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Abstract
Spatiotemporal events occur in many disciplines, including economics, sociology, 
criminology, and seismology, with different patterns in space and time related to 
environmental characteristics, policing, and human behavior. In this paper, we pro-
pose a class of multivariate Hawkes processes with spatial covariates to consider the 
influence structure of spatial features in spatiotemporal events and the spatiotem-
poral patterns such as clustering. Baseline intensities are assumed to be a spatial 
Poisson regression model to explain spatial feature influence. The transfer functions 
are considered unknown but smooth and decreasing to explain the clustering phe-
nomena. A semiparametric estimation method based on time discretization and local 
constant approximation is introduced. Transfer function estimators are shown to be 
consistent, and baseline intensity estimators are consistent and asymptotically nor-
mal. We examine the numerical performance of the proposed estimators with exten-
sive simulation and illustrate the application of the proposed model to crime data 
obtained from Pittsburgh, Pennsylvania.

Keywords  Hawkes process · Spatiotemporal event data · Mutually exciting · 
Semiparametric estimation

1  Introduction

As spatiotemporal event data frequently arise in many disciplines, models to ana-
lyze such data have received widespread attention. An essential pattern of these 
data is spatiotemporal clustering. For example, price fluctuations or transactions 
in finance, hot spots in crime data, and aftershocks in earthquakes exhibit cluster-
ing and are studied particularly by Vere-Jones and Davies (1966); Ogata (1988); 

 *	 Kaiyan Cui 
	 cuikaiyan@sxu.edu.cn

1	 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
2	 School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-023-00894-2&domain=pdf


	 C. Li, K. Cui 

1 3

Bernasco and Nieuwbeerta (2004); Lewis et  al. (2010); Mohler et  al. (2011); 
Lewis (2012); Mohler (2013); Reinhart (2018).

Numerous models have been proposed to account for the clustering patterns 
observed in spatiotemporal event data and applied to various fields throughout 
economics, sociology, criminology, and seismology, etc. An instrumental class 
of stochastic processes in this context consists of self-exciting or Hawkes pro-
cesses (Yuan et  al., 2021). The general concept of the self-exciting point pro-
cess has long been discussed and developed in the context of seismology with 
the Neymann-Scott model and other cluster processes (Vere-Jones and Davies, 
1966). However, an explicit form for a self-exciting point process was not for-
mally defined until the work of Hawkes (1971). This eventually led Ogata (1988) 
to develop the Epidemic Type Aftershock Sequence (ETAS) Model. Recently, 
self-exciting point processes have been developed to try to model human behavior 
in crime and terrorism in the work of Lewis et al. (2010); Egesdal et al. (2010); 
Mohler et  al. (2011); Lewis (2012); Mohler and Short (2012); Mohler (2013); 
Clauset and Woodard (2013); Short et  al. (2017); Park et  al. (2021). The self-
exciting point process is closely related to the branching process, i.e., each point 
of a self-exciting point process is either an immigrant (background) or a descend-
ant (offspring or triggering) (Veen and Schoenberg, 2008). In this context, crimes 
can be divided into two classes, i.e., “main crimes” and their “offspring crimes.” 
For example, Mohler et  al. (2011) proposed self-exciting point processes to 
describe random collections of crimes where the occurrence of one crime (“main 
crime”) increases the likelihood that another crime occurs (“offspring crime”) 
shortly after that.

In this paper we focus on modeling and analyzing the influence structure of 
spatial features in spatiotemporal event data and the spatiotemporal clustering 
patterns. The multivariate Hawkes processes with spatial covariates are proposed 
for this purpose. In the proposed multivariate Hawkes processes, the baseline 
intensities are assumed to be a spatial Poisson regression model to account for 
the spatial feature influence. The transfer functions are supposed to be unknown 
but smooth and decreasing to justify the clustering phenomena. A semiparametric 
estimation method based on time discretization and local constant approximation 
is introduced. The estimators for nonparametric transfer functions are shown to 
be consistent, and the estimators for the parameters of the baseline intensities are 
shown to be consistent and asymptotically normal. Using the proposed method, 
we seek to address the following questions: 

(a)	 Is the proposed semiparametric estimation method flexible and effective for 
multivariate Hawkes processes with spatial covariates?

(b)	 Does the proposed multivariate Hawkes process with spatial covariates provide 
a significant explanation for the clustering features observed in spatiotemporal 
event data?

To solve the first issue, the simulation data generated from a specified model 
are considered. To generate the simulation data, we use a simple and efficient 
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multivariate Hawkes process simulation algorithm, which is an application of 
the simulation algorithm proposed by Zhuang et al. (2004). For the second issue, 
we use residual analysis to examine the fitting performance (Schoenberg, 2003). 
We discuss the numerical performance of the proposed estimators with exten-
sive simulation and illustrate the application of the proposed model to crime data 
obtained from Pittsburgh, Pennsylvania.

The rest of this paper is organized as follows. Section 2 introduces the spatial het-
erogeneity and spatiotemporal dependence of spatiotemporal events. In Sect. 3, we 
propose the concepts of the multivariate point processes, the multivariate Hawkes 
processes with spatial covariates, the semiparametric estimation, the model diagnos-
tics methods for goodness-of-fit assessment, and the simulation algorithm. Section 4 
outlines the performance of the proposed estimation method used for fitting the sim-
ulation data. The utility of the proposed model is illustrated on the actual crime data 
from Pittsburgh, Pennsylvania. Finally, the results with a discussion are summarized 
in Sect. 5.

2 � Spatial heterogeneity and spatiotemporal dependence

Spatiotemporal event data analysis requires a comprehensive understanding of the 
occurrence process of spatiotemporal events. From a social perspective, events may 
be correlated due to exogenous factors like the economic conditions, months, change 
in military operations, etc., rather than “caused” by endogenous factors such as 
repeat offender behavior (Lewis, 2012). For example, Bernasco and Nieuwbeerta 
(2004) show that burglary will repeatedly attack clusters of nearby targets because 
local vulnerabilities are well known to the offenders. A gang shooting may incite 
waves of retaliatory violence in the local set space (territory) of the rival gang (Tita 
and Ridgeway, 2007). Mohler et al. (2011) found that the local, contagious spread of 
crime leads to the formation of crime clusters in space and time. Zhuang and Mateu 
(2019) proposed a semiparametric spatiotemporal Hawkes-type point process model 
with periodic background for crime data, which is a powerful tool that combines the 
features of Hawkes process models with spatial and periodic components to ana-
lyze the pattern of criminal events in space and time. It has the advantage of being 
flexible, computationally efficient, and applicable to different types of criminal data. 
Yuan et al. (2021) provided estimates for multivariate spatiotemporal Hawkes pro-
cesses that can effectively analyze spatiotemporal clustering characteristics of crime 
data. Therefore, spatiotemporal events have varying patterns in space and time, are 
related to the environment features, policing and human behavior, etc., and exhibit 
spatial heterogeneity.

On the other hand, there is spatiotemporal dependence in spatiotemporal events. A 
notable example is a spatiotemporal dependence between main shocks and aftershocks 
(Marsan and Lengline, 2008). The spatiotemporal reliance has also been noted in 
criminology (Lewis et al., 2010; Mohler et al., 2011; Lewis, 2012; Zhuang and Mateu, 
2019). Unlike seismology where there is a clear physical explanation for the relation-
ship between main shocks and aftershocks, there are innumerable factors that play roles 
in the connection between main crimes and their offspring crimes (Mohler et al., 2011; 
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Lewis, 2012). It is also unclear how much of the clustering is due to risk heterogene-
ity and how much is due to self-exciting (Mohler et al., 2011). Emergency calls, which 
are the consequences of actions of the insiders who know the emergency events, are 
another kind of spatiotemporal event data exhibiting spatiotemporal dependence. The 
insiders may be the natural triggers or the witnesses, even the indirect insiders who are 
told about the accidents or crimes by others. The connection between an emergency 
call and other emergency calls may be due to the spatiotemporal dependence of emer-
gency events. Meanwhile, one emergency event may cause lots of emergency calls, 
which leads to strong spatiotemporal dependence of emergency calls in a small spati-
otemporal region.

However, these spatiotemporal patterns are generally confounded (Reinhart and 
Greenhouse, 2017), requiring a method to take both into account. Figure 1 gives a sim-
plified diagram of spatial heterogeneity and spatiotemporal dependence. In Figure 1, 
the arrow represents dependence between the events or between the spatial covariates 
and events.

