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a b s t r a c t

In this paper, we propose a penalized generalized empirical likelihood (PGEL) approach
based on the smoothed moment functions Anatolyev (2005), Smith (1997), Smith (2004)
for parameters estimation and variable selection in the growing (high) dimensional weakly
dependent time series setting. The dimensions of the parameters and moment restrictions
are both allowed to grow with the sample size at some moderate rates. The asymptotic
properties of the estimators of the smoothed generalized empirical likelihood (SGEL) and
its penalized version (SPGEL) are then obtained by properly restricting the degree of data
dependence. It is shown that the SPGEL estimator maintains the oracle property despite
the existence of data dependence and growing (high) dimensionality. We finally present
simulation results and a real data analysis to illustrate the finite-sample performance and
applicability of our proposed method.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In order to better capture large-scale economic dynamics or financial relations, models with a growing number of
unknown parameters of interest are increasingly employed to analyze high-dimensional time series data. Let X1, . . . ,Xn
be random vectors from an Rd-valued stationary time series and θ = (θ1, . . . , θp)⊤ be a vector of unknown parameters
taking values in a parameter spaceΘ . Suppose that the data information is summarized by the moment restrictions

E{g(Xt , θ0)} = 0,

where g(Xt , θ) = (g1(Xt , θ), . . . , gr (Xt , θ))⊤, and θ0 ∈ Θ is the unknown true parameter vector. When p and r are fixed and
finite, the generalized empirical likelihood (GEL) estimators [26,27], as theoretically seductive alternatives to the generalized
methodofmoments (GMM)estimators of [12], enjoy the properties ofWilks’ theorem [20,21,24] andBartlett correction [6,7].
Besides, their higher order asymptotic properties are superior to the GMM estimators; see [1,19]. Refer to [22] for a general
overview and [9] for a summary of the recent progress in a variety of fields.

When p and r are diverging with the sample size n, there are few studies of the asymptotic performance of the GEL
estimators. The importance of inference under the growing (high) dimensional setting was first recognized in [8] and [13]
simultaneously. Tang and Leng [28] and Leng and Tang [17] considered variable selection by adding a penalty term to the
traditional likelihood ratio under the circumstances of mean vector and general moment restrictions, respectively. A recent
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paper by Chang et al. [4] offered a new scope with the notion of penalized empirical likelihood, which allows both the
dimensionalities of model parameters and estimating equations to grow exponentially with the sample size.

The resultsmentioned abovewere obtained in the context of independent data. Lahiri et al. [16] considered the dependent
data case and introduced a penalized EL estimator for high-dimensional sparsemean parameters. Presumably, this modified
EL does not maintain all of the excellent properties of the original EL estimator. Chang et al. [3] employed the blocking
technique to handle the dependence in the original time series and the corresponding estimating functions. Hence, their
GEL estimator preserves the self-studentized property of the traditional GEL estimator, which is not held in [16]. However,
Chang et al. [3] did not give any criterion to choose the blocking numberM , which seriously influences the GEL’s estimation
efficiency and application. Instead of the blocking technique, we can imagine that other methods, especially the popular
local smoothing, may also work for growing (high) dimensional dependent time series data and may be able to circumvent
this type of tuning parameter selection problem. This is because we already have several out-of-the-box solutions for the
selection of the bandwidth parameter of the local smoothingmethod in the literature; see, e.g., [2]. This is exactly the starting
point of this paper. In contrast, compared with the work of [3], our proposed method can use more data, which will lead to
better finite-sample performance.

The idea of local smoothing has already appeared in the literature on empirical likelihood methods. Smith [26]
incorporated the smoothed linear moment functions with the empirical likelihood to address the potential serial correlation
in the moment functions. Subsequently, Smith [27] demonstrated that the smoothed empirical likelihood procedure offers
alternative one-step estimators in the setting of weakly dependent data, which are asymptotically equivalent to their two-
step GMMcounterparts. Anatolyev [1] further derived the second order asymptotic bias of a smoothed generalized empirical
likelihood estimator, which revealed that compared with GMM, this estimator avoids the bias term associated with the
correlation between the moment function and its derivative, while the bias term associated with third moments depends
on the kernel function. All the above work is restricted to the fixed p and r case, and extensions to diverging p or r cases are
unclear.

Faced with growing (high) dimensionality, i.e., p → ∞, a sparsity assumption is reasonable, and sparse models can
improve the prediction accuracy to a certain extent. With the exception of the vast literature on the penalized likelihood
approach, penalized EL or GEL has also been studied for general estimating equations with diverging dimensionality; see,
e.g., [17] and [3] for reviews. Following this work, this paper proposes a smoothed penalized GEL method for diverging
dimensional time series data.We use the kernel-based smoothedmoment functions [1,26,27] to accommodate the temporal
dependence among the data. Both r and p are allowed to diverge with the sample size n. When r ≥ p, we first obtain the
consistency, the rate of convergence and asymptotic normality of the smoothed GEL estimator [1] by properly restricting
the growing rates of r , p and the truncating parameter hn incorporated by the smoothed moment function. Then, when
p ≥ r and the sparse assumption stands, we investigate the oracle property of the smoothed penalized GEL estimator,
i.e., it identifies the true model with probability tending to 1. Furthermore, the estimated non-zero parameters remain
asymptotically normal. It is worth noting that the oracle property mentioned above is tenable without imposing stringent
distributional assumptions. Accordingly, our proposed estimator is robust against model misspecification.

The rest of the paper is organized as follows. In Section 2, we propose the smoothed generalized empirical likelihood
(SGEL) and investigate its asymptotic properties. Then, when p ≥ r and the sparse assumption stands, the penalized version
of SGEL (SPGEL) is given and studied in Section 3. Some implementation issues are discussed in Section 4. Several simulation
results are presented in the next section to illustrate the finite-sample performance of the SGEL and SPGEL estimators.
In Section 6, we employ Istanbul stock exchange data to demonstrate the applicability of our proposed method. Finally,
Section 7 concludes this paper, and all the proofs are reported in the Appendix.

2. Smoothed generalized empirical likelihood

Suppose that the following unconditional moment restrictions sum up the available data information:

E{g(Xt , θ0)} = 0.

Here, we assume r > p. As mentioned in the Introduction, r and p → ∞ as sample size n → ∞. The dimension of Xt ,
denoted by d, can be either diverging with n or fixed.

We now assume that the α-mixing condition [10] holds, i.e., as k → ∞,

αX (k) = sup
d

sup
A∈F0

−∞
,B∈F+∞

k

|Pr(A ∩ B) − Pr(A) Pr(B)| → 0,

where k ≥ 1 andFv
u = σ (Xt : u ≤ t ≤ v) is the σ -field generated by Xt from time u to v. This condition describes the degree

of dependence among the data Xt . In the context without dependence, it is easy to see that αX (k) = 0 for every integer k ≥ 1.
To address the dependence, we introduce a kernel function k(x) satisfying the following properties: (a) k(x) : [−b, b] →

[−k̄, k̄], where b and k̄ are finite; (b) for all x ∈ [−b, b], k(x) = k(−x); (c) k(x) is continuous on (−b, b); (d)
∫ b

−b k(x) dx = 1.
Various frequently-used kernels satisfy the properties given above, such as the truncated, Parzen and Bartlett kernel; see [2]
for details. We then consider the smoothed moment function [1,26,27], viz.

mt (Xt , θ) =

hn∑
w=−hn

κ(w)g(Xt−w, θ),
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where κ(w) = k(w/δn)/δn, and δn is the bandwidth parameter growing to infinity much more slowly than n and chosen to
ensure that

∑hn
w=−hn κ(w) = 1, where hn = ⌊bδn⌋, and ⌊a⌋ means the integer part of a. The smoothed generalized empirical

likelihood (SGEL) [1] is defined as

ℓ(θ) = sup

{
n∏

t=1

πt : π1, . . . , πn ∈ (0, 1),
n∑

t=1

πt = 1,
n∑

t=1

πtmt (Xt , θ) = 0

}
.

