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ABSTRACT
Quantitative understanding of human activity is very important as
many social and economic trends are driven by human actions.
We propose a novel stochastic process, the Multi-state Markov Cas-
cading Non-homogeneous Poisson Process (M2CNPP), to analyze
human e-mail communication involving both periodic patterns and
bursts phenomenon. Themodel parameters are estimated using the
Generalized Expectation Maximization (GEM) algorithm while the
hidden states are treated as missing values. The empirical results
demonstrate that the proposed model adequately captures the
major temporal cascading features as well as the periodic patterns
in e-mail communication.
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1. Introduction

Human beings participate in all kinds of daily social activities and exhibit certain pat-
terns in their behavior. These patterns are by no means new – they drove human behavior
for centuries dominating everything from wars to Einstein’s correspondences [7]. It has
become well-known from exploring large data sets describing human actions that every-
thing human beings do they do in bursts – brief periods of intensive activity followed by
long periods of nothingness. Recent advances in the study of human dynamics mainly
focus on verifying the existence of the bursts phenomenon and uncovering the under-
lying mechanism in various human actions, such as human mobility and communication
[1,6,7,13,16,27,37,39].

Scale-free random walks known as Lévy flights have been proposed to describe the
bursts phenomenon in human mobility [13]. Recent research, however, has showed that
the dispersal of human mobility is actually slower than that described by Lévy flights.
Human mobility exhibits bursts phenomenon, i.e. it concentrates in a small region during
a long time period with short trajectories [6]. There is a high probability that an individual
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likely returns to a few highly frequently visited locations [13]. These features have been
considered in recent research of human dynamics modeling [3,14].

E-mail records have been analyzed to uncover human behavior in recent publications
[5,17,38] and can be represented as the realization of a point process in time [1,9,22]. The
prototype of point processes is the Poisson process, which is characterized by the fact that
the intervals,T’s, between events are exponentially distributed. It has been shown, however,
that certain heavy-tailed power law distributions can be used to better approximate the
inter-event time for e-mail communication [1,27] bymodeling highly clustered inter-event
time at the tails.

The research of point processes has been growing rapidly in the last decade and in par-
ticular for modeling various bursts phenomena [8]. For instance, the Markov Modulated
Poisson Process (MMPP) [11] and the self-exciting point process [15] were used in a broad
range of research fields, such as stars [29], biotic populations [28], air pollution [32], crime
and security [25,26,35], transportation [34], marine mammal abundance [18], web traf-
fic [36], and the occurrence of a rare DNA motif [31]. Some of the early applications for
telecommunication used the cluster point process [2] and theMMPPmodel [33]. Recently,
the self-exciting process was used to model e-mail networks infer leadership [12].

The most related work is the Cascading Non-homogeneous Poisson Process (referred
to as CNPP1) proposed to model the cascading behavior as well as periodic cycles (such as
circadian and weekly cycles) of human activities [22]. In the CNPP1 model, the primary
behavior is described by an extremely low rate non-homogeneous Poisson process, while
the secondary cascading behavior is described by a high rate homogeneous Poisson pro-
cess. This approach, unfortunately, has intensive computation cost. A simplified version
of the CNPP1 model (referred to as CNPP2) was proposed [20,21] to describe the cascad-
ing behaviors using a double-chain hiddenMarkovmodel, which reduces the computation
burden.

In this paper, we expand the idea of theCNPP2 model from the two-state hiddenMarkov
chain to the multi-state hidden Markov. The new model is called Multi-state Markov
Cascading Non-homogeneous Poisson Process (M2CNPP) model, which focuses on the
overall behavior of e-mail communication without incorporating the detailed information
from senders. In [20], one can derive a geometric distribution for the cascading pattern
based on the two-state hidden Markov model. However, the proposed multi-state hidden
Markov model can describe more complex structures of bursts phenomenon and better
approximate realistic cascading patterns (see Figures 1 and 2). We additionally show that
the maximum likelihood estimates of the intensity parameters of the M2CNPP model are
the same as those from the CNPP1 model using full likelihood function [22]. To demon-
strate our approach, we apply the proposedmodel to the same simulated data as well as the
university e-mail data set used in [22].