3 � Methods

3.1 � General models

Spatiotemporal point processes are a class of available models for spatiotemporal event 
data, typically modeled by specifying their associated intensity functions. All finite-
dimensional distributions of a spatiotemporal point process are uniquely characterized 
by its intensity, assuming it exists. To account for the spatiotemporal dependence of 
spatiotemporal event data, the intensity functions of the spatiotemporal point processes 
need to be conditioned by the history of spatiotemporal events occurring up to time t. 
Such intensity function is known as the conditional intensity function, which is defined 
as

�(s, t|Ht) = lim
△s,△t↓0

E[N(B(s,△s) × [t, t +△t))|Ht]

|B(s,△s)|△ t
,

Fig. 1   Simplified diagram of spatial heterogeneity and spatiotemporal dependence: two events that 
occurred in i and j regions at time t1 and t2 affect the events that occurred in i and j regions at time t3 and 
t4 , respectively, and simultaneously, covariates affect these events that occur in i and j regions at times t1 
and t2 , where max{t1, t2} < min{t3, t4}
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where s ∈ S ⊂ ℝ
2 represents location, t ∈ [0, T) ⊂ ℝ+ denotes time, |B(s,△s)| is the 

area of the circle B(s,△s) with center s and radius △s , N(⋅) is the counting meas-
ure and Ht is the family of �-algebras generated by the events occurring at times up 
to, but excludes t.

Modeling such spatiotemporal point processes is typically performed by speci-
fying a particular structure for �(s, t|Ht) . The crucial problem is to determine how 
the conditional intensity functions depend on the history of events. This requires 
both physical and mathematical insights, and the scientist endeavor to find objec-
tive means of calculating probabilities of occurrence conditional on given precur-
sory information, which is typically challenging. To address the above issue, we 
investigate spatiotemporal clustering patterns of the data using the multivariate point 
processes. The focus of our method is to reduce the difficulty of modeling, mitigate 
the potential for model inaccuracies, minimize model intricacy, and improve compu-
tational efficiency. Specifically, we divide the observation domain S into d disjoint 
areas of arbitrary shape such that S = ∪d

i=1
Si and consider the effect of events in one 

area on the occurrence of events in other areas. Let Ni(A) ∶= N(Si × A) , A ⊂ [0, T) . 
Ni represents the counting measure of area Si , and the conditional intensity functions 
are defined as

Therefore, events occurring in different areas can be modeled by multivari-
ate point processes N = (N1,… ,Nd)

� with conditional intensity functions 
�(t|Ht) = (�1(t|Ht),… , �d(t|Ht))

� . Next, we shall specify a special structure for 
�(t|Ht) . In the remainder of this paper, we will write Ni(t) = Ni([0, t)) for simplicity.

3.2 � Multivariate Hawkes processes with spatial covariates

A common effect between events occurring in different areas is ‘mutually exciting’: 
each event occurring in areas Sj can locally increase the event rate for a future period 
in area Si , j ≠ i , potentially exciting more events to happen the area Si . To model the 
‘mutually exciting’ effects, Hawkes introduced the following multivariate Hawkes 
processes.

Definition 1  A d-dimensional multivariate Hawkes process is a simple multivariate 
point process N = (N1,… ,Nd)

� such that Ni has a conditional intensity function

where �i ∈ ℝ+ = [0,+∞) and gij ∶ ℝ+ → ℝ+ and satisfy

�i(t|Ht) = lim
△t↓0

E[Ni([t, t +△t))|Ht]

△t
, i = 1,… , d.

(1)�i(t|Ht) = �i +

d∑
j=1

∫(−∞,t)

gij(t − u)Nj(du), i = 1,… , d,

(2)
{ ∫ ∞

0
tgij(t)dt < ∞, i, j = 1,… , d,

Spr(Q) < 1, Q =
(
qij;qij = ∫ ∞

0
gij(t)dt, i, j ∈ {1,… , d}

)
d×d

,
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Nj(du) = 1 if an infinitesimal element du includes an event tk for some k; otherwise 
Nj(du) = 0 , Spr(Q) is the spectral radius of Q.

�i is called the baseline/immigration intensity of Ni , which describes the dynam-
ics of the ground process, gij(⋅) is called the transfer/excitation function, which cap-
tures the effect of past events that occurred in the j-th area on the events in the i-th 
area, and Q is called the branching matrix. Condition (2) ensures the existence and 
uniqueness of a multivariate Hawkes process with associated conditional intensity 
function as in Definition 1 (Embrechts et  al., 2011; Lewis, 2009). Existence here 
means that one can find a probability space (Ω,F,ℙ) that is rich enough to sup-
port such a multivariate point process. Uniqueness implies that any two multivariate 
point processes complying with Definition1 have the same distribution.

In applications, the baseline intensities are correlated with some exogenous varia-
bles such as population density (population per m2 ), block area ( m2 ), and fraction of 
males (proportion from 0 to 1). We are interested in the influence structure of spatial 
features on the conditional intensity function. Therefore, in the spirit of the spatial 
Poisson regression, we assume the effect of the spatial covariates on the baseline 
intensities of N is log-linear. Let xi ∈ ℝ

m be the column vector of spatial covariates, 
where m denotes the number of covariates. The conditional intensity functions of 
the multivariate Hawkes processes with spatial covariates are given by

where � ∈ ℝ
m is row vector.

Remark 1  The model for the conditional intensity function can be extended to a gen-
eral model. That is

where fi is an unknown link function for the single index �xi . Specifically, the base-
line intensities are assumed to be the single-index model instead of the spatial Pois-
son regression model. Such a structure is quite general and provides more flexibility 
to capture the influence structures of spatial features, while it becomes more chal-
lenging to obtain the estimators and their theoretical properties. Thus, we focus on 
proposed conditional intensity function (3) in this paper. Model (4) will be investi-
gated elsewhere.

3.3 � Seminonparametric estimation

The transfer functions gij(⋅) , i = 1,… , d , j = 1,… , d play an important role for 
characterization of the ‘mutually exciting’ effects. The shape of transfer functions: 

(3)�i
(
t|Ht

)
= exp(�xi) +

d∑
j=1

∫(−∞,t)

gij(t − u)Nj(du), i = 1,… , d,

(4)�i(t|Ht) = fi(�xi) +

d∑
j=1

∫(−∞,t)

gij(t − u)Nj(du), i = 1,… , d,
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decreasing, increasing, U-shaped, or upside-down U-shaped presents information 
about the time-dependent reliability behavior of the exciting pattern. Existing 
work often restricts transfer functions to certain parametric forms, such as expo-
nential function and polynomial function, and parameters are estimated by the 
maximum likelihood method. However, the specified parametric forms of transfer 
functions are not always justified, leading to model misspecification. A more flex-
ible approach toward using the nonparametric methods, such as kernel density 
estimation and B-spline-based estimation, can be employed to explore the trans-
fer functions. Here we consider a nonparametric method to estimate the transfer 
functions. Eichler et al. (2016) and Kirchner (2017) have used this method for fit-
ting multivariate Hawkes processes, but they do not account for covariates. In the 
following we generalize this method to the case with covariates.

To estimate the transfer functions, we divide the real line into fixed intervals of 
length h > 0 and define yh

k
= (yh

i,k
;yh

i,k
= Ni(kh) − Ni(kh − h), i = 1,… , d)d×1 for all 

k ∈ ℤ . {yh
k
, k ∈ ℤ} is a d-dimensional integer-valued time series representing the 

numbers of jumps in a sequence of subintervals {[kh − h, kh), k ∈ ℤ} . If the trans-
fer functions gij(⋅) , i = 1,… , d , j = 1,… , d are continuous, and h is small enough, 
one has the following approximation

Equation (5) can be rewritten as the following vector form

where �h = (�h
i
;�h

i
= h exp(�xi), i = 1,… , d)d×1 , g(sh) = (hgij(sh);i, j = 1,… , d)d×d , 

Gh
p
= (g(sh);s = 1,… , p)d×dp , Yh

k,p
= (yh

k−s+1
;s = 1,… , p)dp×1 , p is the number of 

truncated terms in approximating the sum of infinite terms by partial sum. Let 
[T∗, T

∗] represent an observation period, where T∗ denotes the observation start time, 
and T∗ denotes the observation end time. Based on linear approximation (6), one can 
estimate the transfer functions gij(⋅) , i = 1,… , d , j = 1,… , d and the parameters � 
by solving the following least squares problem

(5)

E[yh
i,k+1

|Hkh] = E[Ni([kh, kh + h))|Hkh]

≈ �i(kh|Hkh)h

= h exp(�xi) + h

d∑
j=1

∫(−∞,kh)

gij(kh − u)Nj(du)

= h exp(�xi) + h

d∑
j=1

∞∑
s=1

∫[(k−s)h,(k−s+1)h)

gij(kh − u)Nj(du)

≈ h exp(�xi) + h

d∑
j=1

∞∑
s=1

gij(sh)y
h
i,k−s+1

, i = 1,… , d.

(6)
E[yh

k+1
|Hkh] ≈ �h +

∞∑
s=1

g(sh)yh
k−s+1

,

≈ �h + Gh
p
Yh
k,p
,
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where Th = ⌈ T∗−T∗

h
⌉.