As pointed in [26], the smoothedmoment functionwith κ(w) incorporated takes into account the potential serial correlation
in themoment functions, which renders the implicit metric imposed by the generalized empirical likelihood appropriate for
efficient estimation. The bandwidth parameter hn may be viewed as reflecting the order of serial correlation in the moment
functions. Hence, hn will typically depend on n and will need to increase with the sample size n at a properly slow rate;
see [2].

Following the conventional optimization procedure, the SGEL estimator θ̂n together with the r × 1 vector of Lagrange
multipliers λ̂ can be obtained by solving the saddle point problem

min
θ∈Θ

max
λ∈Λ̂n(θ)

n∑
t=1

ρ{λ⊤mt (Xt , θ)}, (1)

where Λ̂n(θ) = {λ ∈ Rr
: λ⊤mt (Xt , θ) ∈ Υ , t ∈ {1, . . . , n}, θ ∈ Θ}, Υ is an open interval containing 0, and the link function

ρ(υ) indexes the member of the GEL class. When ρ(υ) = ln(1 + υ), it turns out to be the classical empirical likelihood (EL)
estimator [20,24]; when ρ(υ) = − exp(υ), we obtain the exponential tilting (ET) estimator of [14]; when ρ(υ) = −υ2/2−υ ,
it is the continuous updating (CU) estimator of [19]. In general, we assume that the link function ρ(υ) is a concave function
such that (a) 0 is an interior point of the domain of ρ; (b) ρυ (0) ̸= 0 where ρυ (υ) = ∂ρ(υ)/∂υ; (c) ρυυ (0) ≤ 0, where
ρυυ = ∂2ρ(υ)/∂2υ; see [27].

Define

Ŝn(θ,λ) =
1
n

n∑
t=1

ρ{λ⊤mt (θ)}, (2)

where we denote mt (Xt , θ) by mt (θ) for the sake of brevity, and we will maintain this notation hereinafter. Then we obtain
the score function regarding θ̂n and λ̂, viz.

∇λŜn(θ̂n, λ̂) = 0.

By the implicit function theorem, e.g., Theorem 9.28 in [25], and in view of the concavity of Ŝn(θ,λ) on λ, Ŝn{θ, λ̂(θ)} =

maxλ∈Λ̂n(θ) Ŝn(θ,λ). By the envelope theorem,

0 = ∇θ Ŝn{θ, λ̂(θ)}|θ=θ̂n
=

1
n

n∑
t=1

ρυ{λ̂(θ̂n)⊤mt (θ̂n)}{∇θmt (θ̂n)}⊤λ̂(θ̂n).

To establish the asymptotic properties of the SGEL estimator, we introduce the following notations and regularity
conditions. In what follows, Ci denotes a positive finite constant which is different for each i. If A is a matrix, ∥A∥F and
∥A∥2 denote its Frobenius-norm and operator-norm, respectively. For a vector a, we use ∥a∥2 to denote its L2-norm. For
convenience’s sake,we abbreviate g(Xt , θ) by gt (θ) and denote the ith element of g(x, θ) by gi(θ). Then, the jth element of gt (θ)
andmt (θ) are denoted by gt,j(θ) andmt,j(θ), respectively. Additionally, let ḡ(θ) = {g1(θ)+· · ·+gn(θ)}/n, Vn = var{

√
n ḡ(θ0)},

m̄(θ) = {m1(θ)+· · ·+mn(θ)}/n, andUh = var{
√
hn mt (θ0)}. Note thatUh canbe seen as the covariancematrix of the smoothed

moment function at time t . We need the following conditions throughout the paper.

(A.1) (i) X1, . . . ,Xn is strictly stationary time series, and
∑

∞

k=1 kα
1−2/γ
X ≤ ∞ for some γ > 2; (ii) E{gt (θ0)} = 0, and

inf
{θ∈Θ:∥θ−θ0∥2≥ε}

∥E{gt (θ)}∥2 ≥ △1(r, p)△2(ε) > 0

for any ε and some positives functions △1(r, p) and △2(ε), where lim infr,p→∞ △1(r, p) > 0; (iii) supθ∈Θ ∥ḡ(θ) −

E{gt (θ)}∥2 = Op{△1(r, p)}.
(A.2) (i) θ0 ∈ int(Θ), and a small ∥ · ∥2-neighborhood of θ0 is contained in Θ in which g(x, θ) is continuously differentiable

with respect to θ for any x ∈ X , the domain of Xt . Furthermore, for all i ∈ {1, . . . , r} and i ∈ {1, . . . , p},⏐⏐⏐ ∂
∂θj

gi(x, θ)
⏐⏐⏐ ≤ Tn,ij(x)

for some functions Tn,ij(x) satisfying E{T 2
n,ij(Xt )} ≤ C for any i, j; (ii) supθ∈Θ ∥g(x, θ)∥2 ≤

√
r Bn(x), where E{Bγn (Xt )} ≤ C

for γ specified in (A.1)(i); (iii) E{|gt,j(θ0)|2γ } ≤ C for all j ∈ {1, . . . , r}; (iv) the eigenvalues of [E{∇θgt (θ)}]⊤[E{∇θgt (θ)}]
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in a ∥ · ∥2- neighborhood of θ0 are uniformly bounded away from zero and infinity, and

sup
θ∈Θ

λmax

{
1
n

n∑
t=1

gt (θ)gt (θ)⊤
}

≤ C

with probability approaching 1.
(A.3) g(x, θ) is twice continuously differentiable with respect to θ in a ∥ · ∥2-neighborhood of θ0 for any x ∈ X , and for all

i ∈ {1, . . . , r} and k ∈ {1, . . . , p},⏐⏐⏐⏐ ∂2

∂θj∂θk
gi(x, θ)

⏐⏐⏐⏐ ≤ Kn,ijk(x)

for some functions Kn,ijk(x) satisfying E{K 2
n,ijk(Xt )} ≤ C for any i, j and k.

(A.4) lim infτ→0 lim infθ→0+ p⊤
τ (θ)/τ > 0.

(A.5) maxj∈A pτ (|θ0j|) ≤ Cτ for some positive constant C , where A will be defined later.

These regularities are frequently assumed in the literature; see, e.g., [3]. They are often used under the circumstances of
weakly dependent time series data and diverging parameter space, and they are extensions of GEL for the fixed dimension
setting. To construct the asymptotic properties of the SGEL estimator, we also need the following conditions:

r2h2
nn

2/γ−1
= o(1), (3)

sup
n

E{|β⊤

n gt (θ0)|
γ
} < ∞, (4)

where βn = −U−1
h [E{∇θgt (θ0)}] ×

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
αn for any vector αn with unit L2-norm and

γ > 2 specified in (A.1)(i).
Next, we present the consistency, rate of convergence and asymptotic normality of the SGEL estimator.

Theorem 1. Assume that the eigenvalues of Uh are uniformly bounded away from zero and infinity, and Conditions (A.1), (A.2)
and (3) hold. Then ∥θ̂n −θ0∥2

p
−→ 0. Furthermore, if r2ph2

n/n = o(1), then ∥θ̂n −θ0∥2 = Op(
√
r/n), and ∥λ̂(θ̂n)∥2 = Op(hn

√
r/n).

This result echoes Theorem 1 in [3], where a blocking technique is used to handle the dependence among the data. It
is noteworthy that our truncating parameter hn incorporated by the smoothed moment function displays a similar effect
with the block size M used in the blocking technique. However, it seems that we need fewer conditions for hn than those
needed forM in [3]. Moreover, if hn is fixed, Condition (3) guarantees that r = o(

√
n) for large enough γ . Finally, Theorem 1

generalizes the existing results on the consistency of GEL estimator; see [24] and [19] for the case of fixed r and independent
data, and [17] for the case of diverging r and independent data.

The following theorem states the asymptotic normality of the SGEL estimator.

Theorem 2. Under Conditions (A.1) and (A.3), assume that the eigenvalues of Uh and Vn are uniformly bounded away from zero
and infinity. If

r3h2
nn

2/γ−1
= o(1), r3p2/n = o(1) and r3ph2

n/n = o(1), (5)

then for any αn ∈ Rp with unit L2 norm such that (4) holds, we have
√
nα⊤

n

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]⊤

]−1/2
[E{∇θgt (θ0)}]⊤U−1

h [E{∇θgt (θ0)}](θ̂n − θ0)

is asymptotically N (0, 1) as n → ∞.

