜΓ . From Fig. 2, we can see that the solution of principal envelope model
(5) can recover the square well while the solution of principal component analysis fails. We notice that in this setting ν
does not follow a normal distribution which is required by model (5), however the solution is still reasonable. This tells
us that principal envelope model can be robust.

A friend suggested that we should exhibit some results for higher dimensions. We extend 2-dimensional square to
3-dimensional sphere, where the latent vector is generated, to illustrate the reasonableness of PEM. In the 3-dimensional
setting, we set u = d = 3, p = 20 and n = 1000. Data is generated from

x = Γν + Φ1/2ϵ, Φ = 0.01ΓΓ T
+ 10Γ 0Γ

T
0,

where

Γ =

( 1 1 . . . 1 1
1 −1 . . . 1 −1
1 1 . . . −1 −1

)T

/
√
p ∈ Rp×3,

and ν is uniformly distributed on a sphere. Fig. 3 shows the scatter plot of PE1, PE2 and PE3 and the scatter plot of PC1,
PC2 and PC3. It can be seen clearly that the solution of principal envelope model (5) can recover the sphere well while
the solution of principal component analysis fails. In this setting, the distribution of the latent vector ν is far away from
the normal distribution, and that is why we reduce the coefficient 0.1 to 0.01 when we formulate Φ .

4. An extension to factor model

Consider a factor model with a general error structure base on Model (4), called envelope factor model (EFM):

y = c + αTν + ζ , (7)
x = µ + Γην + Φ1/2ϵ,

Φ = ΓΩΓ T
+ Γ 0Ω0Γ

T
0,

where y is the target variable, c is some constant, α is a d × 1 vector, ζ is the stochastic error independent of ν and ϵ,
and the other notations stay the same as those in Model (4). Here, ν can be seen as common factors driving both the
response and the predictors x and Γη as factor loadings. Obviously, it is the extrinsic variation with respect to ν that is
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Fig. 2. Recover the square using PEM and PCA methods.

directly related to the target variable. Hence, the PEM model can be a more effective technique to extract the latent factors
from the predictors. When an isotropic error structure is imposed on Model (4), EFM model is reduced to the traditional
factor models where the factor loadings are the eigenvectors corresponding to the largest d eigenvalues of Σ , see among
others (Stock and Watson, 2002), Bai and Ng (2002), Fan et al. (2013) and Bai and Ng (2013) for reference. In the EFM
model setting, we give a simple simulation to demonstrate the effectiveness of the PEM model framework.

Consider Model (4) with Ψ = σ 2Iu and Ω0 = σ 2
0 Ip−u aforementioned. Let σ = 1 and σ0 = 2 such that the maximum

likelihood estimator ŜΓ is the span of the last u principal component directions. Γ and Γ 0 are generated randomly by
R function ‘‘randortho’’ in Package ‘‘pracma’’ with dimensions p × u and p × (p − u) respectively. η is a u × d matrix
with stand normal distributed elements and rank d and is generated to ensure that Ω is a positive definite matrix. Let
n = 400, p = 50, u = 5, d = 3, and µ = (0, . . . , 0)T . Under model (7), let c = 0, α = (1, −1, 1)T and ζ follow the stand
normal distribution. We employ the first u (PPCA) and the last u (PEM) principal component directions to formulate the
latent factors respectively which are then used to predict the target variable y. The adjusted R2 of y being regressed on
the real factors ν is about 0.93. Under PEM model, the adjusted R2 reduces to 0.65. By contrast, using factors generated by
the first u principal component directions causes the adjusted R2 to drop sharply to −0.01. Clearly, the first u principal
component directions do not contain any information with respect to the target variable y. PEM framework makes sense
and performs well.

5. Data analysis

We first applied our method to a data set about agricultural economics studies. This data contains 17 cases, one
response and 8 explanatory variables. The response variable y is retail food price index adjusted by the CPI. Principal
envelope models do not utilize any information on the response and the response is only used to verify that PEM
solutions can be efficient. The 8 explanatory variables are price of beef (cents/lb) (x1); consumption of beef per capita
(lbs) (x2); price of pork (cents/lb) (x3); consumption of pork per capita (lbs) (x4); retail food price index (x5); disposable
income per capita index (x6); food consumption per capita index (x7) and index of real disposable income per capital
((x8). According to the multivariate normality test (Royston, 1982), this data seems to follow a multivariate normal
distribution which is the premise of principal envelope models. The data can be downloaded from the web page http:
//lib.stat.cmu.edu/DASL/Datafiles/agecondat.html.