In particular, we first obtain the estimations of Gh
p
 and �h as follows,

where with Th
p
= Th − p,

Thus, based on the definition of Gh
p
 and �h , one has

where ln( 𝜇̂
h

h
) = (ln(

𝜇̂h
i

h
);i = 1,… , d) , xi ∈ ℝ

m , i = 1,… , d , m denotes the number of 
covariates. Further, one has the following step function approximation for gij(t):

where t ∈ ℝ and 1A(t) is the indicator function. In the simulations in Sect. 4.1, good 
results are obtained directly using the least squares solutions. However, the least 
squares method may lead to negative values in the estimates obtained from (10). 
Therefore, we use non-negative least squares solutions in Sects. 4.1-4.4.

Under some regularity conditions on the proposed multivariate Hawkes pro-
cesses, the order p, and the time window h, one can show that estimators (9) and 
(10) of � and gij(t) are consistent. We begin with the regularity conditions (Eichler 
et al., 2016). In the sequel, || ⋅ ||2 denotes the Euclidean norm, and || ⋅ || denotes the 
spectral norm. 

C1	 Multivariate point processes N = (N1,… ,Nd)
� are stationary.

C2	 Condition (2) in Definition  1 is satisfied.

Th∑
k=p+1

||yh
k
− �h − Gh

p
Yh
k,p
||2
2
,

(7)Ĝh
p
= Υ̂h

p
(Γ̂h

p
)−1 and 𝜇̂h = ȳh − Ĝh

p
Ȳh
p
,

ȳh =
1

Th
p

Th∑
k=p+1

yh
k
, Ȳh

p
=

1

Th
p

Th∑
k=p+1

Yh
k,p
,

Υ̂h
p
=

1

Th
p

Th∑
k=p+1

(yh
k
− ȳh)(Yh

k,p
− Ȳh

p
)�,

Γ̂h
p
=

1

Th
p

Th∑
k=p+1

(Yh
k,p

− Ȳh
p
)(Yh

k,p
− Ȳh

p
)�.

(8)ĝij(sh) =
1

h
Ĝh

p
(i, j + (s − 1)d), i, j = 1,… , d, s = 1,… , p,

(9)𝛽 = ln(
𝜇̂h

h
)X�(XX�)−1, X = (xi;i = 1,… , d)m×d,

(10)gij(t) = ĝij(⌈ t
h
⌉h)1[0,ph](t), i, j = 1,… , d,
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C3	 Order p and time window h are functions of T = T∗ − T∗ such that ph → ∞ , 
ph2 → 0 and p

2

T
→ 0 as T → ∞.

C4	 The transfer functions gij(t) , i, j = 1,… , d are Lipschitz continuous and decrease 

t o  z e r o  w i t h  ||gij(t)|| ≤ ct−1 a n d  ∫
[ph,∞)

||G(t)||dt T→∞
⟶ 0  w h e r e 

G(t) = (gij(t);i, j = 1,… , d)d×d.

Then based on Theorems 4.1 and 4.2 in Eichler et al. (2016), we obtain the follow-
ing generalized theorems.

Theorem 1  (Consistency). Under C1–C4, estimators (9) and (10) are consistent,

where Ĝ(t) = (ĝij(t);i, j = 1,… , d)d×d , T = T∗ − T∗.

Proof  The proof of this theorem follows along the same lines as in Eichler et  al. 
(2016), so we omit the proof here. 	�  ◻

Remark 2  C1 is a common assumption. C2 guarantees the existence and uniqueness 
of a multivariate Hawkes process with associated conditional intensity function as in 
Definition 1. C3 and C4 balance the bias induced by the approximation in Eq. (5) 
and is similar to what is assumed by Eichler et al. (2016).

Remark 3  The piecewise constant approximation and least-squares estimation have 
been used for fitting multivariate Hawkes processes. See Eichler et  al. (2016); 
Kirchner (2017) for details. Kirchner (2017) further pointed out that the number of 
points in each bin results in an integer-valued sequence, and the distribution of such 
sequence can be approximated by the INAR(p) model.

Remark 4  By replacing the least-squares method with the maximum likelihood 
method, one can obtain another semiparametric estimation. However, there is no 
analytical solution for estimating � and gij(t) because of the nonlinearity of the like-
lihood function, and an iterative estimation method is required. See Marsan and 
Lengline (2008); Veen and Schoenberg (2008); Lewis and Mohler (2011) for details.

Theorem  2  (Asymptotic normality). Assume that C1–C3 and the following condi-
tions hold: 

C5	 Order p and time window h are functions of T = T∗ − T∗ such that 
√
Tp2h4 → 0 

and T

p9h9
→ 0 as T → ∞.

||𝛽 − 𝛽||2 + ∫[0,∞)

||Ĝ(t) − G(t)||2dt
P
−→ 0 a s T → ∞,
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C6	 The transfer functions gij(t) , i, j = 1,… , d are Lipschitz continuous and decrease 
t o  z e ro  w i t h  ||gij(t)|| ≤ ct−4  a n d  ∫

[ph,∞)
||G(t)||dt T→∞

⟶ 0  w h e re 
G(t) = (gij(t);i, j = 1,… , d)d×d.

Then, for T → ∞,

where V is the diagonal matrix such that Vii =
1

exp(�xi)
 , i = 1,… , d , 

N = (N1,… ,Nd)
� is a standard d-dimensional Gaussian random vector, 

Σ = d iag((Id − Q)−1�) is a diagonal matrix, I is the unit matrix, Q is the branching 
matrix and � = (�1,… ,�d)

� , �i = exp(�xi) is the baseline intensity of Ni , 
i = 1,… , d.

For the proof of Theorem 2, we need the following lemma.

Lemma 1  (Lemma 7 of Bacry et  al. (2012), multivariate Hawkes process asymp-
totic normality). Let M(t) = N(t) − ∫ t

0
�(s|Hs)ds , where N = (N1,… ,Nd)

� is 
a d-dimensional multivariate point process with conditional intensity function 
�(t|Ht) = (�1(t|Ht),… , �d(t|Ht))

� , and let W(v) = (W1(v),… ,Wd(v))
� be a standard 

d-dimensional Brownian motion. Then the martingales

converge in law for the Skorokhod topology to

as T → ∞ , where Σ is the same as defined in Theorem 2.

Proof of Theorem 2  Note that

where

√
T(𝛽 − 𝛽)

d
−→ (XX�)−1XVΣ1∕2N,

T−1∕2
M(Tv), v ∈ [0, 1],

Σ1∕2
W(v)

𝜇̂h − 𝜇h =ȳh − Ĝh
p
Ȳh
p
− 𝜇h

=
1

Th
p

Th∑
k=p+1

(
yh
k
− Ĝh

p
Yh
k,p

− 𝜇h
)

=
1

Th
p

Th∑
k=p+1

[
yh
k
−
(
Ĝh

p
− Gh

p

)
Yh
k,p

−
(
Gh

p
Yh
k,p

− ∫(−∞,kh)

g(kh − u)N(du)
)

−
(
∫(−∞,kh)

g(kh − u)N(du) + 𝜇h − ∫
kh

(k−1)h

�(s|Hs)ds
)
− ∫

kh

(k−1)h

�(s|Hs)ds
]

=
1

Th
p

Th∑
k=1

(
yh
k
− ∫

kh

(k−1)h

�(s|Hs)ds

)
+ U1,T + U2,T + U3,T + U4,T + U5,T
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According to Theorems 4.1 in Eichler et al. (2016), one can obtain that the last four 
terms U2,T , U3,T , U4,T and U5,T are of order oP(

h√
T
) . Further, using Lemma 1 and C3, 

one has

and

Thus,

This implies that

U1,T = −
1

Th
p

p∑
k=1

(
yh
k
− ∫

kh

(k−1)h

�(s|Hs)ds

)
,

U2,T =
1

Th
p

Th∑
k=p+1

(
Gh

p
− Ĝh

p

)
Yh
k,p
,

U3,T =
1

Th
p

Th∑
k=p+1

p∑
s=1

∫[(k−s)h,(k−s+1)h)

(g(kh − u) − g(sh))N(du),

U4,T =
1

Th
p

Th∑
k=p+1

∫(−∞,ph)

g(kh − u)N(du),

U5,T =
1

Th
p

Th∑
k=p+1

∫(−∞,kh)

(
1

h ∫
kh

(k−1)h

g(s − u)ds − g((k − 1)h − u)

)
N(du).

U1,T = −
1

Th
p

p�
k=1

�
yh
k
− ∫

kh

(k−1)h

�(s�Hs)ds

�

= −

√
ph

Th
p

1√
ph

�
N(ph) − ∫

ph

0

�(s�Hs)ds

�

= oP(
h√
T
).