Note that (4) is a necessary condition to use the Central Limit Theorem in the dependent data setting. From Theorem 2, if
∥Vn − Uh∥2 → 0, the SGEL estimator is asymptotically efficient. We can obtain the efficient estimator by properly choosing
the diverging rate of hn such that the conditions required for Theorem 2 hold.

3. Smoothed penalized generalized empirical likelihood

In high-dimensional data analysis, especially when p > r , the classical approach is to assume that only some of the
covariates are active. DefineA = {j : θ0j ̸= 0}, where θ0j is the jth component of the true parameter vector θ0 and let s = |A|,
i.e., the cardinality of A is s. Without loss of generality, denote θ = (θ⊤

1 , θ
⊤

2 )
⊤, where θ1 ∈ Rs and θ2 ∈ Rp−s correspond to

nonzero and zero subsets of θ, respectively. Given such sparsity, we only need to assume s ≤ r to ensure the identifiability of
the relevant parameters. To estimate the relevant parameters efficiently, we add a penalty term to (1) and get the smoothed
penalized generalized empirical likelihood (SPGEL) estimator

θ̂
(pe)
n = argmin

θ∈Θ
max

λ∈Λ̂n(θ)

⎧⎨⎩
n∑

t=1

ρ{λ⊤mt (Xt , θ)} + n
p∑

j=1

pτ (|θj|)

⎫⎬⎭ ,
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where pτ is some penalty function with a tuning parameter τ satisfying Conditions (A.4)–(A.5). Penalty functions such as the
one defined in [11] and the minimax concave penalty function of [30] satisfy the aforementioned conditions. Define

S(θ0) =
[
[E{∇θgt (θ0)}]⊤U−1

h [E{∇θgt (θ0)}]
]−1[

[E{∇θgt (θ0)}]⊤U−1
h VnU−1

h [E{∇θgt (θ0)}]
]

×
[
[E{∇θgt (θ0)}]⊤U−1

h [E{∇θgt (θ0)}]
]−1
.

We then decompose S(θ0) as

S(θ0) =

(
S11(θ0) S12(θ0)
S21(θ0) S22(θ0)

)
, (6)

where S11(θ0) and S22(θ0) are s × s and (p − s) × (p − s) sub-matrices, respectively. To establish the oracle property of the
SPGEL estimator, we need the following conditions regarding s and τ :

sτn/(rhn) = O(1), τ
√
n/r /hn → ∞. (7)

Denote the SPGEL estimator θ̂
(pe)
n = (θ̂

(1)⊤

n , θ̂
(2)⊤

n )⊤ and Sp(θ0) = S11(θ0) − S12(θ0)S−1
22 (θ0)S21(θ0). We have the following

theorem.

Theorem 3. Under Conditions (A.1)–(A.5), assume that the eigenvalues of Uh are uniformly bounded away from zero and infinity.
Ifmaxj∈A p′

τ (|θ0j|) = o(
√
r/n), minj∈A |θ0j|/τ → ∞, and (7) holds, we have the following results:

(i) Pr{θ̂
(2)
n = 0} → 1 as n → ∞, provided that (3) holds and r2ph2

n/n = o(1).
(ii) If the eigenvalues of Vn are uniformly bounded away from zero and infinity, then for any αn ∈ Rs with unit L2-norm, we

have, as n → ∞,
√
nα⊤

n S
−1/2
p (θ0){θ̂

(1)
n − θ

(1)
0 } ⇝ N (0, 1),

provided that

(a) for independent data, r3p2/n = o(1) and r3n2/γ−1
= o(1);

(b) for dependent data, (5) holds and αn satisfies (4) with

βn = − U−1
h [E{∇θgt (θ0)}]

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1

× [E{∇θgt (θ0)}]⊤U−1
h [E{∇θ(1)gt (θ0)}]{S11(θ0) − S12(θ0)S22(θ0)−1S21(θ0)}1/2αn.

Theorem 3 indicates that the zero components of the true parameter θ0 can be estimated as zerowith probability tending
to 1. Comparing Theorem 3 with Theorem 2, it can be easily seen that the SPGEL estimator is more efficient than the SGEL
estimator in estimating the nonzero components of θ0. The efficiency is gained via penalization, by which we reduce the
effective dimension of the parameter to be estimated. Our result for SPGEL estimator resembles that for the penalized
GEL estimator based on the blocking technique when data dependence exists. There are no surprises since the smoothed
estimating function is kind of a weighted average of the original estimating function gt (θ) while the estimating function
constructed for a block is a simple average.

4. Implementation issues

There are nontrivial issues related to the computation of the SGEL and SPGEL estimators. For both of them, we need
to choose a suitable kernel and the bandwidth or truncating parameter. Choices for the kernel function k and bandwidth
parameter hn should satisfy the properties given in Section 2 and assumptions required by Theorems 1–3.

For convenience of calculations, we choose the popular truncated kernel defined by k(x) = 1 for |x| ≤ 1 and k(x) = 0
otherwise, which implies a Bartlett kernel for the heteroscedasticity and autocorrelation consistent (HAC) matrix. However,
how to practically choose a suitable bandwidth parameter is a challenging problem. Fortunately, Andrews [2] proposed
an automated bandwidth estimator, which is asymptotically optimal under the asymptotic truncated mean squared error
criterion for the covariance matrix estimation. While it is not clear whether this optimality holds for the smoothed moment
function, we just follow this procedure as done in [5].

According to [2], the choice of the bandwidth parameter is closely related to the choice of the kernel function, anddifferent
kernelsmay imply different bandwidths. Conditions like (3) are quitemild, and the optimal bandwidthwe choose can satisfy
these conditions for some specific γ . For example, when r is fixed, the order of the optimal bandwidth for the Bartlett kernel
is O(n1/3); see [2]. Condition (3) requires that the order of the bandwidth should be o(n1/2−1/γ ). Clearly, the bandwidth we
choose satisfies Condition (3) in this case. Numerical results based on different bandwidthswere conducted to checkwhether
the proposed method is sensitive to the bandwidth. The results are reported in Section 5.

For SPGEL itself, a non-differentiable penalty and a tuning parameter are introduced. For the selection of the tuning
parameter, we use the BIC criterion [17,29]. Moreover, the Nelder–Mead algorithm [18] is used to solve the problem of
non-differentiable penalty, since this method uses only function values and works reasonably well for non-differentiable
functions.
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Table 1
Empirical averages of the squared estimation errors (×100) of the smoothed GMM, EL and PEL with c = 3.
ψ n = 500 n = 1000 n = 2000

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

GMM 17.87 19.38 22.23 15.26 15.76 17.08 12.54 12.77 13.36
EL 10.05 10.65 12.49 8.41 8.92 9.89 7.30 7.55 7.84
SEL 9.61 10.11 12.39 7.65 8.09 9.47 6.98 7.38 7.56
PEL 9.40 10.61 12.09 7.69 8.20 9.54 6.88 7.26 7.62
SPEL 8.78 10.01 11.43 6.77 7.29 8.38 5.94 6.34 6.16

5. Simulation results

We present several simulation results to investigate the finite-sample performance of the SGEL and SPGEL estimators in
the high-dimensional weakly dependent time series setting. Their performances are then compared with that of traditional
GEL, penalized GEL and smoothed GMM estimators with HAC positive definite weightmatrices.We consider threemembers
of the GEL family in the simulations: EL, ET and CU. The penalty function pτ (θ ) we choose in the simulations satisfies

p′

τ (θ ) = τ

{
1(θ ≤ τ ) +

(aτ − θ )+
(a − 1)τ

1(θ > τ )
}
,

for θ > 0, where a = 3.7 and (x)+ = x for x > 0 and (x)+ = 0 otherwise; see [11].
We examine the generalized linear model with nonlinear moment restrictions. The covariates Z1, . . . , Zn are generated

from the vector autoregressive model (VAR) of order 1, viz. Zt = ψZt−1 + εt where εt ∼ N (0,Σε), Σε = (σi,j)p×p,
σi,i = 1−ψ2,σi,i±1 = (1−ψ2)/2 andσi,j = 0 for |i − j| > 1. The stationary distribution of Zt isN (0,Σz)whereΣz = (σ̃i,j)p×p,
σ̃i,i = 1, σ̃i,i±1 = 1/2 and σ̃i,j = 0 for |i − j| > 1. The response variable Y1, . . . , Yn take the values 0 or 1, and

Pr(Yt = 1|Zt ) = exp(1 + Z⊤

t θ0)/{1 + exp(1 + Z⊤

t θ0)},

where the true parameter θ0 = (0.8, 0.2, 0, . . . , 0)⊤ ∈ Rp. Then we obtain

E{Yt − exp(1 + Z⊤

t θ0)/{1 + exp(1 + Z⊤

t θ0)}|Zt} = 0.