Let m be the regression coefficient vector of y on x1, . . . , x8. We use Model (5) to fit the data and the likelihood ratio
tests suggest u = 4 using significance level α = 0.01 and u = 5 using α = 0.05. When u = 4, the corresponding
principal envelope solution consists the last 4 eigenvectors of the covariance matrix and the largest principal angle

http://lib.stat.cmu.edu/DASL/Datafiles/agecondat.html
http://lib.stat.cmu.edu/DASL/Datafiles/agecondat.html
http://lib.stat.cmu.edu/DASL/Datafiles/agecondat.html
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Fig. 3. Recover the sphere using PEM and PCA methods.

(Knyazev and Argentati, 2002) between m and the subspace spanned by the envelope solution is 7.359 degrees. When
u = 5, the corresponding principal envelope solution consists the last 5 eigenvectors and the largest principal angle
between m and the subspace spanned by the envelope solution is 7.356 degrees. The first 5 principal component explain
99.9% total variance while the largest principal angle between m and the subspace spanned by the first 5 principal
component directions is about 74.47 degrees.

Then we applied our method to the man hours data, a good example of multicollinearity data structure. This data
contains 25 observations, one response y and 7 explanatory variables x1, . . . , x7. The response variable y is monthly man
hours needed to operate an establishment of U.S. Navy bachelor officers’ quarters. The 7 explanatory variables are average
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daily occupancy (x1); monthly average number of check-ins (x2); weekly hours of service desk operation (x3); common
use area (in square feet) (x4); number of building wings (x5); operational berthing capacity (x6); number of rooms (x7).
The correlation coefficients between x6 and x7, x2 and x7, and x2 and x6 are 0.98, 0.86, 0.85 respectively. The data can be
downloaded from the web page http://www.stat.umn.edu/~xchen/manhours.txt.

According to the Royston normality test (with almost zero p-value), this data does not seem to follow a multivariate
normal distribution. This means that model (5) might not be valid for this data set anymore. Usually if the data set follows
a normal distribution, we do not standardize the data set as the standardization will destroy the marginal normality.
However in this non-normality case, we standardize x(1), . . . , x(7) to z(1), . . . , z(7) with mean 0 and standard deviation 1
and apply model (5) to fit the data anyway.

The likelihood ratio tests suggest u = 2 in both α = 0.01 and α = 0.05. The corresponding principal envelope solution
consists the first and the seventh eigenvector. Let m be the regression coefficient vector of y on z(1), . . . , z(7). The principal
envelope solution, the first and the seventh principal components explain 67% total variance while the largest principal
angle between m and the subspace spanned by principal envelope solution is about 12 degrees. The first 5 principal
component explain 98% total variance while the largest principal angle between m and the subspace spanned by the first
5 principal component directions is about 75 degrees.

Both data sets demonstrate that the principal envelope model can be much more efficient than PCA in some situations.

6. Discussion

We have seen that if the error structure deviates from the isotropic error in the model (1), the usual PCA may not work
anymore. Motivated by a general error structure, we establish probabilistic models named as principal envelope models
that show any combination of principal component directions could contain most of the sample’s information. Under
more specific principal envelope models, we are able to discern which combination is useful via maximum likelihood
estimators. Hence we provide an alternative to PCA in multivariate analysis when PCA fails. We also studied several
different structure of Ω0 defined in model (4).
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Appendix

A few lemmas

Lemma 1. Let Γ = [γ1, . . . , γd] where γ i stands for the ith column of Γ and Γ̂ = [ĝ1, . . . , ĝd] where ĝi denotes the ith
principal component direction. Then ŜΓ maximizes the objective function trace(Γ T Σ̂Γ ) subject to Γ TΓ = Id.