The paper is organized as follows. Section 2 introduces the data used in this paper and
some challenges of modeling these data. Section 3 describes the basic CNPP model with
its inter-event time distribution and parameter estimation. The proposedM2CNPPmodel
and the Generalized Expectation-Maximization (GEM) parameter estimation algorithm
are described in Section 4. The parameter estimates using GEM are also derived explicitly
in the same section. In Section 5, the simulated data and the university e-mail data are used
to demonstrate the proposed approach. Finally, Section 6 summarizes the proposedmodel
with a discussion and future research directions.
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Figure 1. Example of human communication. Upper: One synthetic time series with Na = 3. Middle:
The states of the three mutually exclusive intervals. Lower: The probability structure of the three CNPP
models for eventNa = 3. Lower left: thenon-parametric cascading structureof CNPP1. Lowermiddle: the
two-stateMarkov cascading structure of CNPP2. Lower right: the proposedmulti-stateMarkov cascading
structure of M2CNPP.

Figure 2. A (CNPP2): Human activity patterns are characterized by a first-order Markov process with the
transition rates 1− ξ and ξ betweenanactive state (Xn = 1) and apassive state (Xn = 0) [20]. C (CNPP1):
the structure of CNPP1 includes Na = m cascading events within an active session, where m could be
0, 1, 2, . . .; the highlighted part indicates these cascading events are governed by the state of X1. B & D
(M2CNPP): The structure of the proposed M2CNPP is a multi-stage double-chain Markov model where
the time between two consecutive events � tn is described by a Poisson process with rate λa or λ(t)
depending on the hidden states. The white circles represent the missing information, while the gray
circles the observed data.

2. Data, empirical patterns andmodeling challenges

The data we studied were extracted from the log files of one of the main e-mail servers at
one of the European universities, named Université de Genève. The data consist of more
than 2× 106 e-mail messages sent during a period of 83 days and connect about 10,000
users. The content of the messages was never accessible, and the only information taken
from the log files was the ‘to,’ ‘from,’ and ‘time’ fields, and aliases were resolved. The time
stamps have a precision of 1 second. After cleaning and tidying, 394 accounts were left (for
more details, see the Supporting Information in [22]).
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The empirical evidence has showed that the inter-event time for e-mail communication
might be better approximated by a heavy-tailed distribution instead of the traditional Pois-
son point process. The heavy tail means the inter-event time is highly clustered at tails. It
is well known that e-mail exchange follows a power law distribution [1]. However, recently
some researches have indicated that e-mail exchange may not follow power law distribu-
tions at all [7,10,30,37]. Further research showed that cascades and periodic patterns exist
simultaneously in e-mail communication [12,21,22]. That is, individuals are much more
likely to continue writing e-mails once they have written one e-mail, in order to use their
time more efficiently [21]. For example, a person, named Li, works a ‘nine to five’ job. Li
arrives at the company at 9:00 a.m. and checks his e-mails. He reviews incoming e-mails
and decides to reply 3 important e-mails. After sending these e-mails, Li begins to work.
At 10:30 a.m., Li has important information to be sent to somebody. He sends the impor-
tant information using e-mail immediately, and checks his incoming e-mails and decides
to send 4 more e-mails. Li checks his e-mails before lunch. Li performs the similar routine
in the afternoon. Li will not send any e-mails at night until next morning or at weekends
until next Monday. The cascades with periodic patterns make time series more complex
and nonstationary, and exist in many other human activities, such as individual telephone
calls, running errands and mobility. Our goal is to build a simple but effective model to
account for the cascades and periodic patterns simultaneously in e-mail communication.
The model allows us to understand human behaviors.

3. Cascading non-homogeneous poisson process (CNPP)

3.1. Fundamental concepts

ACNPPmodel consists of a primary process and a secondary process. The primary process
is a non-homogeneous Poisson process with a rate function λ(t). Each event in the primary
process triggers a secondary process, also called an active session, i.e. ‘cascades of activity’,
which is modeled as a homogeneous Poisson process with a rate λa. During each active
session there occur Na additional events, which can be viewed as randomly drawn from
some probability distribution p(Na). The intervals between any pair of consecutive active
sessions are the passive sessions. For instance, in our toy example, Li may send a sequence
of e-mails separated by a few of minutes or even hours. There exist two states in his e-mail
communication. The first one is a primary process, which accounts for his sleep and work
routine. The second one is a secondary process, or called active sessions. That is, once Li
sends an e-mail, he would focus on his e-mail communication, in order to use his time
more efficiently.