The corresponding moment restrictions can be constructed as

g(Xt , θ) = (Z⊤

t ,W
⊤

t )⊤ × {Yt − exp(1 + Z⊤

t θ)/[1 + exp(1 + Z⊤

t θ)]},

where Zt = (Z1,t , . . . , Zp,t )⊤ and Wt = (Z2
1,t , . . . , Z

2
p,t )

⊤.
In this simulation model, we choose n = 500, 1000, and 2000, respectively, and we take p as the integer part of cn2/15,

where c = 3 and 4. The parameter ψ in the VAR process Zt controlling the degree of serial dependence is set to be 0.1, 0.3
and 0.5, respectively. We then summarize the simulation results based on 100 repetitions. For each repetition, we get the
SGEL, SPGEL and GMM estimators and compute the L2 distance between θ̂ and θ0 as ∥θ̂ − θ0∥2 = {(θ̂ − θ0)⊤(θ̂ − θ0)}1/2. The
numerical results confirm our theoretical findings concerning the SGEL and SPGEL estimators.

Tables 1 and 2 summarize the empirical averages of the squared estimation errors of the smoothed GMM, GEL, SGEL, PGEL
and SPGEL estimators with c = 3 and c = 4, respectively. Notice that the results for the smoothed penalized exponential
tilting method (SPET) and the smoothed penalized continuous updating method (SPCU) are quite similar to those for the
smoothed penalized empirical likelihood (SPEL) method, so we only present the results pertaining to SPEL for simplicity.
For the smoothed GMM, we choose the optimal Quadratic Spectral kernel with its corresponding optimal bandwidth as [2]
suggested.

It can be seen easily that the performance of each estimator is improvedwhen the sample size increases,which is expected
given the convergence of our proposed SGEL and SPGEl estimators. We also observe that the SGEL and SPGEL estimators
perform better than the GEL and PGEL estimators, which do not employ local smoothing for the moment restrictions.
However, the efficiency gain is not so large in the tables since the local smoothing does not take effect in every replicate.
If these failure samples are left out, we can obtain much more efficiency gain due to the local smoothing of the moment
functions. The empirical averages of the squared estimation errors of the smoothed GMM estimators were much larger than
those of the EL, SEL estimators and their penalized analogues, which can be deduced from the conclusions of [19] and [1]
on GMM versus GEL for fixed finite-dimensional data settings. Finally, the penalized GEL and SGEL estimators have smaller
empirical averages of the squared estimation errors, indicating the gain in efficiency by adding the penalty term for variable
selection.

Of note, the proposed method does not work well when ψ , which characterizes the serial dependence of the data, is
less than 0.1. This is easy to understand because the dependence under this setting is too weak for the local smoothing
technique to take effect. Moreover, although our method does perform better in the settings given above, it cannot efface
the bad influence of the data dependence completely. Generally speaking, the performance of the proposed estimators is
closely related to the sample size, the diverging speed of the dimension p, the data dependence and the interaction between
them.
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Table 2
Empirical averages of the squared estimation errors (×100) of the smoothed GMM, EL and PEL with c = 4.
ψ n = 500 n = 1000 n = 2000

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

GMM 15.49 16.66 19.90 12.50 13.11 14.51 10.52 10.25 11.14
EL 11.19 11.41 14.28 7.86 8.56 9.41 6.43 6.79 7.47
SEL 11.00 11.11 16.57 7.58 8.45 9.06 6.31 6.75 7.93
PEL 10.40 11.07 13.78 7.61 8.24 9.60 6.05 6.71 7.45
SPEL 8.98 9.77 13.02 6.41 6.98 8.41 5.30 5.72 6.42

Table 3
Empirical averages of the squared estimation errors (×100) of the smoothed GMM, EL and
PEL with higher dimensions.
ψ c = 5 c = 6

0.1 0.3 0.5 0.1 0.3 0.5

GMM 13.88 15.34 18.12 11.62 13.59 15.65
EL 11.39 12.41 14.65 10.98 12.82 14.84
SEL 11.74 12.82 18.54 11.78 13.83 18.44
PEL 7.45 11.11 12.86 9.97 11.42 14.11
SPEL 6.42 10.58 13.67 9.59 11.22 14.95

Table 4
Empirical averages of the squared estimation errors (×100) of the smoothed GMM, EL and
SEL with different bandwidths.
GMM EL SEL

Bandwidth 0.5h∗ 0.75h∗ h∗ 1.25h∗ 1.5h∗

c = 3
20.02 10.77 10.77 10.77 10.70 10.61 11.01

c = 4
17.01 12.17 12.17 12.17 12.15 12.29 13.68

Note that we did not compare our method with that of [3]. Because the performance of their method depends heavily
on the choice of the blocking parameters, but they did not give any suggestion on the selection of these parameters.
Nevertheless, our SPGEL method is a competitive alternative to theirs with better practicality.

We follow the Editor’s suggestion to present more simulation results for higher dimensions in Table 3. In this setting, we
set n = 500, ψ = 0.1, 0.3, 0.5, and c = 5,6. The results are quite similar to those given in Tables 1 and 2. Moreover, the
results show that when c or ψ gets larger, both SEL and SPEL seem to lose efficacy, but SPEL seems to be more tolerant of
dimensionality.

Bandwidth selection is of importance when kernel smoothing is employed. Numerical results are given in Table 4 to
compare the SEL based on different bandwidths, where we use the optimal bandwidth h∗ computed by the method given
in [2] as the benchmark and compare the corresponding performance of SEL with those with bandwidth equaling 0.5h∗,
0.75h∗, 1.25h∗ and 1.5h∗. We choose n = 500,ψ = 0.3, and c = 3 and 4. Table 4 shows that our proposed method is robust
to the bandwidth when the working bandwidth does not deviate too much from the benchmark.

6. Real data analysis

We use the Istanbul stock exchange data to illustrate the applicability of our proposed method. These data are available
at http://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE. The Istanbul stock exchange data include returns of
the Istanbul stock exchange national 100 index (ISE) with seven other international indexes: Standard and Poor’s 500 return
index (SP), the stock market return index of Germany (DAX), the stock market return index of the United Kingdom (FTSE),
the stockmarket return index of Japan (NIKKEI), the stockmarket return index of Brazil (BOVESPA), theMSCI European index
(EU) and the MSCI emerging markets index (EM) from June 5, 2009 to February 22, 2011. There are thus 536 observations
in total. There exist two measures of ISE: one is based on TL and the other one is USD based. The first one is employed in
this study and is transformed to a dichotomous variable by 1(ISE > 0). Our aim is to investigate the influence of the seven
indexesmentioned above on ISE. In order to explore the degree of dependence of these indexes,we compute their correlation
matrix first and go further to construct a VARmodel with order 1 for them. The results show that the indexes enjoy a weakly
dependent structure.

It is appropriate to assume a logistic model, viz.

