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ABSTRACT
Sliced inverse regression (SIR) is the most widely used sufficient dimension reduction method due to its
simplicity, generality and computational efficiency. However, when the distribution of covariates deviates
from multivariate normal distribution, the estimation efficiency of SIR gets rather low, and the SIR estimator
may be inconsistent and misleading, especially in the high-dimensional setting. In this article, we propose
a robust alternative to SIR—called elliptical sliced inverse regression (ESIR), to analysis high-dimensional,
elliptically distributed data. There are wide applications of elliptically distributed data, especially in finance
and economics where the distribution of the data is often heavy-tailed. To tackle the heavy-tailed elliptically
distributed covariates, we novelly use the multivariate Kendall’s tau matrix in a framework of generalized
eigenvalue problem in sufficient dimension reduction. Methodologically, we present a practical algorithm
for our method. Theoretically, we investigate the asymptotic behavior of the ESIR estimator under the high-
dimensional setting. Extensive simulation results show ESIR significantly improves the estimation efficiency
in heavy-tailed scenarios, compared with other robust SIR methods. Analysis of the Istanbul stock exchange
dataset also demonstrates the effectiveness of our proposed method. Moreover, ESIR can be easily extended
to other sufficient dimension reduction methods and applied to nonelliptical heavy-tailed distributions.
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1. Introduction

In the regression model, let Y ∈ R denote the response variable
and X ∈ R

p denote the covariates. If there exist orthogonal p×1
vectors β1, . . . , βK with unit norm such that

Y ⊥⊥ X | (βT
1 X, . . . , βT

KX), (K ≤ p),

where ⊥⊥ denotes independence, the column space of the p × K
matrix B = (β1, . . . , βK) is defined as a dimension reduction
subspace by Cook (1994, 1998). Under mild conditions, the
intersection of all the dimension reduction subspaces is still a
dimension reduction subspace and is called the central subspace
(Cook 1994, 1996). Various methods have been proposed to esti-
mate the central subspace in the literature, which are together
referred to as sufficient dimension reduction methods.

Among them, sliced inverse regression (SIR) (Li 1991) is
the earliest and most popular method owning to its simplicity,
generality and computational efficiency. Li (1991) proved the
consistency of SIR for the fixed p setting. Hsing and Carroll
(1992) considered the case where each slice only contained two
data points and gave the asymptotic normality results for the SIR
estimator. Following their work, Zhu and Ng (1995) derived the
asymptotic properties of the sliced estimator for general cases.
Zhu and Fang (1996) proposed another version of SIR based on
the kernel technique and obtained its asymptotic results. All the
results summarized above are constricted to the fixed p context.
Zhu, Miao, and Peng (2006) studied the asymptotic behaviors
of SIR for the case where p diverges with n. A recent work (Lin,
Zhao, and Liu 2017) studied the asymptotic performance of the
SIR estimator from a different angle. Furthermore, SIR has been
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extended to the functional data and stochastic process settings,
see Ferré and Yao (2003), Ferré and Yao (2005), Hsing and Ren
(2009), and Li and Hsing (2010).

Instead of SIR, other methods designed for the estimation
of the central subspace have also been investigated, including
but not limited to the sliced average variance estimator (SAVE)
(Cook and Weisberg 1991; Cook 2000), principal Hessian direc-
tions (Li 1992; Cook 1998), parametric inverse regression (Bura
and Cook 2001a,b), minimum average variance estimator (Xia
et al. 2002), contour regression (Li, Zha, and Chiaromonte
2005), inverse regression estimator (Cook and Ni 2005), the
hybrid methods which combined SIR and SAVE in a convex
way (Zhu, Ohtaki, and Li 2006), principal fitted components
(Cook 2007), directional reduction (DR) (Li and Wang 2007),
likelihood acquired directions (Cook and Forzani 2009), semi-
parametric dimension reduction methods (Ma and Zhu 2012),
and direction estimation via distance covariance (Sheng and Yin
2013, 2016).

Due to the simplicity and computational efficiency of its algo-
rithm, SIR has been the most widely used method in practice
and the most studied method in the literature. However, SIR
may perform much worse when the distribution of X deviates
from the normal case, and the SIR estimator may be inconsistent
and misleading, especially in high-dimensional setting. On the
one hand, this phenomenon can be seen quite clearly from
our simulations below. It seems that the more the covariates
X deviate from the multivariate normal distribution, the worse
the performance of SIR gets. On the other hand, in principal
component analysis (PCA), which is an unsupervised version
of dimension reduction and is an intermediate step of SIR, the
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deviation from normality assumption may lead to the PCAs
inconsistency (Johnstone and Lu 2009; Han and Liu 2016) when
the dimension p of X is growing with the sample size n. Aware
of this inconsistency problem, Han and Liu (2016) proposed
a new version of PCA based on the multivariate Kendall’s tau
matrix for elliptically distributed covariates, called Elliptical
Component Analysis (ECA). They proved that the ECA method
is consistent in both sparse and non-sparse settings. In this
article, we novelly extend their idea from unsupervised learning
to supervised learning via a generalized eigenvalue problem (Li
2007; Chen, Zou, and Cook 2010). Consequently, our method
can address the problem of low efficiency and possible inconsis-
tency of SIR in nonnormal settings. Furthermore, our method
is theoretically sound since the elliptical distribution family
naturally satisfies the so-called linearity condition (Li 1991), and
the merits of the introduction of the multivariate Kendall’s tau
matrix for elliptically distributed covariates are then well kept in
the process of sufficient dimension reduction.

The main reason why we are concerned on the elliptical
family is the wide applications of the elliptically distributed data,
especially in finance and economics where the distribution of
the data often has high kurtosis and heavy-tailed pattern. For
example, Han and Liu (2016) studied a high-dimensional non-
Gaussian heavy-tailed dataset on functional magnetic resonance
imaging in their article. Fan, Liu, and Wang (2015) considered
the problem of covariance matrix estimation based on a large
factor model for elliptical data. The proof of the consistency of
SIR in Lin, Zhao, and Liu (2017) was based on the assumption
that the covariates X follows a sub-Gaussian distribution. In this
article, we go a step further to investigate the elliptical family of
covariates. To tackle the heavy-tailed problem, we propose a new
SIR method-called elliptical sliced inverse regression (ESIR),
and study it’s both basic properties and high-dimensional prop-
erties. It is noteworthy that although our focus in this article is
on the elliptical distribution, the applicability of the proposed
method is not limited to elliptical distributed covariates, which
can be seen clearly from our simulation results.

Notice that Li (1991) had a remark for the robust versions
of SIR (Remark 4.4), where the author suggested the influential
design points be down-weighted or be screened out in the obser-
vational study. However, things are different in our article where
the focus is on the elliptical distributed covariates with heavy
tails. It is not a problem of experimental design, because the
data points are not under control. Besides, screening out those
“bad” points seems not appropriate. On one hand, the number of
those “bad” points can be very large due to the heavy tails of the
covariates and removing them from the sample would worsen
the estimation efficiency. On the other hand, heavy tails of the
data are exactly what we care about, especially in finance and
economics, and ignoring this feature might lead to misleading
conclusion. To sum up, we believe that it is of great importance
to do some in-deep research to address the heavy-tail related
issue.