1�
Th
p
h

Th�
k=1

�
yh
k
− ∫

kh

(k−1)h

�(s�Hs)ds

�
=

�
Th

Th
p

1√
Thh

�
N(Thh) − ∫

Thh

0

�(s�Hs)ds

�
.

d
−→ Σ1∕2

W(1).

√
T
𝜇̂h − 𝜇h

h

d
−→ Σ1∕2

W(1).

√
T(𝛽 − 𝛽) =

√
T

�
ln(

𝜇̂h

h
) − ln(

𝜇h

h
)

�
X�(XX�)−1

d
−→ (XX�)−1XVΣ1∕2

W(1),
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where V is the diagonal matrix such that Vii =
1

exp(�xi)
 , i = 1,… , d.	�  ◻

Remark 5  In order to meet conditions C3 and C5, there are many choices for the 
parameters p and h. For example, one can select p = T�(log(T))−� and h = T−� 
where 0 < 𝛼 ≤ 0.5 , 𝛾 , 𝛽 > 0 , 1∕9 + � ≤ � ≤ 2� − 1∕4 . In particular, if we let 
� = 0.5 , � = 3∕8 and � = 0.1 , C3 and C5 hold. C6 is an enhancement of C4 to 
ensure the asymptotic normality of the proposed estimators. For instance, in many 
practical applications, the transfer functions usually have exponential delay, indicat-
ing that C6 is satisfied in some real scenarios.

3.4 � The choice of d value and d disjoint areas

Different models can be established by selecting different d values and d disjoint 
areas. As discussed in Section 2, the purpose of this paper is to provide a fast and 
effective analytical method to study the spatial heterogeneity and dependence of 
spatiotemporal event data. In Section 3.1, we discuss that for data with spatial het-
erogeneity and spatiotemporal dependence, different spatial partitions correspond to 
different conditional intensity functions, i.e., each spatial partition corresponds to a 
multivariate Hawkes process model. Although these models are different, they all 
can show the spatial heterogeneity and spatiotemporal dependence of the studied 
data. Therefore, based on the research purpose of this paper, we can choose any spa-
tial partition. On the other hand, differences in spatial partitioning can affect model 
estimation performance and interpretability (e.g., analysis of dependence and vari-
ability between data in different spaces). For example, the model estimation is poor 
when some spatial regions are partitioned too small or too dispersed. Also, consider-
ing that Hawkes processes are essentially a class of clustering processes, we choose 
the K-means method to cluster data with similar characteristics into one class and 
select the number of the spatial partitions with the best model estimation perfor-
mance. Specifically, model selection is usually performed using the Akaike informa-
tion criterion (AIC) and Bayes information criterion (BIC), which are defined as

where LL is the log-likelihood function of the model, q is the number of independ-
ent parameters, and n is the data size. For a d-dimensional multivariate Hawkes pro-
cess, the log-likelihood function over a temporal interval D = [T∗, T

∗] is given by

and the number of independent parameters q = m + d2p.
The cross-validation type technique has been proposed for selecting tuning param-

eters, e.g., Vere-Jones (1992); Adelfio and Chiodi (2015). In Vere-Jones (1992), two 
scoring methods, the K-L (Kullback–Leibler) score and the MISE (mean integrated 
square error) score, are proposed to determine the optimal values of the tuning param-
eters (i.e., the value giving the maximum score). In Adelfio and Chiodi (2015), the 

AIC = −2 LL + 2q, and BIC = −2LL + 2q ln(n)

LL =

d∑
j=1

∫D

log �j(s|Hs)Nj(ds) −

d∑
j=1

∫D

�j(s|Hs)ds,
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authors proposed the FLP (Forward Likelihood Predictive) method for estimating the 
optimal values of the tuning parameters. The FLP method is a special case of the K-L 
score. In this paper, we also use the FLP method to select the optimal tuning parameter 
values. To implement the FLP method, the data are first divided into two parts in time, 
a training period, Dtra ∶= [T∗, 0.9T

∗] , which is used to produce an intensity estimate, 
and a forecast forward period, D for ∶= D − D tra = (0.9T∗, T

∗] . Then the forecast is 
scored by using the log-likelihood of next point, i.e.,

where 𝜆̂j(s|Hs) is the estimated conditional intensity function. The resulting scores 
can then be compared for different tuning parameters, and the optimal tuning param-
eter is chosen for forecast of next point (Vere-Jones, 1992; Adelfio and Chiodi, 
2015).

Remark 6  We have considered different model evaluation criteria including AIC, 
BIC, residual sum of squares (RSS), and cross-validation (CV). Since the proposed 
estimators are based on the least squares, using RSS to select models may lead to 
overfitting. So it is not considered in this paper. In addition, since the log-likelihood 
function of observations in the application is large, the AIC and BIC showed similar 
results. A comparison of the AIC and BIC criterions for choosing d value and d dis-
joint areas is summarized in simulations.

3.5 � Goodness‑of‑Fit test

Now we pay our attention to the examination of the goodness-of-fit of the used mul-
tivariate Hawkes processes for the spatiotemporal event data. Methods for evaluating 
the fit of multivariate Hawkes processes are presented using residual analysis methods, 
such as thinning, rescaling, and superposition, which involve transforming the point 
process utilizing a model for the conditional intensity function and then inspecting the 
uniformity of the result (Clements et al., 2012). Making use of residual analysis can 
help to identify defects in present multivariate Hawkes processes and to suggest ways 
in which the models may be improved (Schoenberg, 2003). In the following, we just 
introduce the simple and efficient rescaling residual analysis method.

Suppose we have observed a realization of a multivariate Hawkes process N with 
event times {{tik, k = 1,… , ni}, i = 1,… , d} over a temporal interval D = [T∗, T

∗] , 
where sequence {tik, k = 1,… , ni} is the realization of the i-th component Ni for 
i ∈ {1,… , d} . Define the sequences {�i,k, k = 1,… , ni} , i = 1,… , d of transformed 
times by

where ḡij(t) = ∫
(0,t)

gij(s)ds , j = 1,… , d . Then the sequences {�ik, k = 1,… , ni} , 
i = 1,… , d , are independent Poisson processes with unit intensity (Lewis, 2009).

FLP ∶=

d∑
j=1

∫D for

log 𝜆̂j(s|Hs)Nj( d s) −

d∑
j=1

∫D for

𝜆̂j(s|Hs) d s,

(11)𝜏i,k = exp(𝛽xi)(tik − T∗) +

d∑
j=1

∫(−∞,tik)

[ḡij(tik − u) − ḡij(T∗ − u)]Nj(du),



	 C. Li, K. Cui 

1 3

We would expect that if the estimated conditional intensity function �̂(t|Ht) is 
correct, the transformed times

where

will be the Poisson processes with unit intensity, then some test statistics can be 
used to make a goodness-of-fit test. This will detect if the transformed times still 
have clustering not accounted for by the used multivariate Hawkes processes. In 
Sect.  4.2, we shall create a quantile-quantile (Q-Q) plot for {𝜏ik} using uniformly 
distribution to check {𝜏ik} from a Poisson process with unit rate. Otherwise a quanti-
tative alternative is to apply a Kolmogorov–Smirnov test. On the other hand, to 
assess the independence of the transformed times {𝜏i,k}

ni
k=1

 , i = 1,… , d , we use Chi-
square test. Let 𝜀i,k ∶= 𝜏i,k+1 − 𝜏i,k , i = 1,… , d . The test procedure is as follows: 

firstly, calculate the difference sequences {�i,k}
ni−1

k=1
 , i = 1,… , d , then {�i,k}

ni−1

k=1
 , 

i = 1,… , d all obey the exponential distribution; secondly, select any two sequences 

{�i,k}
ni−1

k=1
 and {�j,k}

nj−1

k=1
 , 1 ≤ i < j ≤ d and divide their value ranges into mi and mj 

mutually disjoint intervals A1,A2,⋯ ,Ami
 and B1,B2,⋯ ,Bmj

 ; next, take M samples 

randomly from sequence {�i,k}
ni−1

k=1
 and M samples in the same order from sequence 

{�j,k}
nj−1

k=1
 to obtain the paired sequence {(�i,�k

, �j,�k
)}M

k=1
 ; then, count the number nk,l 

for which the paired sequence {(�i,�k
, �j,�k

)}M
k=1

 falls in the interval Ak × Bl , 
1 ≤ k ≤ mi , 1 ≤ l ≤ mj ; finally, calculate the following Chi-square test statistic based 
on nk,l,

and compute the corresponding p value. If the p value is less than a pre-determined 
significance level (e.g., 0.05), we can reject the null hypothesis and conclude that 
the two random sequences {𝜏i,k}

ni
k=1

 and {𝜏j,k}
nj

k=1
 are not independent; otherwise, we 

accept the null hypothesis and conclude that they are independent. In the simula-
tions, we set M = 1000 and mi = mj = 20.