Pr(ISEt = 1|Xt ) =
exp(β0 + X⊤

t β)
1 + exp(β0 + X⊤

t β)
,

http://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
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Table 5
The fitted coefficients and standard errors (in parentheses) for estimators from GMM, EL, SEL
and SPEL.
Variable GMM EL SEL SPEL

Intercept 0.27 (0.07) −0.14 (0.91) −0.10 (0.86) 0.00 (0.87)
SP 23.11 (11.60) 6.10 (14.28) 5.89 (13.93) 0.00 (16.45)
DAX 6.70 (20.75) −5.33 (17.11) −4.77 (14.91) 0.00 (14.98)
FTSE 38.67 (25.05) 39.64 (21.08) 39.66 (21.09) 41.66 (22.78)
NIKKEI −4.57 (9.32) 0.18 (0.94) 0.18 (0.94) 0.00 (0.82)
BOVESPA −29.56 (10.18) −12.23 (16.69) −12.24 (16.69) 0.00 (17.01)
EU 69.10 (16.76) 67.03 (21.57) 67.03 (21.11) 64.88 (25.52)
EM 93.22 (25.5) 97.69 (28.29) 97.08 (27.2) 93.67 (28.03)

where ISEt is the transformed ISE, andXt indicates the aforementioned seven indexes. Under thismodel,moment restrictions
can be constructed as those in the simulation study.We then utilize GMM, EL, SEL and SPEL to estimate the coefficient vector
β which is of our interest. The results are summarized in Table 5. To get the standard errors of the fitted coefficients, the
block bootstrap method [15,23] is employed. The procedure is given below.

(i) Draw a sample Xk of size 1 from the original data set randomly with replacement. Here, k ∈ {1, . . . , 536}. Recall that
we have n = 536 data points in total.

(ii) Choose a block of length n/2 = 268: Xk, . . . , Xk+267 when k ≤ 268, or Xk, . . . , Xk−267 when k > 268.
(iii) Use GMM, EL, SEL and SPEL to estimate the coefficients.
(iv) Repeat (i)–(iii) for N = 100 times, and derive the estimators β̂1, . . . , β̂100 for GMM, EL, SEL and SPEL.
(v) Compute the mean and standard error of the β̂is for GMM, EL, SEL and SPEL, respectively.

From Table 5, the four kinds of estimators simultaneously identify EU and EM as influential variables for the change in
ISE. This finding implies a close relationship between the three stock markets. Of note, the estimators of EL and SEL differ
only slightly in this specific data set. In addition, the SPEL method performs satisfactorily in variable selection, highlighting
the influence of EU and EM on ISE. Furthermore, these results are quite different from that of the L1-regularized logistic
regression method which identifies DAX, FTSE and EU as important variables.

7. Conclusion

In this paper, we have studied the asymptotic properties of SGEL and SPGEL estimators in the setting of growing (high)
dimensional weakly dependent time series. The penalized version is implemented when p > r but the true number of
non-zero parameters is smaller than or equal to r . We show that the SPGEL estimator maintains the oracle property in spite
of the existence of data dependence. To construct the estimators mentioned above, we introduce the smoothed moment
functions. Although we use the method given by [2] to choose the truncating parameter hn introduced by the smoothed
moment function as done by [5], we are not sure whether the optimal bandwidth estimator for GMM is applicable to the
GEL family. It is a challenging problem to select a uniformly optimal or a sub-optimal bandwidth estimator for the GEL family,
and we leave it for further research.
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Appendix

Throughout the Appendix, C denotes a generic positive finite constant that may be different in different uses. Let

ḡ(θ) =
1
n

n∑
t=1

gt (θ), m̄(θ) =
1
n

n∑
t=1

mt (θ), Uh = var{h1/2
n mt (θ0)}, Ω̂(θ) =

1
n

n∑
t=1

mt (θ)mt (θ)⊤

andΩ(θ) = E{mt (θ)mt (θ)⊤}.

A.1. Preliminary lemmas

The lemmas proposed in this subsection are used to prove Theorem 1.
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Lemma A.1. Under Conditions (A.1)(ii) and (A.2)(ii), supθ∈Θ∥m̄(θ) − ḡ(θ)∥2= Op(
√
r hn/n).

Proof. By Jensen’s inequality,

E
{
sup
θ∈Θ

∥m̄(θ) − ḡ(θ)∥2

} ≤
1
n

[
hn∑
t=1

{
1 −

t−1∑
s=−hn

κ(s)

}
+

n∑
t=n−hn+1

{
1 −

hn∑
t−n

κ(s)

}]
× E

{
sup
θ∈Θ

∥gt (θ)∥2

}
≤ (hn/n) × E

{
sup
θ∈Θ

∥gt (θ)∥2

}
.

Hence, (A.2)(ii) leads to the conclusion. □

Lemma A.2. Under Conditions (A.1)(i) and (A.2)(iii), ∥Ω̂(θ0) −Ω(θ0)∥F= Op(r/
√
n).

Proof. Note that

E{∥Ω̂(θ0) −Ω(θ0)∥2
F } =

1
n
E
[
tr[{mt (θ0)mt (θ0)⊤ −Ω(θ0)}2]

]
+

1
n2

∑
t1 ̸=t2

E
[
tr{[mt1 (θ0)mt1 (θ0)⊤ −Ω(θ0)] × {mt2 (θ0)mt2 (θ0)⊤ −Ω(θ0)}]

]
≡ A1 + A2.

As A1 ≤ E{∥mt (θ0)∥4
2}/n, by Jensen’s inequality and (A.2)(iii), A1 = O(r2/n). At the same time,

A2 =
1
n2

r∑
u,v=1

∑
t1 ̸=t2

E
[
[mt1,u(θ0){mt1,v(θ0) −Ωu,v(θ0)}][mt2,v(θ0){mt2,u(θ0) −Ωv,u(θ0)}]

]
,

whereΩu,v(θ0) denotes the (u, v)-element ofΩu,v(θ0). By Davydov’s inequality and (A.2)(iii),

|A2| ≤ cr2n−2
∑
t1 ̸=t2

αm(|t1 − t2|)1−2/γ .

Hence, by (A.1)(i), A2 = O(r2/n). From Markov’s inequality, ∥Ω̂(θ0) −Ω(θ0)∥F= Op(r/
√
n). □

Lemma A.3. Under Conditions (A.1)(ii), (A.2)(ii) and (A.2)(iv), supθ∈Θ λmax{Ω̂(θ)} = Op(1) provided that rhn/n = o(1).

Proof. Using the same approach as in the proof of Lemma A.2, we have

sup
θ∈Θ

sup
∥x∥2=1

{⏐⏐⏐⏐1n
n∑

t=1

x⊤mt (θ)mt (θ)⊤x −
1
n

n∑
t=1

x⊤gt (θ)gt (θ)⊤x
⏐⏐⏐⏐} = Op(rhn/n).

Then supθ∈Θ λmax{Ω̂(θ)} ≤ supθ∈Θ λmax{
∑n

t=1 gt (θ)gt (θ)
⊤/n} + op(1). The result can then be deduced from (A.2)(iv). □

Lemma A.4. Under Condition (A.2)(ii), define δn = o(n−1/γ /
√
r) andΛn = {λ ∈ Rr

: ∥λ∥2 ≤ δn}, we have

sup
t∈{1,...,n}, θ∈Θ,λ∈Λn

|λ⊤mt (θ)|
p

−→ 0.

Also, with probability approaching 1,Λn ⊂ Λ̂n(θ) for all θ ∈ Θ.

Proof. From (A.2)(ii) and Markov’s inequality, supt∈{1,...,n}, θ∈Θ ∥mt (θ)∥2 = Op(n1/γ√r). Then,

sup
t∈{1,...,n}, θ∈Θ, λ∈Λn

|λ⊤mt (θ)| ≤ δn sup
t∈{1,...,n},θ∈Θ

∥mt (θ)∥2
p

−→ 0.

It also implies with probability approaching 1 that |λ⊤mt (θ)| ∈ ν for all θ ∈ Θ and ∥λ∥2 ≤ δn. □

Lemma A.5. Under Conditions (A.1)(i), (A.2)(i) and (A.2)(iii), assume that λmax(Uh) is uniformly bounded away from infinity. If
r2h2

n/n = o(1), ∥θ − θ0∥2 = Op(τn) and rphnτ
2
n = o(1), then ∥Ω̂(θ) − Ω̂(θ0)∥2 = Op(τn

√
rp/hn).