The intensity function λ(t) for the primary process is periodic in time, i.e. λ(t) = λ(t +
W), whereW is a period, and often assumed to be one week. More explicitly, we have

λ(t) = Nwpd(t)pw(t), (1)

where the constant Nw denotes the average number of active intervals per week, while
the rate functions pd(t) and pw(t) are the step functions for every hour and every day,
respectively [22].
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Asnoted in Section 1, the twomodels proposed in [22] and [20] are referred to asCNPP1
and CNPP2, respectively. The CNPP1 model consists of three separate but related compo-
nents, as illustrated in Figure 1. The distribution of the number of events between starting
and ending time of an active session is described by the distribution p(Na), which is inde-
pendent of any other active sessions. A random variableX with values in {0, 1} specifies the
state of the next e-mail sending event. More precisely, after the kth event, Xk = 0 implies
that the k+1th event follows a non-homogeneous Poisson process with intensity function
λ(t), while Xk = 1 implies that the k+1th event follows a homogeneous Poisson process
with intensity λa. The sequence of states defines the underlying active interval configu-
ration C, which can be represented by the sequence J = {0 = j0 < j1 < j2 < · · · < jm ≤
n− 1}, where the state is 0 after the kth event iff k ∈ J. The sequence J represents not only
if the kth event occurs on the primary process, but also counts the number of secondary
events in each active session.

For the CNPP2 model, the secondary events occurring in an active session are assumed
to be independent and the change of states is determined by the transition probability ξ

(Figure 2(a)). The lower middle plot of Figure 1 shows the probability that three events
occur in an active session, which can be calculated as p(Na = 3) = (1− ξ)3ξ , and thus fol-
lows a geometric distribution. TheCNPP2 model can be viewed as aDouble-ChainHidden
Markov model (Figure 2(d)).

3.2. Parameter estimation

Let t0 = 0, and assume t1, . . . , tn be the observed time points where tk is the occurring
time of the kth event. Let tn1 = (t1, . . . , tn) represent the set of time points. The value of
Xk represents the state in the time interval (tk, tk+1]. Then the full likelihood functions of
models CNPP1 and CNPP2 are given below, respectively:

L1 = P{�1,P;C, tn1} =
∏

1≤i≤m
p(Na = ji − ji−1 − 1)

∏
i∈J

f (ti+1)
∏
i∈J

0<i≤n−1

g(ti+1), (2)

L2 = P{�2;C, tn1} = ξm(1− ξ)n−m
∏
i∈J

f (ti+1)
∏
i∈J

0<i≤n−1

g(ti+1), (3)

where �1 and �2 are the parameter sets; P represents the distribution of Na; f (tk) rep-
resents the probability density function of an event from the non-homogeneous Poisson
process occurring at tk and no event occurring in (tk−1, tk]; while g(tk) represents the prob-
ability density function of an event from the homogeneous Poisson process occurring at
tk and no event occurring in (tk−1, tk]. Then by taking logarithm and expectation on both
sides of (2) and (3), we get:

Q1(�1,P; tn1) = EC[logL1|tn1;�1,P]; (4)

Q2(�2; tn1) = EC[logL2|tn1;�2]. (5)

For the CNPP1 model, one can estimate the parameter set�1 and the distributionP given
a sequence of observations by minimizing Q1(�1,P; tn1). Thus, the Expectation Maxi-
mization (EM) algorithm can be used to simultaneously estimate �1 and P. However,
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the EM algorithm needs to consider all the 2n−1 possible arrangements of the sequence
J. Alternatively, one can estimate the parameter set �1, the distribution P, and the con-
figuration C given a sequence of observations by minimizing the area test statistic S (see
Section 4.4.2). The method of simulated annealing inference can also be used [22]. For
the CNPP2 model, the EM algorithm can be used to estimate the parameters quickly and
efficiently by minimizing Q2(�2; tn1) [20].