Proof. Let γ i =
∑p

j=1 cijĝj. Then

trace(Γ T Σ̂Γ ) =

d∑
i=1

γT
i Σ̂γ i =

d∑
i=1

p∑
j=1

λjc2ij =

p∑
j=1

λj

(
d∑

i=1

c2ij

)
.

where λ̂j denotes the jth eigenvalue.
Since

∑d
i=1 c

2
ij ≤ 1 and

∑p
j=1
∑d

i=1 c
2
ij = d, to maximize trace(Γ T Σ̂Γ ), the optimum situation arrives when

∑d
i=1 c

2
i1 =∑d

i=1 c
2
i2 = · · · =

∑d
i=1 c

2
id = 1 and

∑d
i=1 c

2
i(d+1) = · · · =

∑d
i=1 c

2
ip = 0. It is clear to see that γ̂ i = ĝi for i = 1, . . . , d

satisfying the optimum condition. The global maximum value of trace(Γ T Σ̂Γ ) equals
∑d

i=1 λ̂i.

Lemma 2. Let Γ = [γ1, . . . , γd] where γ i stands for the ith column of Γ and Γ̂ = [ĝ1, . . . , ĝd] where ĝi denotes the ith
principal component direction. Then ŜΓ maximizes the objective function

trace
(
Γ T Σ̂Γdiag(k1, k2, . . . , kd)

)
subject to Γ TΓ = Id where k1 ≥ k2 ≥ · · · ≥ kd are positive real numbers.

http://www.stat.umn.edu/~xchen/manhours.txt
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Proof. Let Γ i = [γ1, . . . , γd−i] for i = 1, . . . , d − 1. It is clear to see that

trace
(
Γ T Σ̂Γdiag(k1, k2, . . . , kd)

)
= kdtrace(Γ T Σ̂Γ ) + (kd−1 − kd)trace(Γ T

1Σ̂Γ 1) + · · · + (k1 − k2)trace(Γ T
d−1Σ̂Γ d−1).

From Lemma 1, we know Γ̂ maximizes every term on the right side of the formula above. The global maximum value
of

trace
(
Γ T Σ̂Γdiag(k1, k2, . . . , kd)

)
equals

∑d
i=1 λiki. If k1, k2, . . . , kd are not in descending order, then we need permutate columns of Γ̂ such that it

corresponds the order of ki. However the subspace spanned by Γ̂ does not change.

Lemma 3. Let Γ = [γ1, . . . , γd] where γ i stands for the ith column of Γ and Γ̂ = [ĝ1, . . . , ĝd] where ĝi denotes the ith
principal component direction. Then ŜΓ maximizes the objective function trace(Γ T Σ̂ΓΦ) subject to Γ TΓ = Id where Φ is a
d × d positive definite matrix.

Proof. Let Adiag(m1, . . . ,md)AT be the spectral decomposition of Φ where m1 ≥ m2 ≥ · · · ≥ md are positive real
numbers. Then

trace(Γ T Σ̂ΓΦ) = trace
(
ATΓ T Σ̂ΓAdiag(m1, . . . ,md)

)
.

Since (ΓA)TΓA = Id, from Lemma 2, span(Γ̂ ) is the maximum likelihood estimator of span(ΓA) in the objective
function above while span(ΓA) = span(Γ ).

Lemma 4. Let a real function f (x) = log(x) + C log(K − x) defined on the interval [a, b], 0 < a < K/(1 + C) < b < K , then
f (x) reaches its maximum at K/(1 + C) and reaches its minimum at either a or b.

It is easy to calculate the first derivative of f (x)

f ′(x) =
K − (1 + C)x

x(K − x)
,

and the second derivative

f ′′(x) = −
1
x2

−
C

(K − x)2
< 0.

We see that f (x) is concave with the only stationary point K/(1+C). So we can conclude that f (x) reaches its maximum
at K/(1 + C) and reaches its minimum at the boundary point, either a or b.

Proof of Proposition 1

We can rewrite L0(SΓ ,V, σ 2) as

−
np
2

log(2π ) −
n
2
log |V| −

n
2
(p − d) log(σ 2) −

n
2σ 2 trace(Σ̂ ) +

n
2
trace[Γ T Σ̂Γ {(1/σ 2)Id − V−1

}].