Note that the estimators of the branching matrix Q can be given by 
q̂ij =

̄̂gij(∞) =
∑p

s=1
hĝij(sh) , i, j = 1,… , d . Using Theorem 1, we obtain the consist-

ency of the estimators of the branching matrix Q.

(12)𝜏i,k = exp(𝛽xi)(tik − T∗) +

d∑
j=1

∫(T∗,tik)

̄̂gij(tik − u)Nj(du),

̄̂gij(t) = ∫[0,t)

ĝij(s)ds

=

⌈ t

h
⌉−1�

s=1

hĝij(sh) + [t − (⌈ t
h
⌉ − 1)h]ĝij(⌈ t

h
⌉h), i, j = 1,… , d,

�2
i,j
= M

mi�
k=1

mj�
l=1

ni,j − (
∑mi

k=1
ni,j)(

∑mj

l=1
ni,j)∕M

(
∑mi

k=1
ni,j)(

∑mj

l=1
ni,j)

,
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Proposition 1  (Consistency). Under C1–C4, the estimators q̂
ij
= ̄̂g

ij
(∞) =∑p

s=1
hĝij(sh) , i, j = 1,… , d , are consistent.

3.6 � Simulation method

We use a simple and efficient simulation method to simulate a multivariate Hawkes 
process. This simulation method is an application of Zhuang’s simulation algorithm 
in Zhuang et al. (2004), which is performed using the branching structure of the multi-
variate Hawkes process with time-independent baseline intensity as shown below algo-
rithm. For more simulation methods and the rationality of the proposed method, see 
Ogata (1981); Moller and Waagepetersen (2003); Daley and Vere-Jones (2003).

Algorithm 1  (Simulation algorithm) Begin with a fully specified conditional inten-
sity function �(t|Ht) = (�1(t|Ht),… , �d(t|Ht))

� , and calculate branching matrix 
Q = (qij;i, j ∈ {1,… , d})d×d.

Step 1. Generate events from the background process using the baseline inten-
sities exp(�xi) , i = 1,… , d over observation interval D = [T∗, T

∗] , respectively, 
by using a simulation method for Poisson processes (e.g., Daley and Vere-Jones 
(2003)). Call these catalogs of events G(0)

i
 , i = 1,… , d.

Step 2. Let l = 0.
Step 3. For each event k in G(l)

j
 , j = 1,… , d , simulate its N(k)

ij
 offspring, where 

N
(k)

ij
∼Poisson(qij) (with qij defined as mean number of offspring), and the offspring’s 

time are generated from the transfer function gij(t − ⋅) , normalized as a probability 
density. Call these offspring O(l)

ijk
.

Step 4. Let G(l+1)

i
=
�⋃d

j=1

⋃
k∈G

(l)

j

O
(l)

ijk

�⋂
D.

Step 5. If 
⋃d

i=1
G

(l)

i
 is not empty, set l = l + 1 and return to Step 3. Otherwise, 

return Gi =
⋃l

j=0
G

(j)

i
 , i = 1,… , d as the final set of simulated events.

4 � Numerical experiments

4.1 � Simulation: multivariate cases

In this section, the simulations are carried out by algorithm 1 in observation intervals 
D = [500, 2500] , [500, 4500] and [500, 8500], respectively. In particular, the artificial 
data generated from conditional intensity function (13) with mean sample sizes 32500, 
65000, and 130000 are used to verify the performance of the proposed semiparametric 
estimation method. Set d = 6 , define
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where � = (�0, �1, �2) = (−4, 2, 1) , xi = (1, xi1, xi2)
� , xi1 ∼ U[1, 2] , xi2 ∼ U[0, 1],

Based on Remark 5, we let p = c1T
1∕2(log(T))−1∕10 and h = c2T

−3∕8 where c1 and c2 
are two tuning parameters, T is the length of the interval D. With each combination 
of observation interval D, order p, and time windows h, the semiparametric estima-
tion method was repeated 100 times. The order p and time windows h are selected 
by using different tuning parameters c1 and c2 . For each sample size, the covariates 
were simulated once and held constant across the 100 simulated data.

Table 1 shows summaries of the estimates of the parameters � with several different 
orders p and time windows h for three observation intervals [500, 2500], [500, 4500], 
and [500, 8500]. From the results of Table 1, we can see that the semiparametric esti-
mation method gave unbiased estimates of � when the proper tuning parameters are 
chosen. The bias and the standard deviation (SD) of the estimators of � decrease with 
increasing time window length for all tuning parameter settings, while for large tuning 
parameter c2 , the bias and SD of the estimators of � are large. The reason is that the 
local constant approximation in Eq. (5) reduces the estimation accuracy.

Table  2 shows summaries of the estimates of the baseline intensity exp(�X) 
with several different orders p and time windows h for three observation intervals 
[500, 2500], [500, 4500], and [500, 8500]. From Table 2, we obtained a better per-
formance of estimates of exp(�X) than that of � , that is, the bias and SD are smaller. 
The estimates of branching matrix Q for the observation interval [500, 4500] with 
tuning parameters c1 = 1 and c2 = 3 are shown in the following matrix.

(13)

�i(t|Ht) = exp(�xi) +

d∑
j=1

∫(−∞,t)

qij�ij exp(−�ij(t − u))Nj(du), i = 1,… , d,

Q = (qij) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0.1 0 0 0 0

0 0.5 0 0.2 0 0

0 0 0.8 0 0 0

0 0 0.2 0.5 0.1 0

0 0 0 0 0.4 0.1

0 0 0.1 0 0 0.4

⎤
⎥⎥⎥⎥⎥⎥⎦

and (�ij) =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 2 0 0 0 0

0 5 0 1 0 0

0 0 2 0 0 0

0 0 1 5 1 0

0 0 0 0 1 3

0 0 3 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Bias (SD) of Q̂ ∶

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0458 − 0.0013 − 0.0001 0.0025 − 0.0019 0.0029

(0.0320) (0.0131) (0.0114) (0.0121) (0.0377) (0.0313)

−0.0080 − 0.0758 0.0039 0.0197 0.0031 − 0.0019

(0.0578) (0.0249) (0.0201) (0.0231) (0.0608) (0.0610)

−0.0003 − 0.0022 − 0.0238 0.0022 0.0076 0.0047

(0.0373) (0.0149) (0.0217) (0.0152) (0.0457) (0.0486)

0.0002 0.0023 0.0170 − 0.0738 0.0199 − 0.0010

(0.0646) (0.0227) (0.0228) (0.0250) (0.0648) (0.0608)

−0.0012 0.0003 0.0032 − 0.0003 − 0.0224 − 0.0119

(0.0249) (0.0101) (0.0087) (0.0096) (0.0275) (0.0267)

0.0030 − 0.0008 0.0054 0.0003 − 0.0014 − 0.0838

(0.0237) (0.0111) (0.0114) (0.0101) (0.0269) (0.0331)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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In the above matrix, the values outside the brackets represent the bias of the esti-
mated branching matrix, and the intervals in the brackets represent the SD of the 
estimated branching matrix. From the results we note that the proposed semipara-
metric estimation method gave unbiased estimates of the branching matrix.

Figure 2 shows the 95% confidence limits and the mean value of the estimates of 
the transfer functions for observation interval [500, 4500], tuning parameters c1 = 1 and 
c2 = 3 . The estimation results for the observation interval [500,4500] are shown because 
the length of the time interval observed in the application is about 4000. Although the 
optimal value of the tuning parameter c2 is 1 as can be seen from Table 1, we choose 
c2 = 3 to show that good estimation results are obtained even if the tuning parameter is 
not optimal. Figure 2 shows that the estimated transfer functions are unbiased. Figure 3 
shows the quantile-quantile (QQ) plot of the residuals of the six different dimensions 
to assess the goodness of fit of the considered conditional intensity function. If a mul-
tivariate Hawkes process fits the data well, the corresponding residuals should be close 
to a homogeneous Poisson process with unit intensity. One can then graphically test 
the goodness of fit by comparing the quantiles of the residuals with that of the uniform 
random variable. The QQ plot in Fig. 3 shows that the estimated multivariate Hawkes 
process is close to the diagonal line. The bottom six QQ plots are plotted by 300 trans-
formed times randomly sampled from all transformed times for visual effect.