We construct the consistency and convergence rate of the
ESIR estimator under the high-dimensional setting. Specifically,
we allow the dimension of the covariates p, the number of the
slices H and the number of the data points l in each slice to grow
with the sample size n at some proper rate. This kind of study is
of vital importance due to the escalating of computing power

which brings us a large quantity of high-dimensional datasets
in various fields, as pointed out by Zhu, Miao, and Peng (2006).

The rest of the article is organized as follows. In the next
section, background knowledge is given on the elliptical distri-
bution and the multivariate Kendall’s tau matrix. In Section 3, we
propose the ESIR estimator, study its basic properties and come
up with an ESIR algorithm. Consistency and convergence rate of
the ESIR estimator for high-dimensional covariates are inves-
tigated in Section 4. Some issues on dimension are described
in Section 5. We present a large number of simulation results
to compare the estimation efficiency of ESIR with that of SIR
and some existing robust SIR methods, and to investigate the
influence of p, H and n on the estimation accuracy in Section 6.
The Istanbul stock exchange dataset is investigated in Section 7.
Section 8 concludes the article and the last section reports the
technical proofs.

2. Background

2.1. Elliptical Distribution

Let μ ∈ R
p, A ∈ R

p×p be a deterministic matrix, U ∈ R
p a

uniform random vector on the unit sphere and ξ a nonnegative
scaler random variable independent of U. If

X d= μ + ξAU ,

then X follows an elliptical distribution, that is, X ∼
ECp(μ, �, ξ), where AAT = �. Here, X d= Y means that the
random vectors X and Y follow the same distribution. Without
loss of generality we assume E(ξ 2) = p to guarantee that
cov(X) = �.

The elliptical distribution enjoys several nice properties. That
is, the marginal and conditional distributions of an elliptical dis-
tribution still belong to the elliptical family, and the independent
sum of elliptical distributions is also elliptically distributed. Spe-
cial cases of elliptical distribution include multivariate normal
distribution, multivariate t-distribution, symmetric multivari-
ate stable distribution, symmetric multivariate Laplace distribu-
tion and multivariate logistic distribution, etc.

Compared with the Gaussian or sub-Gaussian family, the
elliptical family enables us to model complex data more flexibly.
First, the elliptical family includes kinds of heavy-tailed distri-
butions, while the Gaussian is characterized with exponential
tail bounds. What is more, we can use the elliptical distribution
to describe tail dependence between variables (Hult and Lind-
skog 2002; Han and Liu 2016). Therefore, elliptical family can
be used to model complex datasets such as the financial data
(Rachev 2003; Cizek 2005), genomic data (Liu 2003; Posekany
2011), and bio-imaging data (Ruttimann 1998) and so on.

2.2. Multivariate Kendall’s Tau

Let X̃ be an independent copy of a random vector
X ∼ ECp(μ, �, ξ). We introduce the population multivariate
Kendall’s tau matrix M ∈ R

p×p (Choi and Marden 1998)

M := E

{
(X − X̃)(X − X̃)T

‖X − X̃‖2
2

}
.
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Let {Xi}n
i=1 be n independent replicates of X. The sample version

of the multivariate Kendall’s tau matrix is defined as

M̂ := 2
n(n − 1)

∑
i′<i

(Xi − Xi′)(Xi − Xi′)T

‖Xi − Xi′ ‖2
2

.

It is straightforward to derive thatE(M̂) = M, tr(M̂) = tr(M) =
1, and M̂ and M are both semi-positive definite. The sample
multivariate Kendall’s tau matrix is a second-order U-statistic
with nice properties. Notice that the spectral norm of the kernel
of the U-statistic

k(Xi, Xi′) := (Xi − Xi′)(Xi − Xi′)T

‖Xi − Xi′ ‖2
2

is bounded by 1, which enables M̂ to enjoy several nice theoreti-
cal properties. Furthermore, the convergence of M̂ to M does not
depend upon the generating variable ξ thanks to the distribution
free property of the kernel (Han and Liu 2016).

Although the multivariate Kendall’s tau matrix is not identi-
cal or proportional to the covariance matrix � of X, under some
mild conditions they share the same eigenspace, see Marden
(1999), Croux, Ollila, and Oja (2002), Oja (2010), and Han and
Liu (2016). Moreover, by simple calculation we find that M̂ can
be seen as a weighted version of the sample covariance matrix
̂�, that is

M̂ = 1
n(n − 1)

∑
i′<i

2
‖Xi − Xi′ ‖2

2
(Xi − Xi′)(Xi − Xi′)

T

:= 1
n(n − 1)

∑
i′<i

ωii′(Xi − Xi′)(Xi − Xi′)
T,

while

�̂ = 1
n(n − 1)

∑
i′<i

(Xi − Xi′)(Xi − Xi′)
T.

Notice that the weight is the reciprocal of the L2 distance
between Xi and Xi′ .

The multivariate Kendall’s tau matrix has a kind of “shrink-
age” property. For example, assuming

X ∼ N(0, Ip) ,
the denominator in M, that is ‖X − X̃‖2, is of the order p,
and M hence has a spectrum that is of the order O(1/p). For
general cases where X ∼ ECp(μ, �, ξ), Theorem 3.2 in Han
and Liu (2016) shows that when some mild conditions hold, the
jth eigenvalue of M satisfies λj(M) � λj(�)/trace(�), where
� denotes the covariance matrix of X. Furthermore, when the
condition number of � is upper bounded by an absolute con-
stant, we can obtain λj(M) � λj(�)/(‖�‖F

√p), which means
that the spectrum of � would be of order O(1/

√p) in general
cases. Due to this shrinking to zero property of the Kendall’s tau
matrix, it makes little sense to compare M and its estimate M̂.

A useful and common fix is to redefine M as

M := E

{
(X − X̃)(X − X̃)T

‖X − X̃‖2
2/p

}
. (2.1)

Then, its sample estimator becomes

M̂ := 2
n(n − 1)

∑
i′<i

(Xi − Xi′)(Xi − Xi′)T

‖Xi − Xi′ ‖2
2/p

.

The newly defined M and M̂ will be used in the following
analysis.

3. Elliptical Sliced Inverse Regression

3.1. Sliced Inverse Regression

In this section, we give a brief introduction of the SIR method.
The model below is considered

Y = f (βT
1 X, . . . , βT

KX, ε) , (3.1)
where β1, . . . , βK are unknown p dimensional column vectors,
ε is independent of the covariates X, and f is an arbitrary
unknown function defined on R

K+1. The linear space B gen-
erated by β1, . . . , βK is called the efficient dimension reduction
(e.d.r.) space, and any linear combination of β ’s is referred to as
an e.d.r. direction.

Li (1991) demonstrated that if X was standardized by � =
cov(X) to have zero mean and identity covariance matrix, the
inverse regression curveE(X|Y) would be contained in the e.d.r.
space. Accordingly, the PCA method can be applied to the esti-
mated covariance matrix of the inverse regression curve. Hence,
the leading eigenvectors of the estimated covariance matrix can
then be transformed to estimate the e.d.r. directions. Further-
more, Li (1991) showed that each estimator β̂k converges to an
e.d.r. direction at rate of n−1/2 when p stays fixed. The essential
condition for the SIR method is referred to as the linearity
condition, that is, for any b ∈ R

p, E(bTX|βT
1 X, . . . , βT

KX) =
c0 + c1β

T
1 X + . . . + cKβT

KX for some constants c0, . . . , cK .
This condition requires that the distribution of the covariates
be elliptically symmetric. Such distributions include the normal
distribution and the general elliptical distributions.