4. Multi-state Markov cascading non-homogeneous Poisson process
(M2CNPP)

In this section, we introduce our proposed model, the multi-state Markov cascad-
ing non-homogeneous Poisson process (M2CNPP). The fundamental concepts of the
M2CNPP model are explained in Section 4.1. Then the parameter estimation using the
Generalized Expectation and Maximization (GEM) algorithm is given in Section 4.3.
Finally, the model selection and the performance evaluation criteria are introduced in
Section 4.4.

4.1. The basic concepts ofM2CNPP

There present habitual patterns in human activities such as completing the jobs with top
priorities first. These patterns are formed over time in order to achieve efficiency. In e-mail
communication, the responding time to e-mail directly reflects our habitual behavior. This
behavior appears to grow intensively at the beginning, and then fades away. However, for
the CNPP2 model, because of the time-invariant feature, the parameter ξ is unchanged and
remains constant. This assumption is not realistic. Therefore, a new multi-stage Markov
cascading non-homogenous Poisson process (M2CNPP) model is proposed to count for
more complicated patterns in human e-mail communication.

Let {0, 1, . . . , r} represent the hidden states of an active session. We assume that at state
k ∈ {0, 1, . . . , r}, an individual moves to the passive state 0 with the transition probability
ak,0 or to the next active state k+1 with the transition probability ak,k+1. All other transi-
tion probabilities are assumed zero. With this assumption, the independence property is
retained and the M2CNPP model can also be viewed as a less constrained double-chain
hidden Markov model. The M2CNPP model is visualized in the bottom right graph of
Figures 1 and 2(b).

Denote S(X) = {0, 1, . . . , r} as the hidden state space. The transition probability matrix
of the hidden states is written as A = {ai,j}, i, j ∈ S(X). More specifically, we have the form
specified as Equation (6).

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 a0,1 0 0 · · · 0
a1,0 0 a1,2 0 · · · 0
a2,0 0 0 a2,3 · · · 0
...

...
...

...
. . .

...
ar−1,0 0 0 · · · 0 ar−1,r
ar,0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6)
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where ak,0 + ak,k+1 = 1, 0 ≤ k ≤ r− 1 and ar,0 = 1. The probability distribution of the
first hidden state is assumed as π = {a0,0, a0,1, 0, . . . , 0}. The rate of the M2CNPP model
at state 0 is defined as λ(t) (Equation (1)); otherwise it is a constant.

Remark 4.1: A hidden variable is introduced to describe whether an e-mail belongs to an
active session or not, rather than a sequence of e-mails belong to an active session. For the
former case, there are only n hidden variables to estimate, but the latter case has 2n hid-
den variables to estimate. As a summary, the proposed M2CNPP has the following unique
features:

(a) The secondary process follows a multi-stage Markov homogeneous Poisson process,
which accounts for the cascading patterns;

(b) The hidden states in the secondary process are treated asmissing values, and the GEM
algorithm is used to estimate parameters.

4.2. Simple examples

In this section, we provide two simple examples to illustrate the proposed M2CNPP
model. Let

λ(t) = 0.01 · 1t∈{Sun.,Sat.} + 0.3 · 1t∈{Mon.,...,Fri.},

where 1t∈{·} is an indicator function. The function λ(t) is the intensity function of the
primary process, which is a non-homogeneous Poisson process. Furthermore, we define
λa = 10 be the intensity rate of the secondary process, which is an homogeneous Poisson
process. The hidden state space S(X) has three states {0, 1, 2}. In particular, Xi = 0 implies
that the i+1th event follows a non-homogeneous Poisson process with intensity function
λ(t); Xi = 1 or Xi = 2 implies that the i+1th event follows the homogeneous Poisson pro-
cess with intensity λa. The sequence of states defines the underlying active/passive status of
next e-mail, and Poisson processes determine the time of event occurrence. Furthermore,
we let

A =
⎡⎣0.7 0.3 0
0.8 0 0.2
1 0 0

⎤⎦
be the transition probabilitymatrix of the hidden states. Given an initial time t0 onMonday,
and the initial stateX0 is 0, an e-mail is sent at random time point t1 where t1 has probability
density function λ(t1) exp{−

∫ t1
t0 λ(t)dt}. We consider the following two cases.