4.2 � Simulation: spatiotemporal cases with known partitions

In this section, the artificial data generated from following conditional inten-
sity function (14) of the spatiotemporal Hawkes process with mean sample sizes 

Fig. 2   Estimation of the transfer functions of the multivariate Hawkes process for simulated data: mean 
semiparametric estimate (blue solid), 0.95 quantile of semiparametric estimate (top red solid),0.05 quan-
tile of semiparametric estimate (bottom red solid), and true transfer functions (black solid)
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13600, 20400, and 27600 are used to verify the performance of the proposed 
semiparametric estimation method. In particular, the simulations are performed 
in the common spatial observation interval S = [0, 10] × [0, 10] and time observa-
tion intervals D = [0, 100] , [0, 150], and [0, 200], respectively. Define

where � = (�0, �1, �2) = (−4, 2, 1) , s(x, y) = (1, s1(x, y), s2(x, y))
�,

{z
�

i
}50
i=0

 is an equally spaced division of the interval [0,  10], S1 = [0, 5) × [0, 5) , 

S2 = [5, 10] × [0, 5) , S3 = [0, 5) × [5, 10] , S4 = [5, 10] × [5, 10] , �i,1 ∼ U[1, 2] , 

�i,2 ∼ U[0, 1] , i = 1, 2, 3, 4 , �x
1
= �

y

1
= 2.5 , �x

2
= �

y

2
= 7.5 , ��

1
= 3 , ��

2
= 4 , � = 0.1 , 

(14)

�(x, y, t|Ht) = exp{�s(x, y)} + ∫S×(−∞,t)

g(x − u, y − v, t − w)N(dw, dv, du),

sk(x, y) =

4∑
l=1

{ ∑
{0≤k1,k2≤50∶(z𝜇k1 ,z𝜇k2 )∈Sl}

s̃k(z
𝜇
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, z

𝜇

k2
)∕625

}
I{(x, y) ∈ Sl},

s̃k(x, y) =

49∑
i,j=0

vk(z
𝜇

i
, z

𝜇

j
)I{z

𝜇

i
≤ x < z

𝜇

i+1
, z

𝜇

j
≤ y < z

𝜇

j+1
},

vk(x, y) =

2∑
i,j=1

50𝜃i+(j−1)∗2,k

2𝜋𝜎
𝜇

i
𝜎
𝜇

j

exp
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𝜇

i
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exp
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−
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Fig. 3   Quantile-quantile plot of the residuals of the three different dimensions: all transformed times 
(top) and 300 transformed times randomly sampled from all transformed times (bottom)
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� = 0.3 , �1 = 0.01 , �2 = 0.1 . The background intensity function in conditional 
intensity function (14) takes four different constant values over four regions Sl , 
l = 1, 2, 3, 4 . In particular, the background intensity function values are obtained 
by a two-dimensional step function. Using a step function instead of a continu-
ous function facilitates the calculation of the region of an arbitrary partition in the 
next simulation. Figure 4 shows the spatial distribution map of one realization of 
the spatiotemporal Hawkes process with conditional intensity function (14) during 
the observation time [0, 100], where the points in different subspace regions of the 
space S are marked with different colors to visualize the spatial segmentation.

In this simulation, we assume the regions Sl , l = 1, 2, 3, 4 are known and define 
four temporal point processes on each of the four regions, thereby creating a 
4-dimensional multivariate Hawkes process on region S. As in Sect. 4.1, we let 
p = c1T

1∕2(log(T))−1∕10 and h = c2T
−3∕8 where c1 and c2 are two tuning param-

eters, T is the length of the interval D. With each combination of observation 
interval D, order p and time windows h, the semiparametric estimation method 
was repeated 100 times. Table 3 shows summaries of the estimates of the param-
eters � with several different orders p and time windows h for three observation 
intervals [0, 90], [0, 135], and [0, 180]. Observations in the intervals (90, 100], 
(135,  150], and (180,  200] are used to calculate the FLPs. From the results of 
Table 3, we can see that the semiparametric estimation method gave high accu-
rate estimates of � when the proper tuning parameters are chosen and the regions 
Sl , l = 1, 2, 3, 4 are known. The bias and the standard deviation (SD) of the esti-
mators of � decrease with increasing time window length for almost all tuning 
parameter settings. While for large tuning parameter c2 , the bias and SD of the 

0 2 4 6 8 10
0

2

4

6

8

10

Fig. 4   Spatial distribution map of one realization of the spatiotemporal Hawkes process during the obser-
vation time [0, 100]
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estimators of � are large. From Table 3, we can also see that the bias and standard 
deviation of the parameter estimates are small for observation interval D3 when 
the tuning parameters c1 = 1 and c2 = 0.01 . By comparing the results with the 
optimal tuning parameters obtained in Sect.  4.1, it can be seen that the tuning 
parameters differ from case to case.

In the following, we use the FLP, AIC, and BIC to evaluate the effect of the selec-
tion of tuning parameters. Figure 5 shows the 95% confidence limits and the mean 
values of the FLP, AIC, and BIC with different tuning parameters for observation 
interval (180, 200], [0, 180], and [0, 180], respectively. From Fig. 5, it can be seen 
that the maximum FLP value is attained when c1 = 1 and c2 ∈ {0.01, 0.02, 0.05} , 
and both the minimum AIC value and BIC value are attained when c1 = 1 and 
c2 ∈ {0.01, 0.02, 0.05} . That means the FLP, AIC, and BIC show similar results 
for selecting the tuning parameters. Also, Table 3 shows that all three methods effi-
ciently select the optimal tuning parameters.

Figure 6 shows the 95% confidence limits, the mean values of the estimates of 
the transfer functions, and the estimated transfer functions from one simulation for 
observation interval [0,180], tuning parameters c1 = 1 and c2 = 0.01 . From Fig. 6, it 
can be seen that the estimated transfer functions from one simulation have a periodic 
trend, which may be due to the spatial superposition of spatiotemporal self-exciting 
functions (see the end of Sect. 4.3). Notice that the estimated transfer functions and 
branching matrix are too different from the spatiotemporal self-exciting functions 
to be comparable. We do not show the estimation of the branching matrix anymore. 
Figure 7 shows the QQ plot of the residuals of the four different dimensions to assess 
the goodness of fit of the considered conditional intensity function. The QQ plot in 
Fig. 7 shows that the estimated multivariate Hawkes process is close to the diagonal 
line. The bottom four QQ plots are plotted by 300 transformed times randomly sam-
pled from all transformed times for visual effect. Table 4 shows the Chi-square test 
p values between 1000 random samples of the residuals of the different dimensions 
from one simulation for observation interval [0,180], tuning parameters c1 = 1 and 
c2 = 0.01 . It can be seen that the transformed times for the different dimensions are 
statistically independent of each other when the significance level takes 0.05.

4.3 � Simulation: spatiotemporal cases with unknown partitions

In this section, the artificial data generated from above conditional intensity function 
(14) of spatiotemporal Hawkes process are used to verify the performance of the 
proposed semiparametric estimation method. We assume the regions Sl , l = 1, 2, 3, 4 
are unknown. The observations are divided into d areas 100 times repeatedly by the 
K-means method with random initial centers, where d is selected from {3, 4, 5, 6, 7} . 
Since there are three variables in parameter vector � , the minimum number of region 
divisions to ensure the invertibility of the matrix XX′ is 3. Figure 8 shows the parti-
tion of the observations when d takes different values, with the observations within 
the partitioned regions indicated by different colors. From Fig. 8, we can see that the 
K-means method can cluster according to different background intensity function 
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values. In particular, the results of the K-means method at d = 4 are consistent with 
the actual spatial partition.

As in Sect.  4.2, we let p = c1T
1∕2(log(T))−1∕10 and h = c2T

−3∕8 . With each 
combination of observation interval D, order p, time windows h, and partitions, 

Fig. 5   FLP, AIC, and BIC values with different tuning parameter values for the observation intervals 
(180, 200], [0, 180], and [0, 180], respectively: mean (light blue solid), 0.95 quantile (top red solid),0.05 
quantile (bottom dark blue solid)

Fig. 6   Estimation of the transfer functions of the multivariate Hawkes process for simulated data: mean 
semiparametric estimate (blue solid), 0.95 quantile of semiparametric estimate (top red solid),0.05 quan-
tile of semiparametric estimate (bottom red solid), and estimated transfer functions from one simulation 
(black solid)
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the semiparametric estimation method was repeated 100 times, where the parti-
tions were reacquired for each experiment using the K-means method. Tables 5-
7 show summaries of the estimates of the parameters � with several differ-
ent orders p, time windows h, and three observation intervals [0,  90], [0,  135], 
and [0,  180] for d takes 4, 3, and 5, respectively. Observations in the intervals 
(90,  100], (135,  150], and (180,  200] are used to calculate the FLPs. From the 
results of Table  5, we can see that the semiparametric estimation method gave 
acceptable accuracy for estimates of � under almost all tuning parameters. Spe-
cifically, the bias and the standard deviations of the estimators of � decrease with 
increasing time window length for some tuning parameters, such as c1 = 3 and 
c2 = 0.02 , while for some tuning parameters, the bias and standard deviations of 
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QQ plot (all transformed times)

QQ plot (300 transformed times)

Fig. 7   Quantile-quantile plot of the residuals of the three different dimensions: all transformed times 
(top) and 300 transformed times randomly sampled from all transformed times (bottom)

Table 4   p value of Chi-square 
test for different regions �2

1,2
�2

1,3
�2

1,4
�2

2,3
�2

2,4
�2

3,4

p value 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000



	 C. Li, K. Cui 

1 3

the estimators of � are a little large. From Table 6, we can see that the standard 
deviations of the parameter estimates are significantly large for all observation 
intervals and tuning parameter settings. For Table 7, it can be seen that the biases 
of the parameter estimates are a little large for all observation intervals and tun-
ing parameter settings.