3.2. Elliptical Sliced Inverse Regression

We construct a basic theorem for ESIR in this part. Here, “E”
represents our focus on the elliptical family which is character-
ized with heavy tails.

Theorem 1. Assume that X ∼ ECp(μ, �, ξ). Under (3.1),
the curve E(X|Y) − E(X) is contained in the linear subspace
spanned by Mβk(k = 1, 2, . . . , K), where M denotes the multi-
variate Kendall’s tau matrix of X.

Theorem 1 seems to be similar to Theorem 3.1 of Li (1991).
It is not surprising in view of the close relationship between
� and M in Section 2. It is worth noting that we only assume
that the covariates X follow an elliptical distribution and do
not pose any distribution restriction on X|Y , while Bura and
Forzani (2015) and Bura, Duarte, and Forzani (2016) required
X|Y be elliptically distributed and multivariate exponentially
distributed, respectively.

Let Z = M−1/2{X − E(X)}, where M is the population
multivariate Kendall’s tau matrix defined above in (2.1). Then,
(3.1) can be rewritten as

Y = f (ηT
1 Z, . . . , ηT

KZ, ε), (3.2)
where ηk = M1/2βk(k = 1, . . . , K). Following the usage in Li
(1991), the vector linearly generated by the ηk’s is called a stan-
dardized e.d.r direction. For this new version of standardized
covariates, we have the following corollary.

Corollary 1. Under (3.2), the curve E(Z|Y) is contained in the
linear space generated by ηk’s defined in Equation (3.2).
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Corollary 1 implies that cov{E(Z|Y)} is degenerate in direc-
tions orthogonal to ηk’s. The following proposition gives the
relationship between cov{E(X|Y)} and ME(X|Y), the population
multivariate Kendall’s tau matrix of the inverse regression curve
E(X|Y).

Proposition 1. Assume X ∼ ECp(μ, �, ξ). Write
cov{E(X|Y)} = ���T, where � = (ω(1), . . . , ω(p))T is
the p × p matrix of the eigenvectors and � = diag(λ1, . . . , λp)
with λ1 ≥ λ2 ≥ . . . ≥ λp being the corresponding eigenvalues.
Letting ME(X|Y) denote the population multivariate Kendall’s
tau matrix of the vector E(X|Y), it holds that

ME(X|Y) = �(p�1)�
T,

where �1 is a p × p diagonal matrix containing the eigenvalues
of ME(X|Y).

Notice that the key point in SIR is to estimate the leading
eigenvectors of some covariance matrix, and the corresponding
eigenvalues can be treated as nuisance parameters. By Proposi-
tion 1, we can conclude that

ME(Z|Y) = E

[ {E(Z|Y) − E(̃Z|Ỹ)}{E(Z|Y) − E(̃Z|Ỹ)}T

‖(E(Z|Y) − E(̃Z|Ỹ))‖2
2/p

]

is also degenerate in directions orthogonal to ηk’s. Thus,
the eigenvectors associated with the largest K eigenvalues of
ME(Z|Y) are the standardized e.d.r. directions ηk(k = 1, . . . , K).
We then transform ηk(k = 1, . . . , K) to the original e.d.r.
direction βk by βk = M−1/2ηk(k = 1, . . . , K).

Given Corollary 1 and Proposition 1, we construct the oper-
ating scheme for the ESIR:

1. For each Xi(i = 1, 2, . . . , n), calculate its standardized form:
Zi = M̂−1/2(Xi − X̄)(i = 1, 2, . . . , n), where M̂ and X̄ denote
the sample multivariate Kendall’s tau matrix and the sample
mean of X, respectively.

2. Divide the range of Y into H “equal” slices, I1, . . . , IH , where
“equal” means that the number of the data points falling in
each slice is equal to l = �n/H�.

3. In each slice, compute the sample mean of Z: m̂h =
1/l

∑
Yi∈Ih

Zi, where h = 1, . . . , H.
4. Compute the multivariate Kendall’s tau matrix for m̂h:

M̂m = 2
H(H − 1)

∑
h′<h

(m̂h − m̂h′)(m̂h − m̂h′)T

‖m̂h − m̂h′ ‖2
2/p

(h = 1, . . . , H). (3.3)

Then find the eigenvalues and eigenvectors of M̂m.
5. Denote the top K leading eigenvectors of M̂m be η̂k(k =

1, . . . , K). Transform them back to the original e.d.r. direc-
tions by M̂, that is, β̂k = M̂−1/2η̂k.

In this algorithm, the number of the data points in each slice
is enforced to be fixed to l so that we do not need to do any
weighting adjustment for the calculation of M̂m. In practice, the
data points in the last slice may not be exactly l, which exerts
little influence on the estimation asymptotically. Our algorithm

actually belongs to a generalized eigenvalue framework. Please
see more details in Li (2007) and Chen, Zou, and Cook (2010).
It is remarkable that, like SIR, ESIR may not recover all the
e.d.r. directions. One may refer to other dimension reduction
methods like SAVE and DR to address such problems.

Remark 1. In Steps 1 and 3, sample mean is used for central-
ization. For robustness purpose, robust mean estimators, like
coordinate mean, spatial mean, or median-of-means, can be
used to approximate the population mean. Simulation results
show that using robust mean estimators in the above ESIR
algorithm improves estimation efficiency. See the simulation
results in the supplementary materials.

4. Asymptotic Properties of Elliptical Slice Inverse
Regression With Diverging Number of Covariates

In this article, we assume the number l of the data points in each
slice stays the same, and the number of the slices H and l are
both allowed to grow with the sample size n. In the proof, we
use the original covariates X rather than its standardized version
for simplicity. The conclusion can be directly extended to the
standardized version.

Denote the inverse regression curve by m(Y) = E(X|Y) and
decompose X as:

X = m(Y) + ε,

where m(Y) = {m1(Y), . . . , mp(Y)}T with mi(Y) = E(Xi|Y)

and X = (X1, . . . , Xp)T. For the sample version, let

Xi = m(Yi) + εi = mi + εi, i = 1, . . . , n

and

X(i) = m(Y(i)) + ε(i) = m(i) + ε(i), i = 1, . . . , n

where Y(1) ≤ . . . , ≤ Y(n) and X(i) and ε(i) are the concomitants
(Yang 1977) of Y(i). For each slice, denote

Xhi = m(Yhi)+εhi = mhi+εhi, i = 1, . . . , l, h = 1, . . . , H,

where Xhi = Xl(h−1)+i and Yhi = Yl(h−1)+i. The following
conditions are need.

Condition 1. X = (X1, . . . , Xp)T ∼ ECp(μ, �, ξ) and
sup1≤j≤p E(|Xj|m) < ∞ for some constant m ≥ 2.

Condition 2. There exists a positive constant C such that
λmax{ME(X|Y)} ≤ C.

Condition 3. Let mh = E(X|Y ∈ Ih) for h = 1, . . . , H, and
assume

max
h �=h′

1
‖mh − mh′ ‖2

< ∞, max
h �=h′,j,k

‖mhj − mh′k‖2

‖mh − mh′ ‖2
< ∞,

max
h,j,k

|Yhk − Yhj| = Op(1/H).