It is clear to see that
1
σ 2 Id − V−1

is a positive definite matrix by the definition of V, from Lemma 3, we can conclude that the subspace spanned by the first
d principal component directions is the maximum likelihood estimator of span(Γ ) in this case.

Proof of Proposition 2

Since

log |Γ T Σ̂Γ | + log |Γ T
0Σ̂Γ 0| ≥ log |Σ̂ |,

we have L1(Γ ) ≤ −(np)/2 − (n/2) log |Σ̂ | for all Γ TΓ = Iu. Also

log |Γ̂
T
J Σ̂Γ̂J | + log |Γ̂

T
J0
Σ̂Γ̂J0 |

= log |Γ̂
T
J Σ̂Γ̂J | + log |Γ̂

T
J Σ̂

−1
Γ̂J | + log |Σ̂ |
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= log(λ̂J1 . . . λ̂Ju ) + log(λ̂−1
J1

. . . λ̂−1
Ju ) + log |Σ̂ |

= log |Σ̂ |.

Then we know L1(Γ̂J ) = −(np)/2 − n/2 log |Σ̂ |.

Proof of Proposition 3

Maximizing L2(SΓ ) is equivalent to minimizing

log(trace(Γ T Σ̂Γ )) +
p − u
u

log(trace(Σ̂ ) − trace(Γ T Σ̂Γ )).

Let x = trace(Γ T Σ̂Γ ), C = (p − u)/u and K = trace(Σ̂ ). With probability one, we have

min{trace(Γ T Σ̂Γ )} <
K

1 + C
=

u
p
trace(Σ̂ ) < max{trace(Γ T Σ̂Γ )}

subject to Γ TΓ = Id.
Following Lemma 4, we know that the maximum value of L2(Γ ) is reached at either max{trace(Γ T Σ̂Γ )} or

min{trace(Γ T Σ̂Γ )}. That is to say, the maximum likelihood estimator of Γ is either the first u principal component
directions or the last u principal component directions.

Proof of Proposition 4

Maximizing L3(SΓ ) is equivalent to minimize

log |Γ T Σ̂Γ | + (p − u) log(trace(Σ̂ ) − trace(Γ T Σ̂Γ )) (8)

subject to Γ TΓ = Iu. Using the Lagrange multiplier rule, the solution Γ̂ can be gotten by finding the stationary points of
the following unconstrained function:

log |Γ T Σ̂Γ | + (p − u) log(trace(Σ̂ ) − trace(Γ T Σ̂Γ )) + trace(U(Γ TΓ − Iu))

where U is a u× u matrix of the Lagrange multipliers. Taking derivatives with respect to Γ and U, we have the condition
that the stationary points must satisfy

2Σ̂Γ (Γ T Σ̂Γ )−1
−

2(p − u)Σ̂Γ

trace(Σ̂ ) − trace(Γ T Σ̂Γ )
+ Γ (U + UT ) = 0

subject to Γ TΓ − Iu = 0. Let w = (trace(Σ̂ ) − trace(Γ T Σ̂Γ ))/(p − u). Then U + UT
= (2/w)Γ T Σ̂Γ − 2Iu. Substituting

U + UT into the condition above, we have

Σ̂Γ {(Γ T Σ̂Γ )−1
−

1
w

Iu} = Γ {Iu −
1
w

(Γ T Σ̂Γ )} (9)

subject to Γ TΓ − Iu = 0.
If w is not equal to any eigenvalue of the u×umatrix Γ T Σ̂Γ , the matrices (Γ T Σ̂Γ )−1

−(1/w)Iu and Iu−(1/w)(Γ T Σ̂Γ )
are of full rank. Then span(Σ̂Γ ) must equal span(Γ ), implying that ŜΓ has to be the span of one subset of u principal
component directions.