In the following, we use the FLP, AIC, and BIC to evaluate the effect of the selec-
tion of tuning parameters. Figure 9 shows the 95% confidence limits and the mean val-
ues of the FLP, AIC, and BIC with different tuning parameters for observation interval 
(180, 200], [0, 180], and [0, 180], respectively. From Fig. 9, we can see that the FLP, AIC, 
and BIC show similar results for selecting the tuning parameters. As can be seen from the 
black solid in Fig. 9, the maximum FLP value and both the minimum AIC value and BIC 
value are attained when d = 4 , c1 = 2 and c2 = 0.01 . In fact, in almost all simulations, 
the optimal d obtained based on FLP, AIC, and BIC takes values of 3, 4, or 5, the optimal 
tuning parameter c1 takes values of 1, 2, or 3, and c2 takes values of 0.01 or 0.02.

Figure 10 shows the 95% confidence limits, the mean values of the estimates of the 
transfer functions, and the estimated transfer functions from one simulation for observa-
tion interval [0,180], tuning parameters c1 = 3 and c2 = 0.02 . From Fig. 10, it can be seen 
that the estimated transfer functions from one simulation have a strong periodic trend. The 
QQ plot and Chi-square test results are similar to those in Sect. 4.2, and the graphical 
presentation of the relevant results is omitted here. In particular, the QQ plot shows that 
the transformed times for all dimensions obey the Poisson processes with unit intensity, 
and the Chi-square test shows that the transformed times for the different dimensions are 
statistically independent of each other when the significance level takes 0.05.

The above results illustrate that for spatiotemporal data generated by the spati-
otemporal Hawkes process, the multivariate Hawkes process can efficiently estimate 
the coefficients of the spatial covariates. Indeed, for intensity function (14), we have

0 2 4 6 8 10
0

2

4

6

8

10
d=3

0 2 4 6 8 10
0

2

4

6

8

10
d=4

0 2 4 6 8 10
0

2

4

6

8

10
d=5

0 2 4 6 8 10
0

2

4

6

8

10
d=6

0 2 4 6 8 10
0

2

4

6

8

10
d=7

Fig. 8   Spatial distribution maps of one realization of the spatiotemporal Hawkes process during the 
observation time [0, 100]
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Fig. 9   FLP, AIC, and BIC values with different tuning parameter values for the observation intervals 
(180, 200], [0, 180], and [0, 180], respectively: mean (light blue solid), 0.95 quantile (top red solid),0.05 
quantile (bottom dark blue solid), and results from one simulation (black solid)
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Fig. 10   Estimation of the transfer functions of the multivariate Hawkes process for simulated data: mean 
semiparametric estimate (blue solid), 0.95 quantile of semiparametric estimate (top red solid),0.05 quan-
tile of semiparametric estimate (bottom red solid), and estimated transfer functions from one simulation 
(black solid)
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where the last equation holds when Si, i = 1,⋯ , d are the true partitions. Note that 
the function g̃i,j(t) is a spatial superposition of spatiotemporal self-exciting functions 
of intensity function (14), which may be the main reason for the periodicity of the 
estimated transfer functions. In particular, when the partition is unknown, the trans-
fer functions exhibit stronger periodicity compared to when the partition is known.

4.4 � Application

4.4.1 � Pittsburgh burglary data and spatial covariates

We use the proposed model and semiparametric estimation method to fit the bur-
glary data compiled by the Pittsburgh Bureau of Police between January 1, 2005, 
and September 9, 2015. The data include occurrence timestamp, type of each inci-
dent, city block, longitude, latitude, etc. The catalog is publicly available at https://​
data.​wprdc.​org/​datas​et/​unifo​rm-​crime-​repor​ting-​data, which consists of several 
groups such as robbery, aggravated assault, burglary, and motor vehicle theft. The 
total data size is 495251. The sample size of burglary data is 31671. Almost all 
events of the catalog occurred in a rectangular area between longitudes −80.10◦ and 
−79.85◦ and latitudes 40.30◦ and 40.50◦ . By deleting data outside the above area and 
missing latitude and longitude records, the size of the rest burglary data is 31662. 
The burglaries are mapped in Fig. 11. In Fig. 11, the burglaries are divided into five 
areas-based K-means method, and burglaries in different areas are represented by 
different colors.

The spatial covariates for each census block used below are collect by Reinhart 
and Greenhouse (2017) from city and Census Bureau data, including (a) popula-
tion density (per square meter), (b) fraction of residents who are male from ages 
18–24 years, (c) fraction of residents who are black, and (d) fraction of homes that 
are occupied by their owners, rather than rented, etc. Using the above data, we cal-
culated spatial covariates within the five areas divided based on the burglaries. The 
results are shown in Table  8. Below we built 5-dimension multivariate Hawkes 

𝜆i(t|Ht) =� �Si

𝜆(x, y, t|Ht)dxdy

=� �Si

exp{𝛽s(x, y)}dxdy + � �Si
�S×(−∞,t)

g(x − u, y − v, t − w)N(dw, dv, du)dxdy

=� �Si

exp{𝛽s(x, y)}dxdy +
∑

tl≤t,(xl,yl)∈S� �Si

g(x − xl, y − yl, t − tl)dxdy

=� �Si

exp{𝛽s(x, y)}dxdy +

d∑
j=1

∑
tl≤t,(xl,yl)∈Sj � �Si

g(x − xl, y − yl, t − tl)dxdy

=∶� �Si

exp{𝛽s(x, y)}dxdy +

d∑
j=1

∑
tl≤t,(xl,yl)∈Sj

g̃i,j(t − tl)

= exp{𝛽s(x, y) + log |Si|} +
d∑
j=1

�(−∞,t)

g̃i,j(t − w)Nj(dw),

https://data.wprdc.org/dataset/uniform-crime-reporting-data
https://data.wprdc.org/dataset/uniform-crime-reporting-data
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processes with four spatial covariates to analyze the burglary data and the corre-
sponding spatial covariates.

4.4.2 � Burglary data analysis

Burglary data are recorded in minutes, and in the following analyses, we have pre-
processed it to be in days. Time window depends on the unit of the real data and 
should be chosen carefully. When the time window is too small, no event occurs 
in most intervals, making the estimated results deviate greatly. However, a large 
time window can lead to a large approximation error, which makes it difficult to 
accurately identify the mutually exciting pattern. We use the FLP, AIC, and BIC to 
select the tuning parameters. Figure 12 shows the values of the FLP, AIC, and BIC 
with different tuning parameters. From Fig. 12, we can see that the FLP, AIC, and 
BIC show similar results for selecting the tuning parameters. The maximum FLP 
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Fig. 11   Spatial distribution maps of burglaries with longitude and latitude coordinates recorded in Pitts-
burgh between January 1, 2005, and September 9, 2015

Table 8   Description of additional covariates

Covariate x1 x2 x3 x4 x5

constant (intercept) 1 1 1 1 1
population per m2 0.0017 0.0021 0.0022 0.0027 0.0015
fraction male, 18-24 years 0.0657 0.0467 0.0781 0.1431 0.0521
fraction black 0.4096 0.4439 0.1571 0.1902 0.3075
fraction homes owned 0.4217 0.5117 0.5823 0.4020 0.5927
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value and both the minimum AIC value and BIC value are attained when c1 = 2 and 
c2 = 0.2 . Table 9 shows a summary of the estimates of the parameter � and exp(�X).

The estimate of branching matrix Q is shown in the following matrix.

The spectral radius of Q̂ is 0.5167. We can see that 14 branching coefficients marked 
in bold show significant values, meaning that burglaries occurring in the corre-
sponding areas are mutually exciting. Meanwhile, 5 branching coefficients marked 
in italics (greater than 0.08 but less than 0.1) showed weak mutually exciting. We 
also note that 6 branching coefficients (less than 0.08) are close to zeros, which 
implies that burglaries occurring in these areas have no mutually exciting pattern. 
The mutually exciting relationship diagram of each region is shown in Fig.  13, 
where the wider arrow indicates the greater strength of mutual excitation. In Fig. 13, 
the bold arrows in the left panel indicate strong inter-regional ‘mutually exciting’ 
effect, the bold numbers indicate strong ‘mutually exciting’ effect within the region, 
and the italics number indicates weak ‘mutually exciting’ effect within the region; 
the pink arrows in the right panel indicate normal ‘mutually exciting’ effect between 
regions (the estimated branching coefficients are greater than 0.09 and less than 0.1), 

Q̂ ∶

⎡⎢⎢⎢⎢⎣

0.1659 0.1094 0.1190 0.1208 0.0928

0.0847 0.1317 0.0778 0.1151 0.0980

0.0821 0.0883 0.1097 0.1002 0.0657

0.0631 0.0605 0.0609 0.1062 0.0597

0.1280 0.1168 0.1242 0.1282 0.1921

⎤⎥⎥⎥⎥⎦
.