The second part of Condition 1 is similar to that of Hsing and
Carroll (1992), Zhu and Ng (1995), and Zhu, Miao, and Peng
(2006), which require m ≥ 4 rather than m ≥ 2 in our work.
The reason why we have a much milder condition may originate
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from the first part of this condition, that is, the covariates X
is restricted to be elliptically distributed. Condition 2 seems to
be a quite mild condition, which is reasonable in view of the
connection between E(X|Y) and X. The last condition can be
subtly related to the “ϑ-stable” in Condition 3 in Lin, Zhao, and
Liu (2017).

Notice that although Han and Liu (2016) required X ∼
ECp(μ, �, ξ) in their Theorem 3.1, one can easily find that it
is not a necessary condition by reviewing their proof carefully,
which means that we do not need any restriction on the distribu-
tion ofE(X|Y) for the consistency of the estimator in our article.
This is a quite appealing property, because it is not trivial to test
the distribution of E(X|Y).

Under the above conditions, we establish the consistency and
convergence rate of the ESIR estimator in the following theo-
rems. Recall that M̂m is defined in Equation (3.3) and ME(X|Y)

denotes the population Kendall’s tau matrix of E(X|Y). We first
introduce a useful proposition.

Proposition 2. Under Conditions 1-3, if p = o(n1/2), then we
have

‖M̂m − ME(X|Y)‖2 = Op(p3/2H−1) + Op(pH1/2n−1/2) .

Proposition 2 shows that the effect of H on the convergence
rate is two-sided. Hence, we suggest choosing a moderate size
for the number of slices, not too big nor too small. On the other
hand, by choosing a proper diverging speed of the number H of
the slices, we can obtain ‖M̂m − ME(X|Y)‖2 = Op(pH1/2n−1/2).

Denote the top K leading eigenvectors of ME(X|Y) by
γ 1, . . . , γ K and the top K leading eigenvectors of the slice-based
estimator M̂m of ME(X|Y) by γ̂ 1, . . . , γ̂ K . Then, by Theorem 1,
βk in Model (3.1) can be estimated by β̂k = M̂−1γ̂ k for k =
1, . . . , K. Under Model (3.1), the p×K matrix B = (β1, . . . , βK)

is not identifiable, but the space spanned by the βk’s can be.
Hence, in the following, we consider the convergence of the
column space of B̂ = (β̂1, . . . , β̂K) to the column space of B.
To this end, the following theorem is of key importance.

Theorem 2. Under Conditions 1–3, if the eigenvalues of M are
bounded away from zero and infinity, p3/2H−1 = o(1) and
pH1/2n−1/2 = o(1), it holds that
‖M̂−1M̂m−M−1ME(X|Y)‖2 = Op(p3/2H−1)+Op(pH1/2n−1/2) .

Let PB be the projection matrix onto the column space of
B, and PB̂ be similarly defined. The following corollary can
be obtained by Theorem 2 and a variation of the Devis-kahan
inequality (Vu and Lei 2013).

Corollary 2. Under the conditions of Theorem 2, it holds that

‖PB̂ − PB‖2
p−→ 0

at the same rate as that in Theorem 2.

Specifically, when K = 1, the convergence of γ̂ 1 to γ 1 can
be controlled by the spectral norm of M̂m − ME(X|Y) by the
Davis–Kahan inequality (Davis and Kahan 1970; Wedin 1972).
In detail, the Davis–Kahan inequality states that

| sin � (γ̂ 1, γ 1)| ≤ 2
λmax{ME(X|Y)}‖M̂m − ME(X|Y)‖2 ,

where | sin � (v1, v2)| =
√

1 − (vT
1 v2)2 for any two vectors

v1, v2 ∈ R
p. Notice that ‖M̂ − M‖2 = Op{p1/2(log p)1/2n−1/2},

and then we obtain

| sin � (β̂1, β1)|
p−→ 0 as n → ∞ ,

provided that p3/2H−1 = o(1) and pH1/2n−1/2 = o(1).

5. Dimension Issues

For convenience of theoretical derivation, we assume that the
dimension K of the central subspace is known. In practice, some
criterion or tests are needed to determine K. We do not pay
much attention to this problem in this article because there have
been several methods in the literature which can be employed
in the elliptical setting. For example, Schott (1994) extended the
sequential chi-squared test procedure of Li (1991) to the setting
of elliptically distributed covariates, Bura and Cook (2001a)
proposed a general weighted chi-squared sequential test, Zhu,
Miao, and Peng (2006) suggested a Bayes information criterion
type procedure to ascertain the dimension of the central sub-
space and Chen, Cook, and Zou (2015) proposed a test based
on conditional distance covariance to check the goodness-of-fit
of a given dimension reduction subspace.

From Theorem 2, it is easy to find that although the dimen-
sion p is allowed to diverge with the sample size n, we still require
p � n. That is because we need to invert the multivariate
Kendall’s tau matrix in the algorithm. When p is larger than n,
especially in the ultrahigh-dimensional setting where log p =
O(nα) for some 0 < α < 1, we can follow the framework
of two-scale statistical learning (Fan and Lv 2008) by doing
large-scale screening first followed by moderate-scale sufficient
dimension reduction. Model free feature screening methods
like screening via distance correlation (Li 2012), the method
proposed by Zhu et al. (2011) and screening via Ball correlation
(BCor-SIS) (Pan et al. 2018) can be exploited. We suggest BCor-
SIS be employed because it is robust to heavy-tailed variables.
After the screening procedure, the dimension can be reduced
to a scale of O{n/ log(n)}, then sufficient dimension reduction
methods like ESIR can be readily applied in the reduced feature
space. If the sure screening property (Fan and Lv 2008) holds
in the screening stage, the advantage of the ESIR method can
be retained in the ultrahigh-dimensional setting. This two-scale
learning framework is in the spirit of Fan and Lv (2008) for sure
independence screening.

6. Numerical Examples

A variety of numerical examples are reported in this section.
The squared multiple correlation coefficient R2(β̂ i) (Li 1991;
Zhu, Miao, and Peng 2006) is used to measure the distance
between the ESIR estimator β̂ i and the central subspace B for
i = 1, . . . , K and their average R2 to measure the distance
between the space formed by all the β̂ ’s and the central subspace
(Li 1991; Zhu, Miao, and Peng 2006). For any p × 1 vector b,
R2(b) is calculated by

R2(b) = max
β∈B

(bT�β)2

bT�b · βT�β
. (6.1)
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Thus, a bigger squared multiple correlation coefficient indicates
higher estimation efficiency.

6.1. Single-Index Models

Three types of single-index models are considered under mul-
tivariate normal distribution and other five frequently used
elliptical distributions in this part, including the multivariate
Laplace distribution, multivariate symmetric logistic distribu-
tion, multivariate Student’s t distribution with degrees of free-
dom 2 and 3 and the multivariate Cauchy distribution. Notice
that although the multivariate Cauchy distribution does not
satisfy Condition 1, the ESIR method performs surprisingly well
in the models given below.

Model (A1):

Y = 1
0.5 + (βT

1 X + 1.5)2
+ σε.

Model (A2):

Y = 0.5 + (βT
1 X + 1.5)2 + σε.

Model (A3):

Y = (βT
1 X + 2) · σε.

Model (A1) and (A2) come from Li (1991), and Model (A3)
is motivated by Example 3 of Zhu, Miao, and Peng (2006). In
all the above three models, σ = 0.5, β1 = (1, 0, . . . , 0)T,
ε ∼ N(0, 1) and X ∼ ECp(0, �, ξ) where � = Ip×p and
ξ is the generating variable. We change the distribution of X
among the elliptical distributions mentioned above by altering
the distribution of the generating variable ξ . For multivariate
logistic distribution, the dependence parameter is chosen to be
0.2 to produce weak dependence among the elements of X. The
sample size n, the number of predictors p and the number of the
slices H are chosen to be 400, 10, and 10, respectively. Table 1
reports the means and standard deviations of R2(β̂1) after 100
replicates under different simulation schemes.