Proof. Choose x ∈ Rr with unit L2-norm such that λmax{Ω̂(θ) − Ω̂(θ0)} = x⊤
{Ω̂(θ) − Ω̂(θ0)}x. Then,

|λmax{Ω̂(θ) − Ω̂(θ0)}| ≤
1
n

n∑
t=1

∥mt (θ) − mt (θ0)∥2
2 + 2[λmax{Ω̂(θ0)}]1/2

{
1
n

n∑
t=1

∥mt (θ) − mt (θ0)∥2
2

}1/2

.
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Note that r2h2
n/n = o(1), by Lemma A.2 and λmax(Uh) is uniformly bounded away from infinity, λmax{Ω̂(θ0)} = Op(1/hn).

From (A.2)(i),
∑n

t=1 ∥mt (θ) − mt (θ0)∥2
2/n = rpOp(∥θ − θ0∥

2
2). If rphnτ

2
n = o(1), then |λmax{Ω̂(θ) − Ω̂(θ0)}| = Op(τn

√
rp/hn).

Using the same argument, |λmin{Ω̂(θ) − Ω̂(θ0)}| = Op(τn
√
rp/hn), This completes the argument. □

Lemma A.6. Under Conditions (A.1)(i), (A.1)(ii), (A.2)(i)–(A.2)(iii), assume that the eigenvalues of Uh are uniformly bounded
away from zero and infinity. If hn/

√
n = o(1), rhnpτ 2n = o(1), r2h2

nn
2/γ−1

= o(1), ∥θ−θ0∥2 = Op(τn), and ∥ḡ(θ̃)∥2 = Op(
√
r/n),

then

λ̂(θ̃) = arg max
λ∈Λ̂n(θ̃)

Ŝn(θ̃,λ)

exists, supλ∈Λ̂n
Ŝn(θ̃,λ) = ρ(0) + Op(rhn/n) and ∥λ̂(θ̃)∥2 = Op(hn

√
r/n), where Ŝn(θ,λ) is defined in (2).

Proof. Pick δn = o(n−1/γ /
√
r) and hn/

√
r/n = o(δn), which is guaranteed by r2h2

nn
2/γ−1=o(1). From Lemma A.1 and the

triangle inequality, ∥m̄(θ̃)∥2 ≤ ∥ḡ(θ̃)∥2 + Op(
√
r hn/n) = Op(

√
r/n). Let λ̄ = argmaxλ∈Λn Ŝn(θ̃,λ), where Λn is defined in

Lemma A.4. By Lemmas A.2, A.4 and A.5, noting ρνν(0) < 0,

ρ(0) = Ŝn(θ̃, 0) ≤ Ŝn(θ̃, λ̄) = ρ(0) + ρν(0)λ̄
⊤m̄(θ̃) +

1
2

λ̄
⊤

[
1
n

n∑
t=1

ρνν{λ̇
⊤mt (θ̃)}mt (θ̃)mt (θ̃)⊤

]
λ̄

≤ ρ(0) + |ρν(0)|∥λ̄∥2∥m̄(θ̃)∥2 − C∥λ̄∥
2
2{1/hn + o(1/hn)},

where λ̇ lies on between 0 and λ̄. Hence, ∥λ̄∥
2

≤ Chn∥m̄(θ̃)∥2{1 + op(1)} = Op(hn
√
r/n) = o(δn). Thus λ̄ ∈ int(Λn) with

probability approaching 1. Since Λn ⊂ Λ̂n(θ̃) with probability approaching 1, λ̂(θ̃) = λ̄ with probability approaching 1 by
the concavity of Ŝn(θ̃,λ) and Λ̂n(θ̃). Then,

Ŝn{θ̃, λ̂(θ̃)} ≤ ρ(0) + |ρν(0)|∥λ̂(θ̃)∥2∥m̄(θ̃)∥2 − Ch−1
n ∥λ̂(θ̃)∥2

2{1 + op(1)}

leads to supλ∈Λ̂n
Ŝn(θ̃,λ) = ρ(0) + Op(rhn/n). □

A.2. Proof of Theorem 1

Choose δn = o(n−1/γ /
√
r) and hn

√
r/n = o(δn). Let λ̄ = sign{ρν(0)}δnm̄(θ̂n)/∥m̄(θ̂n)∥2, then λ̄ ∈ Λn. By a Taylor

expansion, Lemmas A.3 and A.4, noting ρνν(0) < 0,

Ŝn(θ̂n, λ̄) = ρ(0) + ρν(0)λ̄
⊤m̄(θ̂n) +

1
2

λ̄
⊤

[
1
n

n∑
t=1

ρνν{λ̇
⊤mt (θ̂n)}mt (θ̂n)mt (θ̂n)⊤

]
λ̄

≥ ρ(0) + |ρν(0)|δn∥m̄(θ̂n)∥2 − COp(1)∥λ̄∥
2
2.

Meanwhile, in the same way in the proof of Lemma A.2, ∥ḡ(θ0) − E{gt (θ0)}∥2 = Op(
√
r/n). Since E{gt (θ0)} = 0,

∥ḡ(θ0)∥2 = Op(
√
r/n). Then, from Lemma A.6,

Ŝn(θ̂n, λ̄) ≤ sup
λ∈Λ̂n(θ̂n)

Ŝn(θ̂n,λ) ≤ sup
λ∈Λ̂n(θ0)

Ŝn(θ0,λ) = ρ(0) + Op(rhn/n).

Hence, ∥m̄(θ̂n)∥2 = Op(δn). Consider any εn → 0, and let λ̃ = sign{ρν(0)}εnm̄(θ̂n), then ∥λ̃∥2 = op(δn). Using the same
arguments given above, we can obtain

|ρν(0)|εn∥m̄(θ̂n)∥2
2 − COp(1)ε2n∥m̄(θ̂n)∥2

2 = Op(rhn/n).

Then, εn∥m̄(θ̂n)∥2
2 = Op(rhn/n). Thus, ∥m̄(θ̂n)∥2

2 = Op(rhn/n).
From Lemma A.1, ∥ḡ(θ̂n)∥2 = Op(

√
rhn/n). If ∥θ̂n − θ0∥2 does not converge to zero in probability, then there exists a sub-

sequence {(n∗, hn∗, r∗, p∗)} such that ∥θ̂n∗−θ0∥2 ≥ ε almost surely for some positive constant ε. By (A.1)(iii), ∥E{gt (θ̂n∗)}∥2 =

op{△1(r∗p∗)} + Op(
√
r∗hn∗/n∗). Furthermore, from (A.1)(ii), ∥E{gt (θ̂n∗)}∥2 ≥ △1(r∗p∗)△2(ε). As lim infr,p→∞ △1(r, p) > 0, it

is a contradiction. Hence, ∥θ̂n − θ0∥2
p

−→ 0.
By (A.2)(iv), ∥ḡ(θ̂n)− ḡ(θ0)∥2 ≥ C∥θ̂n − θ0∥2 with probability approaching 1. Then, ∥θ̂n − θ0∥2 = Op(

√
hn/n). In addition,

if r2ph2
n/n = o(1), from Lemmas A.2 and A.5, λmax{Ω̂(θ̂n)} ≤ C/hn with probability approaching 1. By repeating the above

arguments, we can obtain ∥m̄(θ̂n)∥2 = Op(
√
r/n) and ∥θ̂n − θ0∥2 = Op(

√
r/n). From Lemma A.6, ∥λ̄(θ̂n)∥2 = Op(hn

√
r/n).