Case 1. Consider state transfer random variables X1 = 1, X2 = 2 and X3 = 0. X1 = 1
indicates the state at t1 is 1, i.e. an active session, with transition probability a0,1 =
0.3. The next e-mail is sent at random time point t2 with conditional probabil-
ity density function 10 exp{−10(t2 − t1)} given time point t1. The second state is
X2 = 2, with transition probability a1,2 = 0.2. The third e-mail is sent at random
time point t3 with conditional probability density function 10 exp{−10(t3 − t2)}
given time point sequence t1, t2. The third state is X3 = 0, i.e. the active session
ends, with transition probability a2,0 = 1. The forth e-mail is sent at random time
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Figure 3. Example of M2CNPP model. Left: Case 1; Right: Case 2.

point t4 with conditional probability density function λ(t4) exp{−
∫ t4
t3 λ(t)dt}

given time point sequence t1, t2, t3. The complete likelihood function of the time
point sequence {t1, t2, t3, t4} is

L = P(t41,X0 = 0,X1 = 1,X2 = 2,X3 = 0)

= λ(t1) exp{−
∫ t1

t0
λ(t)dt} · 0.3 · 10 exp{−10(t2 − t1)}

· 0.2 · 10 exp{−10(t3 − t2)} · 1 · λ(t4) exp{−
∫ t4

t3
λ(t)dt}.

Case 2. Consider state transfer random variables X1 = 0, X2 = 1 and X3 = 0. The
first state is X1 = 0, with transition probability a0,0 = 0.7. The next e-mail is
sent at random time point t2 with conditional probability density function
λ(t2) exp{−

∫ t2
t1 λ(t)dt} given time point t1. The second state isX2 = 1, with tran-

sition probability a0,1 = 0.3. The third e-mail is sent at random time point t3 with
conditional probability density function 10 exp{−10(t3 − t2)} given time point
sequence t1, t2. The third state is X3 = 0, with transition probability a1,0 = 0.8.
The forth e-mail is sent at random time point t4 with conditional probability den-
sity function λ(t4) exp{−

∫ t4
t3 λ(t)dt} given time point sequence t1, t2, t3. For this

case, the complete likelihood function of the time point sequence {t1, t2, t3, t4} is
expressed as

L = P(t41,X0 = 0,X1 = 0,X2 = 1,X3 = 0)

= λ(t1) exp{−
∫ t1

t0
λ(t) dt} · 0.7 · λ(t2) exp{−

∫ t2

t1
λ(t)dt}

· 0.3 · 10 exp{−10(t3 − t2)} · 0.8 · λ(t4) exp{−
∫ t4

t3
λ(t)dt}.

Figure 3 demonstrates the two cases. These examples are extended in Section 5.1 for
evaluating the proposed M2CNPP model.

4.3. The generalized expectationmaximization algorithm (GEM)

It is impossible to directly estimate the parameter set � = {λa, λ(t) : λ(t) > 0 for t, t ∈
R+} and the transition probability matrix A based on a sequence of observed time points,
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since the states of sessions (i.e. either passive or active) aremissing. Therefore, we introduce
the GEM Algorithm for the purpose of parameter estimation.

Let I = {i1, . . . , in−1} represent the realization of the hidden states {X1, . . . ,Xn−1}. The
complete likelihood function of an observed time point sequence can be written as follows:

L = P(tn1, I;�,A) = f (t1)a0,i1bi1(t2)ai1,i2bi2(t3) · · · ain−2,in−1bin−1(tn), (7)

where

bi(·) =
{
f (·), i = 0,
g(·), i = 1, . . . , r.

f (·) and g(·) are defined as Equations (A1) and (A2) in Appendix 1, respectively.
Let λ(t) = λi,j = λhi λ

d
j , i = 1, . . . , 24, j = 1, . . . , 7 where λhi and λdj are the hourly and

daily rates, respectively. Given the values of�(l) andA(l) at the lth iteration, the expectation
of the log-likelihood function is written as follows:

Q(�,A;�(l),A(l)) = EI[logL|tn1;�(l),A(l)]

=
∑
I

log a0,i1P(I|tn1;�(l),A(l))

+
n−2∑
k=1

∑
I

log aik,ik+1P(I|tn1;�(l),A(l))+ log f (t1)