Table 1. Mean and standard deviation (in parentheses) of R2(β̂1) for the single-
index models.

Distr of X Normal Laplace Logistic t (3) t (2) Cauchy

R2(β̂1) R2(β̂1) R2(β̂1) R2(β̂1) R2(β̂1) R2(β̂1)

Model (A1)

SIR 0.95 0.88 0.90 0.71 0.37 0.10
(0.02) (0.07) (0.05) (0.19) (0.25) (0.12)

ESIR 0.95 0.88 0.97 0.84 0.60 0.47
(0.02) (0.08) (0.00) (0.09) (0.30) (0.33)

Model (A2)

SIR 1.00 0.97 1.00 0.77 0.42 0.18
(0.00) (0.02) (0.00) (0.23) (0.28) (0.16)

ESIR 1.00 0.98 0.97 0.93 0.81 0.48
(0.00) (0.01) (0.00) (0.05) (0.18) (0.36)

Model (A3)

SIR 0.91 0.82 0.90 0.66 0.34 0.16
(0.04) (0.12) (0.06) (0.25) (0.27) (0.15)

ESIR 0.90 0.80 0.97 0.73 0.49 0.40
(0.05) (0.13) (0.01) (0.20) (0.30) (0.34)

As can be seen from Table 1, the ESIR method outperforms
the SIR method in almost all the simulation schemes. Further-
more, the efficiency gain is more significant when the tail of
the distribution of X tends to become heavier, which can be
easily seen from the simulation results of t(3), t(2), and Cauchy
(t(1)) distributed covariates where a smaller degree of Student’s
t distribution indicates a heavier tail. For multivariate normal
distribution and Laplace distribution, our ESIR estimator per-
forms nearly as well as the SIR estimator. Notice that the tail
of the Laplace distribution is very close to that of the normal
distribution.

6.2. Double Index Models

Four models are considered in this section with K = 2 for six
different elliptical distributions of X. Unless otherwise noted,
the simulation parameters used here keep the same as those used
in the first part for the single index models.

Model (B1):

Y = βT
1 X

0.5 + (βT
2 X + 1.5)2

+ σε,

where β1 = (1, 0, . . . , 0)T, β2 = (0, 1, 0, . . . , 0)T, ε ∼ N(0, 1)

and X ∼ ECp(0, �, ξ) where � = Ip×p. This model was used
by Li (1991).

Model (B2):

Y = 4 + βT
1 X + (βT

2 X + 2) · σε.

Here, we reset p = 5, X ∼ ECp(0, �, ξ) with � =
diag{2, 2, 2, 4, 2}, β1 = (1, 0, 0, 0, 0)T and β2 = (0, 1, 1, 0, 0)T.

Model (B3):

Y = (4 + βT
1 X) · (βT

2 X + 2) + σε.

The simulation parameters for this model are the same as those
in model (B2). Model (B2) and (B3) come from Examples 2 and
3 of Zhu, Miao, and Peng (2006) respectively.

Model (B4):

Y = (βT
1 X)2 + |βT

2 X| + σε,

where β1 = (0.5, 0.5, 0.5, 0.5, 0, . . . , 0)T and β2 =
(0.5, −0.5, 0.5, −0.5, 0, . . . , 0)T. This model comes from
Example 3 of Chen, Cook, and Zou (2015). The distribution of
X deviates a little bit from the elliptical distribution. That is, let
X = (X1, X2) where X2 = (X2, . . . , Xp), X2 ∼ ECp−1(0, �, ξ),
where � = (σij) with σij = 0.5|i−j| for i, j = 1, . . . , (p − 1) and
X1 = |X2 + X3| + ζ with ζ ∼ N(0, 1).

In these K = 2 cases, we remove the Laplace distribution
and add another elliptical distribution EC1, because the result
based on the Laplace distributed covariates is quite similar to
that of the normal distribution. Define EC1 = ECp(0, �, ξ1)
with ξ1 ∼ F(p, 1) where F indicates F distribution. Notice
that ξ1 does not have finite mean. This distribution was also
used in Han and Liu (2016). Tables 2 and 3 exhibit a little bit
difference from the result of single index models. That is, while
the first leading eigenvector or direction presents almost the
same efficiency improvement as in the single index case, the
second estimated direction does not perform so well as the SIR
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Table 2. Mean and standard deviation (in parentheses) of R2(β̂) for double index
models I.

Normal Logistic EC1

Distr of X R2(β̂1) R2(β̂2) R2 R2(β̂1) R2(β̂2) R2 R2(β̂1) R2(β̂2) R2

Model (B1)

SIR 0.96 0.88 0.92 0.91 0.20 0.56 0.22 0.19 0.21
(0.02) (0.06) (0.04) (0.18) (0.18) (0.15)

ESIR 0.94 0.76 0.85 0.99 0.18 0.59 0.89 0.84 0.87
(0.03) (0.16) (0.00) (0.17) (0.20) (0.24)

Model (B2)

SIR 0.99 0.81 0.90 0.99 0.71 0.85 0.48 0.44 0.46
(0.01) (0.22) (0.01) (0.27) (0.23) (0.26)

ESIR 0.99 0.62 0.81 1.00 0.74 0.87 0.94 0.85 0.90
(0.01) (0.31) (0.00) (0.24) (0.13) (0.24)

Model (B3)

SIR 1.00 0.93 0.97 1.00 0.26 0.63 0.38 0.42 0.40
(0.00) (0.05) (0.00) (0.26) (0.21) (0.29)

ESIR 1.00 0.78 0.89 1.00 0.23 0.62 0.88 0.87 0.88
(0.00) (0.20) (0.00) (0.24) (0.23) (0.20)

Model (B4)

SIR 0.97 0.66 0.82 1.00 0.67 0.84 0.43 0.42 0.43
(0.01) (0.20) (0.00) (0.21) (0.15) (0.07)

ESIR 0.97 0.69 0.83 1.00 0.90 0.95 0.92 0.81 0.87
(0.01) (0.16) (0.00) (0.03) (0.17) (0.28)

Table 3. Mean and standard deviation (in parentheses) of R2(β̂) for double index
models II.

t(3) t(2) Cauchy (t(1))

Distr of X R2(β̂1) R2(β̂2) R2 R2(β̂1) R2(β̂2) R2 R2(β̂1) R2(β̂2) R2

Model (B1)

SIR 0.89 0.72 0.81 0.77 0.48 0.63 0.25 0.21 0.23
(0.10) (0.15) (0.16) (0.20) (0.21) (0.15)

ESIR 0.93 0.54 0.74 0.90 0.49 0.70 0.79 0.66 0.73
(0.05) (0.24) (0.07) (0.27) (0.26) (0.28)

Model (B2)

SIR 0.98 0.42 0.70 0.90 0.36 0.63 0.67 0.33 0.50
(0.02) (0.32) (0.13) (0.27) (0.23) (0.22)

ESIR 0.98 0.32 0.65 0.98 0.37 0.68 0.95 0.67 0.81
(0.02) (0.28) (0.03) (0.30) (0.09) (0.33)