Therefore, we complete the proof of Theorem 1. □
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A.3. Other subsidiary results

Lemma A.7. Under Conditions (A.1)–(A.2), assume that λmax(Uh) is uniformly bounded away from infinity. If (3) holds and
r2ph2

n/n = o(1), then for any x ∈ Rp, y, z ∈ Rr ,1
n

n∑
t=1

ρν{λ̂(θ̂n)⊤mt (θ̂n)}∇θmt (θ̂n)x −
1
n

n∑
t=1

ρν(0)∇θmt (θ̂n)x

2

= Op(r
√
p hn/

√
n) ∥x∥2,

and ⏐⏐⏐⏐hn

n

n∑
t=1

y⊤ρνν{λ̃
⊤

mt (θ̂n)}mt (θ̂n)mt (θ̂n)⊤z −
hn

n

n∑
t=1

ρνν(0)y⊤mt (θ̂n)mt (θ̂n)⊤z
⏐⏐⏐⏐ = Op(rhnn1/γ−1/2) ∥y∥2∥z∥2,

where λ̃ is on the line joining 0 and λ̂(θ̂n).

Proof. From Theorem 1, both λ̂(θ̂n) and λ̃ are of order Op(hn
√
r/n) = o(δn), where δn is defined in Lemma A.4. By a Taylor

expansion and the Cauchy–Schwarz inequality,1
n

n∑
t=1

ρν{λ̂(θ̂n)⊤mt (θ̂n)}∇θmt (θ̂n)x −
1
n

n∑
t=1

ρν(0)∇θmt (θ̂n)x
2

2

≤

[
1
n

n∑
t=1

ρ2
νν{λ̇

⊤mt (θ̂n)}{λ̂(θ̂n)⊤mt (θ̂n)}2
]

×

[
1
n

n∑
t=1

x⊤
{∇θmt (θ̂n)}⊤{∇θmt (θ̂n)}x

]
,

where λ̇ lies on the line joining 0 and λ̂(θ̂n). From Lemma A.4 and λmax{Ω̂(θ̂n)} = Op(1/hn) which is implied by Lemmas A.2
and A.5, we obtain

n∑
t=1

ρ2
νν{λ̇

⊤mt (θ̂n)}{λ̂(θ̂n)⊤mt (θ̂n)}2 ≤ C
n∑

t=1

{λ̂(θ̂n)⊤mt (θ̂n)}2{1 + op(1)} = Op(rhn/n).

Furthermore,

1
n

n∑
t=1

x⊤
{∇θmt (θ̂n)}⊤{∇θmt (θ̂n)}x ≤

2hn + 1
n

n∑
t=1

hn∑
s=−hn

κ2(s)E∥∇θgt−s(θ̂n)x∥2
2 = Op(hnrp)∥x∥2

2.

Hence, we obtain the first result. Using the same arguments, we can get the second result. □

Lemma A.8. Under Conditions (A.1)(i), (A.1)(ii) and (A.3), ∥∇θm̄(θ) − ∇θm̄(θ∗)∥F = Op(
√
r p)∥θ − θ∗

∥2 for any θ, θ∗ in a
neighborhood of θ0, and ∥∇θm̄(θ0) − E{∇θgt (θ0)}∥F = Op(

√
rp/n) provided that hn = o(1/

√
n).

Proof. Using the Taylor expansion and noting (A.3), the first conclusion holds. Using the same method in the proof of
Lemma A.2, ∥∇θ ḡ(θ0)− E{∇θgt (θ0)}∥F = Op(

√
rp/n). By the same way in the proof of Lemma A.1, ∥∇θm̄(θ0)− ∇θgt (θ0)∥F =

Op(
√
rp hn/n). Hence, by the triangle inequality, we can obtain the second result. □

Proposition A.1. Under Conditions (A.1)–(A.3), assume that the eigenvalues of Vn and Uh are uniformly bounded away from
zero and infinity, if r2ph2

n/n = o(1) and (3) holds, then for any vector αn ∈ Rp with unit L2 norm,
√
nα⊤

n

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
[E{∇θgt (θ0)}]⊤U−1

h [E{∇θgt (θ0)}](θ̂n − θ0)

= −
√
nα⊤

n

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
[E{∇θgt (θ0)}]⊤U−1

h ḡ(θ0)

+Op(r3/2hnn1/γ−1/2) + Op(r3/2p/
√
n) + Op(r3/2p1/2hn/

√
n).

Proof. Define β =
[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
αn. Then, we have

∥E{∇θgt (θ0)}β∥
2
2 = α⊤

n (U
⊤U)−1/2U⊤V−1/2

n U2
hV

−1/2
n U(U⊤U)−1/2αn

≤ λmax(V−1/2
n U2

hV
−1/2
n )∥U(U⊤U)−1/2αn∥

2
2 = λ2max(Uh)λ−1

min(Vn),

where U = V 1/2
n U−1

h [E{∇θgt (θ0)}]. Therefore, ∥E{∇θgt (θ0)}β∥2 = o(1). Meanwhile,

∥β∥
2
2 ≤ λ−1

min

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]
≤ λ2max(Uh)λ−1

min([E{∇θgt (θ0)}]⊤[E{∇θgt (θ0)}])λ−1
min(Vn).
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Hence, ∥β∥
2
2 ≤ C . From Lemma A.4, we obtain

hn

n

n∑
t=1

ρνν{λ̃
⊤

mt (θ̂n)}mt (θ̂n)mt (θ̂n)⊤ = ρνν(0)hnΩ̂(θ̂n){1 + op(1)}.

From Lemmas A.3 and A.6, we know that the eigenvalues of hnΩ̂(θ̂n) are uniformly bounded away from zero and infinity
with probability approaching 1. Hence, the eigenvalues of hn

∑n
t=1 ρνν{λ̃

⊤

mt (θ̂n)}mt (θ̂n)mt (θ̂n)⊤/n are uniformly bounded
away from zero and infinity with probability approaching 1. By Lemma A.7,

β⊤
∇θ{m̄(θ̂n)}⊤

[
hn

n

n∑
t=1

ρνν{λ̃
⊤

mt (θ̂n)}mt (θ̂n)mt (θ̂n)⊤
]−1

m̄(θ̂n) = Op(r3/2p1/2hn/n).

From Lemmas A.7 and A.8,

β⊤
[E{∇θgt (θ0)}]⊤{hnΩ̂(θ̂n)}−1m̄(θ̂n) = Op(r3/2p1/2hn/n) + Op(r3/2hnn1/γ−1) + Op(r3/2p/n).

Note that by Lemmas A.2 and A.5,

β⊤
[E{∇θgt (θ0)}]⊤U−1

h m̄(θ̂n) = Op(r3/2hnn1/γ−1) + Op(r3/2p/n) + Op(r3/2p1/2hn/n).

Expanding m̄(θ̂n) around θ = θ0, by Lemmas A.7 and A.1,

β⊤
[E{∇θgt (θ0)}]⊤U−1

h [E{∇θgt (θ0)}](θ̂n − θ0)

= −β⊤
[E{∇θgt (θ0)}]⊤U−1

h ḡ(θ0) + Op(r3/2hnn1/γ−1) + Op(r3/2p/n) + Op(r3/2p1/2hn/n).

Hence, we obtain Proposition A.1. □

A.4. Proof of Theorem 2

From Proposition A.1, we only need to show that, as n → ∞,

Sn ≡ −
√
nα⊤

n

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
[E{∇θgt (θ0)}]⊤U−1

h ḡ(θ0) ⇝ N (0, 1).

Let

xn,t = −α⊤

n

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
[E{∇θgt (θ0)}]⊤U−1

h gt (θ0) ≡ β⊤

n gt (θ0).

Then Sn = (xn,1 + · · · + xn,n)/
√
n. As restriction (4) holds, supn supt∈{1,...,n} E{|xn,t |γ } < ∞. Moreover, var(Sn) = 1. From

(A.1)(i) and the Central Limit Theorem proposed in [18], we have Sn ⇝ N (0, 1) as n → ∞, as claimed. □
Let

Ŝ(pe)n (θ,λ) =
1
n

n∑
t=1

ρ{λ⊤mt (θ)} +

p∑
j=1

pτ (|θj|)

for any θ ∈ Θ and λ ∈ Λ̂n(θ). Then, θ̂
(pe)
n = argminθ∈Θ maxλ∈Λ̂n(θ) Ŝ

(pe)
n (θ,λ) and θ̂n = argminθ∈Θ maxλ∈Λ̂n(θ) Ŝn(θ,λ). The

following lemma will be used to establish Theorem 3.