+
n−1∑
k=1

∑
I

log bik(tk+1)P(I|tn1;�(l),A(l)). (8)

Note that the optimal solutions of the intensity rates λhi and λdj , i = 1, . . . , 24, j = 1, . . . , 7
in maximizing function (8) are not unique as {λhi , λdj } and {(1/k)λhi , kλdj } for k ∈ R+
give the same value. In order to avoid this situation, we normalize the results, that is, let
λi,j = Nwλhi λ

d
j where

∑7
j=1 λdj = 1 and

∑24
i=1 λhi = 1. Then the set of parameters is � =

{Nw, λa, λhi , λ
d
j , i = 1, . . . , 24, j = 1, . . . , 7 :

∑7
j=1 λdj = 1,

∑24
i=1 λhi = 1}. The normalized

λdj is the intensity for a day of a week, and the normalized λhi for an hour of a day and
Nw can be seen as the average number of active intervals per period. Then the maximum
likelihood estimates of the parameters can be estimated by GEM [23,24] as outlined in
Algorithm 1.

The property of convergence of Algorithm 1 is shown in Theorem 4.1 (see Appendix 1
for the detailed proof).

Theorem 4.1: Algorithm 1 is a GEM algorithm, that is,

Q(�(l+1),A(l+1);�(l),A(l)) ≥ Q(�(l),A(l);�(l),A(l)), (9)

where A(l) and �(l) =
{
N̂w

(l), λ̂a
(l), λ̂hi

(l)
, λ̂dj

(l)
, i = 1, . . . , 24, j = 1, . . . , 7

}
are the esti-

mated parameter values at the lth iteration.
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Algorithm 1 GEM-based Maximum Likelihood Estimation for the M2CNPP model
Input:ModelM(θ), θ ∈ �; Randomly initialize θ (0) = {�(0),A(0)}; Convergence cri-
terion tol; The total number of iteration N
Output: The Maximum Likelihood estimate θ̂ for θ

− Set l = 0
while |Q

(l+1)−Q(l)|
|Q(l)| ≤ tol or l ≤ N do

% E-step: Calculate the Expectation
− Using Forward-Backward procedure [4] to compute P(Xk = 0,Xk+1 = i|tn1;�(l),

A(l)), P(Xk = 0|tn1;�(l),A(l)), P(Xk = i,Xk+1 = j|tn1;�(l),A(l)) and P(Xk = i|tn1;�(l),
A(l)), i, j ∈ S(X), k = 0, 1, . . . , n− 2,

% M-step: Maximize the Expectation Q(l+1)(�,A;�(l),A(l))

â(l+1)
0,i ←

∑n−2
k=0 P(Xk=0,Xk+1=i|tn1 ;�(l),A(l))∑n−2

k=0 P(Xk=0|tn1 ;�(l),A(l))
, i = 0,1,

â(l+1)
i,j ←

∑n−2
k=1 P(Xk=i,Xk+1=j|tn1 ;�(l),A(l))∑n−2

k=1 P(Xk=i|tn1 ;�(l),A(l))
, j ∈ {0, i+ 1}, i = 1,. . . ,r-1,

λ̂dj
(l+1)← λ̃dj

(l+1)

∑7
j=1 λ̃dj

(l+1) , j = 1, . . . , 7,

λ̂hi
(l+1)← λ̃hi

(l+1)

∑24
i=1 λ̃hi

(l+1) , i = 1, . . . , 24,

N̂w
(l+1)← (

∑7
j=1 λ̃dj

(l+1)
)(
∑24

i=1 λ̃hi
(l+1)

),

λ̂a
(l+1)←

∑n−1
k=1

∑r
i=1 P(Xk=i|tn1 ;�(l),A(l))∑n−1

k=1 [(tk+1−tk)
∑r

i=1 P(Xk=i|tn1 ;�(l),A(l))]
,

where λ̃dj
(l+1) =

∑24
i=1 d

(l)
i,j∑24

i=1 λ̂hi
(l)
c(l)i,j

, j = 1, . . . , 7, λ̃hi
(l+1) =

∑7
j=1 d

(l)
i,j∑7

j=1 λ̂dj
(l+1)

c(l)i,j
, i = 1, . . . , 24,

c(l)i,j =
∑

k(tk+1 − tk)i,jP(Xk = 0|tn1;�(l),A(l)) and d(l)
i,j =

∑
k∈K1

P(Xk =
0|tn1;�(l),A(l))