Model (B3)

SIR 0.96 0.73 0.85 0.85 0.47 0.66 0.40 0.41 0.41
(0.05) (0.25) (0.15) (0.28) (0.27) (0.27)

ESIR 0.99 0.59 0.79 0.95 0.47 0.71 0.86 0.68 0.77
(0.01) (0.30) (0.06) (0.31) (0.20) (0.28)

Model (B4)

SIR 0.93 0.33 0.63 0.85 0.22 0.54 0.62 0.12 0.37
(0.07) (0.24) (0.14) (0.20) (0.19) (0.13)

ESIR 0.91 0.40 0.66 0.87 0.34 0.61 0.86 0.56 0.71
(0.05) (0.25) (0.10) (0.25) (0.15) (0.32)

estimator under several simulation settings. However, one can
find that when the tail of the distribution gets heavier, the ESIR
estimation for the second e.d.r. direction inclines to become
more accurate. From a comprehensive point of view, the ESIR
estimation efficiency is comparable to or better than that of the
SIR method. The robustness of ESIR is well demonstrated in
Table 3, that is, when the tail of the distribution of the covariates
goes heavier (from t(3) to t(1)), the performance of the proposed

Table 4. Estimation of the central subspace for Model (B1) with Cauchy distributed
covariates.

H 5 10 20 40

p 5 10 30 5 10 30 5 10 30 5 10 30

n = 120

SIR R2(β̂1) 0.47 0.24 0.12 0.47 0.27 0.12 0.46 0.24 0.10 0.41 0.24 0.09
R2(β̂2) 0.42 0.21 0.08 0.41 0.22 0.07 0.42 0.24 0.08 0.41 0.17 0.08

ESIR R2(β̂1) 0.86 0.82 0.74 0.83 0.77 0.73 0.87 0.76 0.69 0.82 0.74 0.67
R2(β̂2) 0.62 0.60 0.56 0.68 0.60 0.59 0.70 0.66 0.54 0.75 0.64 0.58

n = 200

SIR R2(β̂1) 0.52 0.29 0.13 0.44 0.28 0.13 0.48 0.32 0.10 0.43 0.25 0.10
R2(β̂2) 0.37 0.25 0.08 0.44 0.21 0.09 0.43 0.21 0.07 0.40 0.17 0.09

ESIR R2(β̂1) 0.87 0.78 0.70 0.86 0.75 0.63 0.85 0.79 0.72 0.87 0.74 0.68
R2(β̂2) 0.66 0.56 0.49 0.67 0.58 0.57 0.66 0.62 0.54 0.65 0.66 0.56

n = 400

SIR R2(β̂1) 0.48 0.29 0.11 0.48 0.28 0.10 0.48 0.26 0.12 0.43 0.25 0.09
R2(β̂2) 0.40 0.21 0.08 0.42 0.22 0.06 0.39 0.19 0.07 0.39 0.20 0.07

ESIR R2(β̂1) 0.87 0.80 0.76 0.91 0.73 0.72 0.92 0.86 0.67 0.88 0.77 0.67
R2(β̂2) 0.68 0.58 0.56 0.70 0.60 0.64 0.71 0.64 0.58 0.71 0.65 0.63

ESIR method gets better. Moreover, although the asymptotic
theory is based on the elliptical assumption of the covariates, the
results of Model (B4) indicate that our method can be applied to
a much wider range of distributions characterized by heavy tails.

To examine the influence of p, H and n on the estimation
efficiency of the ESIR estimator, we consider the combina-
tions of n = 120, 200, and 400, p = 5, 10, and 30, and
H = 5, 10, 20, and 40 in Model (B1) for Cauchy distributed
covariates. Simulation results are presented in Table 4 after 100
replicates.

In this setting, we avoid reporting the standard deviations
and the averages of R2(β̂1) and R2(β̂2) to improve the clarity
of the simulation results. From Table 4, we find that when n and
H stay fixed, the larger p causes R2(β̂1) and R2(β̂2) to become
smaller as high dimension reduces the estimation efficiency of
both SIR and ESIR. However, our ESIR method seems to be not
so sensitive to dimensionality as SIR. Looking at the rows of
Table 4, R2(β̂1) and R2(β̂2) of the ESIR method decrease much
slower when p gets larger. Secondly, when n gets larger, both
SIR and ESIR tend to perform better, which fits our expectation.
Lastly, it seems that the number of the slices does not have any
significant impact on the estimation of both methods. It is not
surprising, because Zhu and Ng (1995) and Zhu, Miao, and
Peng (2006) also found such a phenomenon in their simulation
studies for the SIR method. Table 5 reports similar results for t(2)
distributed covariates with higher dimensions: p = 50, 80, 100.
We do not present simulation results for other distributions or
other models as they are quite similar to those of Tables 4 and 5.

6.3. ESIR With Robust Mean Estimators

In this section, the performances of ESIR with robust mean
estimators are investigated. We replace the sample mean by
the coordinate median, spatial median and median-of-means in
Steps 1 and 3 of the algorithm, respectively. Compared with the
original version, the new algorithm improves the performance
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Table 5. Estimation of the central subspace for Model (B1) with t(2) distributed
covariates.

H 5 10 20 40

p 50 80 100 50 80 100 50 80 100 50 80 100

n = 120

SIR R2(β̂1) 0.32 0.20 0.14 0.31 0.16 0.11 0.21 0.10 0.05 0.11 0.06 0.02
R2(β̂2) 0.11 0.09 0.08 0.09 0.10 0.08 0.10 0.09 0.06 0.11 0.06 0.02

ESIR R2(β̂1) 0.51 0.43 0.41 0.46 0.40 0.41 0.46 0.39 0.36 0.44 0.33 0.42
R2(β̂2) 0.28 0.27 0.22 0.28 0.22 0.22 0.28 0.26 0.21 0.33 0.22 0.25

n = 200

SIR R2(β̂1) 0.41 0.30 0.28 0.41 0.28 0.26 0.34 0.27 0.21 0.29 0.17 0.12
R2(β̂2) 0.10 0.07 0.06 0.12 0.09 0.07 0.11 0.08 0.08 0.08 0.08 0.06

ESIR R2(β̂1) 0.50 0.45 0.42 0.46 0.47 0.42 0.46 0.42 0.37 0.46 0.38 0.35
R2(β̂2) 0.27 0.24 0.24 0.25 0.30 0.26 0.33 0.30 0.25 0.37 0.29 0.24

n = 400

SIR R2(β̂1) 0.50 0.40 0.36 0.48 0.40 0.37 0.48 0.39 0.36 0.44 0.37 0.31
R2(β̂2) 0.15 0.10 0.08 0.17 0.13 0.10 0.13 0.10 0.10 0.10 0.07 0.07

ESIR R2(β̂1) 0.52 0.47 0.46 0.59 0.53 0.48 0.62 0.51 0.39 0.60 0.44 0.38
R2(β̂2) 0.24 0.26 0.24 0.30 0.27 0.26 0.30 0.29 0.26 0.32 0.28 0.28

Table 6. Means and standard deviations of average R2 for Model (A1).

p = 5 p = 10 p = 30

Method Mean STD Mean STD Mean STD

ESIR 0.54 0.34 0.47 0.34 0.49 0.36
CM-ESIR 0.89 0.18 0.80 0.23 0.64 0.29
SM-ESIR 0.89 0.18 0.82 0.21 0.66 0.32
CMM-ESIR 0.60 0.34 0.47 0.34 0.43 0.34
SMM-ESIR 0.66 0.31 0.54 0.34 0.43 0.34

Table 7. Means and standard deviations of average R2 for Model (B1).

p = 5 p = 10 p = 30

Method Mean STD Mean STD Mean STD

ESIR 0.78 0.20 0.71 0.23 0.66 0.22
CM-ESIR 0.92 0.10 0.83 0.17 0.74 0.19
SM-ESIR 0.91 0.11 0.82 0.15 0.75 0.18
CMM-ESIR 0.85 0.15 0.76 0.18 0.66 0.23
SMM-ESIR 0.86 0.15 0.74 0.19 0.67 0.22

of ESIR, which will be shown clearly by the following simulation
results.