Lemma A.9. Under Conditions (A.1), (A.2) and (A.5), assume that the eigenvalues of Uh are uniformly bounded away from zero
and infinity. If (3) holds, r2ph2

n/n = o(1) and sτn/(rhn) = O(1), then ∥θ̂
(pe)
n − θ0∥2 = Op(

√
r/n).

Proof. Choose δn = o(n−1/γ /
√
r) and hn

√
r/n = o(δn). Let λ̄ = sign{ρν(0)}δnm̄(θ̂

(pe)
n )/∥m̄(θ̂

(pe)
n )∥2. Then λ̄ ∈ Λn, where Λn

is defined in Lemma A.5. By a Taylor expansion, Lemmas A.3 and A.4, noting that ρνν < 0, we have

Ŝn{θ̂
(pe)
n , λ̄} = ρ(0) + ρν(0)λ̄

⊤m̄{θ̂
(pe)
n } +

1
2

λ̄
⊤

[
1
n

n∑
t=1

ρνν[λ̇
⊤m̄{θ̂

(pe)
n }]m̄{θ̂

(pe)
n }m̄{θ̂

(pe)
n }

⊤

]
λ̄

≥ ρ(0) + |ρν(0)|δn∥m̄{θ̂
(pe)
n }∥2 − C∥λ̄∥

2
2Op(1).

Furthermore,

Ŝ(pe)n {θ̂
(pe)
n , λ̄} ≤ sup

λ∈Λ̂n{θ̂
(pe)
n }

Ŝ(pe)n {θ̂
(pe)
n ,λ} ≤ sup

λ∈Λ̂n(θ0)
Ŝ(pe)n (θ0,λ).
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By Lemma A.6 and (A.5), as sτ r−1h−1
n n = O(1),

sup
λ∈Λ̂n(θ0)

Ŝ(pe)n (θ0,λ) = sup
λ∈Λ̂n(θ0)

Ŝn(θ0,λ) +

p∑
j=1

pτ (|θ0j|) = ρ(0) + Op(rhn/n + sτ ) = ρ(0) + Op(rhn/n).

Note that Ŝ(pe)n (θ,λ) ≥ Ŝn(θ,λ) for any θ ∈ Θ and λ ∈ Λ̂n(θ). This yields ∥m̄{θ̂
(pe)
n }∥2 = Op(δn). Consider any εn → 0 and let

λ̃ = sign{ρν(0)}εnm̄{θ̂
(pe)
n }. Then ∥λ̃∥2 = op(δn). Using the same procedure above, we can obtain

|ρν(0)|εn∥m̄{θ̂
(pe)
n }∥

2
2 − Op(1)ε2n∥m̄{θ̂

(pe)
n }∥

2
2 = Op(rhn/n).

Then, εn∥m̄{θ̂
(pe)
n }∥

2
2 = Op(rhn/n). Thus, ∥m̄{θ̂

(pe)
n }∥2 = Op(

√
rhn/n). Following the same arguments given in the proof of

Theorem 1, we can obtain ∥θ̂
(pe)
n − θ0∥2 = Op(

√
r/n). □

A.5. Proof of Theorem 3

Note that θ̂
(pe)
n and its Lagrange multiplier λ̂

(pe)
satisfy the score equation

0 = ∇λŜ(pe)n {θ̂
(pe)
n , λ̂

(pe)
} = ∇λŜn{θ̂

(pe)
n , λ̂

(pe)
}.

By the implicit function theorem as given, e.g., in Theorem 9.28 of [25], we have that for all θ in a ∥ · ∥2-neighborhood of θ̂
(pe)
n ,

there exists a λ̂(θ) such that ∇λŜ
(pe)
n {θ, λ̂(θ)} = 0, and λ̂(θ) is continuously differentiable in θ. By the concavity of Ŝ(pe)n (θ,λ)

with respect to λ, Ŝ(pe)n {θ, λ̂(θ)} = maxλ∈Λ̂n(θ) Ŝn(θ,λ). From the envelop theorem,

0 = ∇θ Ŝ(pe)n {θ, λ̂(θ)} |
θ=θ̂

(pe)
n

=
1
n

n∑
t=1

ρν[λ̂{θ̂
(pe)
n }

⊤mt{θ̂
(pe)
n }][∇θmt{θ̂

(pe)
n }]

⊤λ̂{θ̂
(pe)
n } +

p∑
j=1

pτ (|θj|) |
θ=θ̂

(pe)
n
.

For any θ such that ∥θ − θ0∥2 = Op(
√
r/n) and ∥ḡ(θ)∥2 = Op(

√
r/n), define

h(θ) =
1
n

n∑
t=1

ρν{λ̂(θ)⊤mt (θ)}{∇θmt (θ)}⊤λ̂(θ) +

p∑
j=1

pτ (|θj|).

Write h(θ) = (h1(θ), . . . , hp(θ))⊤. From Lemma A.6, we have that ∥λ̂(θ)∥2 = Op(hn
√
r/n), which implies that supt∈{1,...,n}|λ̂

(θ)⊤mt (θ)|= op(1). For each j ∈ {1, . . . , p},

hj(θ) =
1
n

n∑
t=1

ρν(0)λ̂(θ0)⊤
∂

∂θj
mt (θ0) +

1
n

n∑
t=1

ρν(0)λ̂(θ0)⊤
∂2

∂θj∂θ
mt (θ0)(θ − θ0)

+p′

τ (|θj|)sign(θj) + higher order terms.

From (A.4), there exists a positive constant C such that p′
τ (|θj|) ≥ Cτ . Moreover, as τ

√
n/r/hn → ∞,

max
j/∈A

⏐⏐⏐⏐1n
n∑

t=1

ρν(0)λ̂(θ0)⊤
∂

∂θj
mt (θ0)

⏐⏐⏐⏐ = Op(hn
√
r/n) = op(τ ).

Similarly, we can show

max
j/∈A

⏐⏐⏐⏐1n
n∑

t=1

ρν(0)λ̂(θ0)⊤
∂2

∂θj∂θ
mt (θ0)(θ − θ0)

⏐⏐⏐⏐ = op(τ ).

Hence, p′
τ (|θj|)sign(θj) dominates the sign of hj(θ) uniformly for all j /∈ A. If θ̂

(2)
n ̸= 0, there exists some j /∈ A such that

θ̂n,j ̸= 0. From the above arguments, we find that Pr[hj{θ̂
(pe)
n } ̸= 0] → 1. It is a contradiction. Hence, θ̂

(2)
n = 0.

Next, we consider the second result. From (6), we deduce that

[E{∇θgt (θ0)}]⊤U−1
h [E{∇θgt (θ0)}]

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1

×[E{∇θgt (θ0)}]⊤U−1
h [E{∇θgt (θ0)}] =

(
(S11 − S12S−1

22 S21)−1
∗

∗ ∗

)
.

Let

[E{∇θgt (θ0)}]⊤U−1
h [E{∇θgt (θ0)}]

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
=

(
U V
V⊤

∗

)
.
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where U is an s× s symmetric matrix. Then UU⊤
+VV⊤

= (S11 − S12S−1
22 S21)−1. For any αn ∈ Rs such that ∥αn∥2 = 1, define

α̃n =

(
U⊤

V⊤

)
(S11 − S12S−1

22 S21)1/2αn.

Then, we have

α̃⊤

n α̃n = α⊤

n (S11 − S12S−1
22 S21)1/2(UU⊤

+ VV⊤)(S11 − S12S−1
22 S21)1/2αn = 1.

Following the same arguments of Proposition A.1, we know it still holds for θ̂
(pe)
n . Note that

α̃⊤

n

[
[E{∇θgt (θ0)}]⊤U−1

h VnU−1
h [E{∇θgt (θ0)}]

]−1/2
[E{∇θgt (θ0)}]⊤U−1

h [E{∇θgt (θ0)}]{θ̂
(pe)
n − θ

(1)
0 }

= α̃⊤

n (S11 − S12S−1
22 S21)−1/2

{θ̂
(1)
n − θ

(1)
0 }.

We can then establish the second result following Proposition A.1. This concludes the argument. □
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