Fig. 12   FLP, AIC, and BIC values with different tuning parameters

Table 9   Predicting burglary 
using additional covariates

Parameter Estimated value Parameter Estimated value

�0 0.3839 exp(�x1) 0.9297
�1 556.7690 exp(�x2) 0.7181
�2 −6.9273 exp(�x3) 0.6527
�3 −1.7896 exp(�x4) 0.5575
�4 −1.4854 exp(�x5) 0.9464
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the italics arrows indicate weak ‘mutually exciting’ effect between regions (the esti-
mated branching coefficients are greater than 0.8 and less than 0.9). From Fig. 13, it 
can be seen that the strong and normal ‘mutually exciting’ effects occur in the adja-
cent regions, and the weak adjacent regions ‘mutually exciting’ effects are found in 
the regions farther apart. Specifically, regions 1 and 5 are subject to strong ‘mutually 
exciting’ effects from other regions, and regions 2 and 3 are subject to weak ‘mutu-
ally exciting’ effects from other regions.

Figure 14 shows the estimated transfer functions of the multivariate Hawkes pro-
cess based on burglaries data. As can be seen from Fig. 14, the transfer functions 
have a periodic trend. Further, it should be noted that some of the estimated transfer 
functions are equal to 0 since the least-squares estimation Ĝh

p
 is restricted to [0,∞) , 

indicating that there may be an inhibitory effect rather than a mutually exciting 
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Fig. 13   Mutually exciting relationship diagram of each region
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Fig. 14   Estimated transfer functions of multivariate Hawkes process based on burglaries data
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effect. In fact, the least-squares estimation can be generalized to the inhibitory point 
processes.

Figure  15 shows the QQ plot of all transformed times and 300 transformed 
times randomly sampled from all transformed times, respectively, of the five differ-
ent dimensions to assess the goodness of fit of the estimated conditional intensity 
function. It can be seen from Fig. 15 that the estimated multivariate Hawkes pro-
cess is close to the diagonal line. This is evidence that the estimated multivariate 
Hawkes process with spatial covariates produces an acceptable fit to the burglary 
data. Table 10 shows the Chi-square test p values between 1000 random samples of 
the residuals of the different dimensions from one simulation. It can be seen that the 
transformed times for the different dimensions are statistically independent of each 
other for a significance level of 0.05.

4.4.3 � Effect analysis of the selection of d value and the d disjoint areas

The larger the d value, the more mutually exciting patterns between different 
areas can be found. We set d = 5 in Subsection  4.4.2. In the following we use 
the FLP, AIC, and BIC to evaluate the effect of the selection of d value and the 
d disjoint areas. The results are shown in Fig. 16. For Fig. 16, d is selected from 
set {5,… , 10} , and the burglaries are divided into d areas 20 times repeatedly 
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Fig. 15   Quantile-quantile plot of all transformed times (top) and 300 transformed times randomly sam-
pled from all transformed times based on the estimated multivariate Hawkes process

Table 10   p value of Chi-square test for different regions

�2

1,2
�2

1,3
�2

1,4
�2

1,5
�2

2,3
�2

2,4
�2

2,5
�2

3,4
�2

3,5
�2

4,5

p value 0.9905 1.0000 0.9765 0.9999 1.0000 0.9967 09999 1.0000 1.0000 1.0000
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by K-means method with random initial centers. Since there are 5 variables in 
parameter � , the minimum number of region divisions to ensure the invertibility 
of the matrix XX′ is 5. From Fig.  16, it can be seen that when d = 5 , the FLP 
value is maximum, and both AIC and BIC values are minimum. Furthermore, 
Fig. 16 shows that the optimal tuning parameters c1 and c2 are chosen to be the 
same on different partitions, given d.

For Fig.  17, the burglaries are divided into 5 areas 100 times repeatedly by 
K-means method with random initial centers. From Fig.  17, it can be seen that 
the FLP, AIC, and BIC values vary very little for different divisions of 5 disjoint 
areas. Further, we compared the estimated Q over the 20 simulations. The results 
are shown in Fig. 18. Figure 18 shows the boxplots of estimated qij, i, j = 1,… , 5 . 
The horizontal axis represents the positions of the elements in the vector formed 
by stretching the branching matrix Q by rows. From Fig. 18, it can be seen that 
the branching coefficients qii, i = 1,… , 5 show significant values, meaning that 
burglaries occurring in the corresponding areas are self-exciting; branching coef-
ficients qij, i ≠ j, i, j = 1,… , 5 vary with different divisions of 5 disjoint areas. For 
instance, q12 can show significant value in some division and be close to zero in 
other division. This may be due to the fact that the regions with mutually exciting 
pattern are divided from area 2 to other areas.

Fig. 16   FLP, AIC, and BIC values with different tuning parameters
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Fig. 17   FLP, AIC, and BIC values with different area divisions ( d = 5)
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5 � Conclusion

We present multivariate Hawkes processes with spatial covariates that take into 
account the influence structure of spatial features in spatiotemporal event data and 
the spatiotemporal clustering patterns. Specifically, the baseline intensities are 
assumed to be a spatial Poisson regression model to explain spatial feature influ-
ence. The transfer functions are considered to be unknown but smooth and decreas-
ing to explain the clustering phenomena. A semiparametric estimation method is 
derived by using time discretization and local constant approximation. The advan-
tages of this estimation method compared to other estimation methods based on the 
maximum likelihood method are substantial for the case of estimating the transfer 
functions of multivariate Hawkes processes, in terms of flexible and rapid calcu-
lation. In addition, the proposed semiparametric estimation method can serve as a 
diagnostic to assess the performance of different parameterizations of the multivari-
ate Hawkes processes. For example, in other applications of multivariate Hawkes 
processes, such as economics and sociology, there is less established literature on 
suitable parametric models. In such applications, a semiparametric estimation can 
be a powerful exploratory tool in determining an appropriate parameterization of the 
transfer functions.

Numerically, we quantify the variability of the estimates over multiple realiza-
tions of a synthetic process. Judging from the simulations described in Sects. 4.1-
4.3, the proposed semiparametric estimation method has good performance in 
estimating branching matrix, transfer functions and parameter � when appropriate 
tuning parameters are chosen. In Sect. 4.4, we show how multivariate Hawkes pro-
cesses with spatial covariates can be used for modeling crime data. In this applica-
tion, the estimated transfer functions may be rough and insufficiently smooth to meet 
the assumptions of the proposed theorem. Additionally, the model’s explanation of 
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Fig. 18   Boxplots of estimated Q with different area divisions ( d = 5)
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the temporal triggering effect is limited since it is convoluted with different spatial 
aspects that have been aggregated, which makes it difficult to rigorously separate 
the spatial and temporal triggering effects, limiting the model’s ability to explain 
complex spatiotemporal clustering phenomena. These are the drawbacks of the pro-
posed multivariate Hawkes process model. To address these problems, a spatiotem-
poral model and spatiotemporal data with latitude and longitude coordinates would 
be necessary. However, such data are not readily available. In contrast, local average 
data or counting data are more commonly available. Therefore, the proposed mul-
tivariate Hawkes process model can be used for modeling and preliminary analysis 
of covariate and temporal triggering effects for local average data or counting data. 
Specifically, Table 5 in Sect. 4.3 shows that the proposed multivariate Hawkes pro-
cess model gives an accurate estimate of the covariate coefficients for local counting 
data. This suggests that the proposed multivariate Hawkes process model is valid 
for analyzing covariate effects even when the data do not satisfy the proposed theo-
rem’s assumptions. On the other hand, for spatiotemporal data with accurate latitude 
and longitude coordinates, a rapid preliminary study can be conducted with the pro-
posed multivariate Hawkes process model. If the temporal triggering effect displays 
cyclic fluctuations, it can be further modeled and analyzed with the spatiotemporal 
Hawkes process. Overall, the provided methodology is intended to provide a fast 
and efficient method for determining spatiotemporal clusteredness. After confirm-
ing the spatiotemporal clusteredness of the actual data, the spatiotemporal clustering 
patterns can be further analyzed using some refinement model, such as Park et al. 
(2021). In conclusion, the proposed model will enable new research on spatiotempo-
ral event data, revealing the influence structure of spatial features and spatiotempo-
ral clustering patterns of spatiotemporal events and contributing to improved policy 
strategies in different areas.
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