Models (A1) and (B1) are employed to compare the per-
formances of the new algorithm and the original one. For the
new algorithm, coordinate median, spatial median, coordinate
median-of-means and spatial median-of-means are exploited in
the estimation. We name the above four approaches as CM-
ESIR, SM-ESIR, CMM-ESIR and SMM-ESIR for simplicity. The
predictor X in Models (A1) and (B1) is generated from the
multivariate standard Cauchy distribution, and we set n = 400
and p = 5, 10, and 30. The means and standard deviations of
the average squared multiple correlation coefficient R2 defined
in Equation (6.1) are reported after 100 repetitions. Recall that
a larger R2 indicates more efficient estimation.

Tables 6 and 7 show that the methods with robust mean
estimation outperform that with the traditional sample mean in
most scenarios. Among the four new methods, CM-ESIR and
SM-ESIR perform especially well with larger means of the aver-
age squared multiple correlation coefficient and small standard

deviations. CMM-ESIR and SMM-ESIR do not perform so well,
probably because the sample size is limited but we need to divide
the sample for both the SIR and the means-of-median processes.
Overall, using robust mean estimators in the ESIR algorithm
improves the estimation efficiency.

6.4. Comparison With Existing Methods

In the literature, there exist a few other works that also relax the
joint Gaussian distributions for the SIR approach which work
for the low-dimensional setting. Among them, the contour pro-
jection proposed by Wang, Ni, and Tsay (2008) and Luo, wang,
and Tsay (2009) and the weighted inverse regression estimation
(WIRE) and sliced inverse median estimation (SIME) proposed
by Dong, Yu, and Zhu (2015) enjoy a high level of popularity.
Dong, Yu, and Zhu (2015) compared their proposed WIRE and
SIME with the contour projection of SIR and demonstrated that
their methods have better performances. Therefore, we compare
ESIR with the two methods proposed by Dong, Yu, and Zhu
(2015).

To conduct the comparison fairly, we copy the simulation
setting used by Dong, Yu, and Zhu (2015). The following three
models are considered:

I : Y = 1 + 0.6X1 − 0.4X2 + 0.8X3 + 0.2ε ,
II : Y = (1 + 0.1ε)X1 ,

III : Y = X1/{0.5 + (X2 + 1.5)2} + 0.2ε ,

where ε ∼ N(0, 1) is independent of the predictor X =
(X1, . . . , Xp)T. Models I and II have structural dimension K =
1, and Model III has K = 2. Models I and III are homoscedastic
while Model II is heteroscedastic. Notice that Model III is the
same as Model (B1) in Section 6.2. Consider the following two
mechanisms for generating X:

(i) X is standard multivariate Cauchy;
(ii) X = (X1, . . . , Xp)T, where Xj is generated independently

from a mixture of normal and uniform distributions: Xj =
0.8N(0, 1) + 0.2Unif (−0.1, 0.1) for j = 1, . . . , p.

The distribution of X is elliptically symmetric in (i) and non-
elliptical in (ii). There will be outliers in Case (i) and inliers in
Case (ii).

WIRE and SIME are compared with our proposed ESIR
method. As done in Dong, Yu, and Zhu (2015), robust mean esti-
mation is employed in all the three methods. The performance
of each method is evaluated by the trace correlation employed
by Dong, Yu, and Zhu (2015). Denote B as an orthonormal basis
of the central subspace and B̂ as the sample estimate of B. The
trace correlation (Ferré 1998) is defined as

r = trace(PBPB̂)/K ,

where PA denotes the projection matrix onto the column space
of A ∈ R

p×K . Larger values of trace correlation indicate better
estimation.

We compare ESIR, WIRE, and SIME across Models I-III and
two types of distributions of X. Set n = 200 and p = 5, 10, 30.
The means and standard deviations of the trace correlation r are
calculated based on 200 repetitions.
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Tables 8–10 report the averages and standard deviations of
the trace correlation r with p = 5, p = 10 and p = 30,
respectively. In Models I and II, ESIR outperforms WIRE and
SIME in both generating schemes of the predictor X and in all
p = 5, 10, 30 settings. Moreover, ESIR has a larger mean and
a smaller standard deviation of trace correlation than WIRE
and SIME in each case, and the advantage of ESIR becomes
more obvious when the dimension increases. In Model III,
WIRE and SIME perform a little better than ESIR in the p =
5 case, however the difference between these methods seems
quite small. When the dimension goes higher, ESIR tends to
outperform WIRE and SIME again. In summary, our proposed
ESIR has better overall performances than existing robust SIR
approaches.

7. Real Data Analysis

We exploit the Istanbul stock exchange dataset (http://archive.
ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE) to
demonstrate the superiority of ESIR to SIR when the covariates
are characterized with non-Gaussian and heavy-tailed features.

Table 8. Means and standard deviations of the trace correlation r with p = 5.

Method

ESIR WIRE SIME

Model X Mean STD Mean STD Mean STD

I (i) 1.00 0.00 1.00 0.01 0.99 0.03
(ii) 1.00 0.00 1.00 0.00 1.00 0.00

II (i) 0.99 0.01 0.95 0.03 0.93 0.05
(ii) 0.99 0.00 0.99 0.01 0.99 0.01

III (i) 0.90 0.08 0.91 0.07 0.92 0.06
(ii) 0.94 0.04 0.95 0.03 0.95 0.04

Table 9. Means and standard deviations of the trace correlation r with p = 10.

Method

ESIR WIRE SIME

Model X Mean STD Mean STD Mean STD

I (i) 1.00 0.00 0.98 0.03 0.95 0.07
(ii) 1.00 0.00 1.00 0.00 1.00 0.00

II (i) 0.99 0.01 0.89 0.06 0.84 0.08
(ii) 0.99 0.00 0.98 0.01 0.98 0.01

III (i) 0.80 0.10 0.79 0.08 0.78 0.08
(ii) 0.87 0.07 0.88 0.06 0.88 0.06

Table 10. Means and standard deviations of the trace correlation r with p = 30.

Method

ESIR WIRE SIME

Model X Mean STD Mean STD Mean STD

I (i) 1.00 0.00 0.79 0.10 0.69 0.11
(ii) 1.00 0.00 0.98 0.04 0.97 0.05

II (i) 0.95 0.01 0.68 0.08 0.61 0.10
(ii) 0.98 0.01 0.88 0.05 0.87 0.06

III (i) 0.59 0.09 0.48 0.09 0.49 0.08
(ii) 0.67 0.08 0.63 0.08 0.63 0.08

Table 11. Normality tests.