If w equals an eigenvalue of Γ T Σ̂Γ , we will show that Γ̂ cannot be the maximizer of L3(SΓ ). Then the matrices
(Γ T Σ̂Γ )−1

− (1/w)Iu and Iu − (1/w)(Γ T Σ̂Γ ) are singular with rank u − 1. Let the spectral decomposition of Γ T Σ̂Γ be
θdiag(κ1, . . . , κu)θT where θ is a u × u orthogonal matrix. With probability one, κ1, . . . , κu are positive and distinct. Let
Γθ = (τ1, . . . , τu). Then

(τ1, . . . , τu)T Σ̂ (τ1, . . . , τu) = diag(κ1, . . . , κu).

Without loss of generality, assume w = κu as κi are not ordered here.
The condition (9) is equivalent to

Σ̂ (τ1, . . . , τu)diag(
1
κ1

−
1
κu

, . . . ,
1

κu−1
−

1
κu

, 0) = (τ1, . . . , τu)diag(1 −
κ1

κu
, . . . , 1 −

κu−1

κu
, 0),
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subject to Γ TΓ − Iu = 0. We have Σ̂τ i = κiτ i for i = 1, . . . , u − 1. In another word, τ i are eigenvectors of Σ̂ for
i = 1, . . . , u − 1. The formula (8) equals

u∑
1

log(κi) + (p − u) log{(trace(Σ̂ ) − (κ1 + · · · + κu))} (10)

=

u−1∑
1

log(κi) + log(κu) + (p − u) log{(trace(Σ̂ ) − (κ1 + · · · + κu−1)) − κu}. (11)

Since

w = κu = (trace(Σ̂ ) − trace(Γ T Σ̂Γ ))/(p − u)
= trace(Σ̂ ) − (κ1 + · · · + κu)/(p − u),

we have κu = (trace(Σ̂ ) − (κ1 + · · · + κu−1))/(p − u + 1).
Fixing κ1, . . . , κu−1, by Lemma 4, κu reaches the maximum value for (11). Replacing κu with any other eigenvalues of

Σ̂ that is different to κ1, . . . , κu−1 would make (11) smaller. This is to say, if w equals to one eigenvalue of Γ T Σ̂Γ , Γ̂
cannot reach the minimum of (8), i.e. the maximum of L3(SΓ ). From the discussion, we can conclude that the maximum
likelihood estimator is one subset of u principal component directions.

Now assume κ1, . . . , κu is one subset of u eigenvalues of Σ̂ that minimizes (10). Let κu+1, . . . , κp denote the
complement of κ1, . . . , κu. Suppose there exists κi < κl < κj where 1 ≤ l ≤ u and u + 1 ≤ i, j ≤ p. Fixing
κ1, κl−1, κl+1 . . . , κu, by Lemma 4, the formula (10) can be reduced by replacing κl with either κi or κj. This tells us that
κu+1, . . . , κp must form a ‘‘continuum block" of the eigenvalues. In other words, the maximum likelihood estimator ŜΓ is
the span of the first k and last u−k principal component directions where k needs to be determined by the maximization
of L3(SΓ ) subject to Γ TΓ = Iu.

Proof of Proposition 5

Using the Lagrange multiplier rule, the solution Γ̂ can be gotten by finding the stationary points of the following
unconstrained function:

−
2
n
L5(SΓ ) + trace(U(Γ T

0Γ 0 − Iu))

where U is a (p − u) × (p − u) matrix that stands for the Lagrange multipliers. Taking derivatives with respect to Γ 0 and
U, we have the condition that the stationary points must satisfy

2Σ̂
−1
Γ 0(Γ T

0Σ̂
−1
Γ 0)−1

+
2(p − u − 1)Σ̂Γ 0Q1

trace(Γ T
0Σ̂Γ 0Q1)

+
2Σ̂Γ 0P1

trace(Γ T
0Σ̂Γ 0P1)

+ Γ 0(U + UT ) = 0

subject to Γ T
0Γ 0 − Ip−u = 0. It is straightforward to get the expression of U+UT . Substituting the expression U+UT into

the condition above and after simplification, we will finally find out that

Γ T Σ̂
−1
Γ 0 = 0.

Then we can conclude that the maximum likelihood estimator ŜΓ in L5(SΓ ) is the span of one subset of u principal
component directions.
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