Variable Shapiro–Wilk Kolmogorov–Smirnov

ISE 0.98∗∗∗ 0.05·
SP 0.94∗∗∗ 0.11∗∗∗
DAX 0.97∗∗∗ 0.07∗
FTSE 0.97∗∗∗ 0.07∗
NIKKEI 0.98∗∗∗ 0.07∗
BOVESPA 0.97∗∗∗ 0.06∗
EU 0.97∗∗∗ 0.07∗

There are 536 observations and 8 variables in the data set:
Istanbul stock exchange national 100 index (ISE), Standard
Poole 500 return index (SP), Stock market return index of
Germany (DAX), Stock market return index of UK (FTSE),
Stock market return index of Japan (NIKKEI), Stock market
return index of Brazil (BOVESPA), MSCI European index (EU)
and MSCI emerging markets index (EM). EM is chosen as the
response variable and the other variables as the covariates to
form a regression problem.

First, we explore the marginal distributions of the inde-
pendent variables. Two normality tests, Shapiro–Wilk test and
Kolmogorov–Smirnov test, are conducted to check the non-
Gaussian feature of these variables. Table 11 summarizes the
Shapiro–Wilk statistics and Kolmogorov–Smirnov statistics. We
find that the covariates can all be considered as non-Gaussian
distributed at the significance level of 0.05 except that the con-
clusion on the variable ISE is controversial. We then plot the
empirical densities of the standardized covariates against the
standard normal distribution to illustrate the heavy-tailed pat-
tern. Figure 1 exhibits this heavy-tailed character pretty clearly.
It can also be seen from this figure that all the covariates are
symmetric about 0. Thus, we can readily apply the ESIR method
to this dataset.

To determine the dimension K of the central subspace, the
widely used marginal dimension test is applied. The number of
slices is set to be 10. The test result suggests that K = 2 would be
a proper choice. Therefore, we set the dimension of the central
subspace to be K = 2 and the number of slices H = 10. After
estimating the e.d.r. directions, we get two new indices: β̂

T
1 X and

β̂
T
2 X, then use them and (β̂

T
1 X)2, (β̂

T
2 X)2, and (β̂

T
1 X) · (β̂

T
2 X)

as explanatory variables to fit EM. The adjusted R-squared and
F statistic are exploited to compare the performances of ESIR
and SIR. We first use samples of the whole time period and then
extend to investigate samples from three shorter periods which
appear to have significant heavy tails (see Figure 2). The results
are presented in Table 12. Obviously, our method outperforms
SIR in all the four periods with significantly larger values of
both R-squared and F statistic. This finding is complied with
the simulation results above. It can be conjectured that the
ESIR method would work better for returns of individual asset,
futures and derivatives with higher risk.

8. Discussion

In this article, we propose the ESIR method for sufficient
dimension reduction, which is a robust alternative to SIR for
analyzing high-dimensional, elliptically distributed data. The
main idea is to exploit the multivariate Kendall’s tau matrix

http://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
http://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
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Figure 1. Boxplots of the stock returns.

Figure 2. Three periods of the return of ISE.

Table 12. Regression results.

Adjusted R2 F statistic

Time period SIR ESIR SIR ESIR

All 0.56 0.71 137.10 267.60
I 0.69 0.71 241.30 264.40
II 0.60 0.73 159.60 291.90
III 0.64 0.71 187.70 266.30
All 0.56 0.71 137.10 267.60

NOTE: The ’***’, ’*’, and ’·’ in cells represent the p-value less than 0.001, 0.05, and 0.15,
respectively.

in a generalized eigenvalue problem to cope with the heavy-
tailed elliptically distributed covariates. We then present a the-
orem to demonstrate the validity of the ESIR method for suf-
ficient dimension reduction and give a simple and practica-
ble algorithm for the ESIR method. The asymptotic behav-
ior of the ESIR estimator is studied in the high-dimensional

setting. Simulation results and real data studies demonstrate
that ESIR significantly improves the estimation efficiency in
the case of elliptically distributed covariates. Moreover, in the
generalized eigenvalue framework, the proposed method can be
easily extended to other sufficient dimension reduction meth-
ods such as SAVE, DR, and principal fitted components etc.
Please refer to Li (2007) and Chen, Zou, and Cook (2010) for
generalized eigenvalue problem. Lastly, our method is of vital
importance for analyzing heavy-tailed financial, genomic and
bioimaging data.

Appendix A: Proofs

A.1. Proof of Theorem 1

Proof. Following the conclusion of Theorem 3.1 in Li (1991), if we can
prove that the linear space spanned by �βk(k = 1, . . . , K) is the same
as the space spanned by Mβk(k = 1, . . . , K), we are done.
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For any vector γ ∈ R
K , let B∗ = (β1, . . . , βk)

T. Then the span of
Mβk(k = 1, . . . , K) can be written as γ TB∗M and

γ TB∗M = γ TB∗ ·
{ p∑

j=1
λj(M)μj(M)μT

j (M)

}

= γ TB∗ ·
{ p∑

j=1
λj(M)μj(�)μT

j (�)

}

= γ TB∗ ·
[ p∑

j=1
E

{ λj(�)Q2
j

λ1(�)Q2
1 + . . . + λp(�)Q2

p

}
μj(�)μT

j (�)

]

:= sγ TB∗ ·
{ p∑

j=1
λj(�)μj(�)μT

j (�)

}

= (sγ )TB∗� ,

where the first equality comes from the spectral decomposition of M,
the second one is established by the property that μj(�) = μj(M) (see
Marden 1999; Croux, Ollila, and Oja 2002; Oja 2010; Han and Liu 2016
for details), the third equality is given by Proposition 2.1 of Han and Liu
(2016) and Q := (Q1, . . . , Qp)T ∼ Np(0, Ip). The last equality verifies
our guess.

A.2. Proof of Proposition 1

Proof. The proof for this proposition is mainly based on the results of
Marden (1999). For any X ∼ ECp(μ, �, ξ), we have the decomposition
below:

X = �W + b (A.1)

where � is some orthogonal matrix, W ∈ R
p is coordinatewise

symmetric about 0, that is

GW d= W (A.2)

for any matrix G with Gjj ∈ {1, −1} and Gij = 0(i �= j) and b
is some p × 1 centering vector. We assume that cov(W) exists, and
without loss of generality, that λ1 ≥ · · · ≥ λp with λi = var(Wi)
for W = (W1, . . . , Wp)T. Thus, we obtain � = cov(X) = ���T ,
where � = diag(λ1, . . . , λp) with λ1 ≥ · · · ≥ λp.

For the vector F(Y) = E(X|Y), from (A.1) we have

F(Y) = E(X|Y) = E(�W + b|Y) = �E(W|Y) + b := �FW(Y) + b.
(A.3)

Then for FW(Y) = E(W|Y), we can derive from Equation (A.2) that
for any G with Gjj ∈ {1, −1} and Gij = 0(i �= j),

GFW(Y) = GE(W|Y) = E(GW|Y) = E(W|Y) = FW(Y). (A.4)

Therefore, FW(Y) = E(W|Y) is coordinatewise symmetric about 0.
By Proposition of Marden (1999) and Equations (A.3) and (A.4), we

obtain

ME(X|Y) = �(p�1)�
T,

where �1 is a p × p diagonal matrix whose diagonal elements are the
eigenvalues of ME(X|Y).

Supplementary Material

ESIR-supp: Additional proofs for Proposition 2 and Theorem 2. (pdf)
ESIR-code: R-code for the simulation. (R File)
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