− Set l = l+ 1
end while

4.4. Model selection and performance evaluation

4.4.1. Parameter selection criteria
Thenumber of states r can be pre-defined or can be estimated usingmodel selection criteria
[33]. In this paper, two model evaluation criteria are compared based on how accurately
the models identify the true number of states r for a simulated data set. The two criteria
are Bayes Information Criterion (BIC) and Akaike Information Criterion (AIC). Then the
criterion with the best performance will be chosen for the real data. The two criteria are
defined as Equations (10) and (11), respectively.

BIC = −2LL+ p log(n), (10)

AIC = −2LL+ 2p, (11)
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where LL is the log-likelihood function, p is the number of independent parameters and
n the number of observations. Specifically, we generate many synthetic time series from
the M2CNPP model, each of which has a fixed number of events with r cascading states
and a set of fixed parameters. The procedure of generating simulated data of the M2CNPP
model is described in Algorithm 2. This algorithm is a modified version of the classic thin-
ning algorithm [19]. The algorithm works as follows: (1) Generate t∗1 < t∗2 < · · · < t∗N∗T
from (0,T] to form a homogeneous Poisson process with constant intensity λ∗ where
λ∗ ≥ supt∈(0,T] λ(t); (2) Remove the time points t∗j with probability 1− λt∗j /λ

∗; (3) The
remaining points form a non-homogeneous point process with intensity function λ(t).

Algorithm 2 Simulation of the M2CNPP Model

Input: Primary process rate λ̂(t); Secondary process rate λ̂a; Transition probability
matrix Â; Data size n
Output: The M2CNPP points t1, t2, . . . , tn
− Set λ∗ = supt λ̂(t), si = 0 and tj = 0 where i = j = 0
while j < N do
− 1© Set si = 0 where i = 0
− 2©Generate a homogeneous Poisson processwith intensityλ∗ on (0,+∞); Denote

the first point by�s, set i = i+ 1 and si = tj + si−1 +�s
− 3© Generate a uniform random number u0 on [0, 1]
− 4© If u0 ≤ λ(si)

λ∗ , set j = j+ 1 and tj = si; Else, return to 2©
− 5© Generate r uniform random numbers uk (k = 1, . . . , r) on [0, 1]; Find the first

k s.t. uk < âm−1,0 (m = 1, . . . , r + 1) and set Na = k− 1
− 6© If Na > 0, generate a homogeneous Poisson process with intensity λ̂a on

(0,+∞), and denote �tl (l = 1, . . . , min{Na,N − j}) as the time interval, then set
tj+l = tj+l−1 +�tl, l = 1, . . . , min{Na,N − j}; Else, return to 1©
− 7© Collect {tj} and set j = j+min{Na, n− j}

end while

4.4.2. Model performance evaluation with the simulated data
[22] quantified the agreement between the model M(θ) with parameters θ and data D
by measuring the area statistic S between the empirical cumulative distribution function
PD(u) and the model cumulative distribution function PM(u; θ) presented as follows:

S =
∫
|PD(u)− PM(u; θ)| du. (12)

Rather than using Equation (12) directly to calculate the area statistic S, we decide to com-
pute p-values of the agreement using aMonte Carlo procedure: (1) Estimate the parameters
θ and denote as θ̂ ; (2) Calculate the area test statistic S between PM(u; θ̂) and PD(u); (3)
GenerateM synthetic datasetsDs (s = 1, . . . ,M) from themodelM(̂θ)using the estimates
θ̂ . The simulation procedure results in an assemble of M test statistics Ss, s = 1, . . . ,M.
Finally, a two-tailed p-value with a precision of 1/M, i.e. Pr(|Ss− < Ss > | > |S− < Ss > |)
is calculated. The procedure is described in Algorithm 3.

For the proposed M2CNPP model, M=400 Monte Carlo synthetic datasets are gen-
erated. The models with p-values less than 5% are rejected. This method indicates that a
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model is rejected if the predictions are inconsistent with the empirical observationsD at a
conservative 5% significance level.
Algorithm 3Monte Carlo Hypothesis Testing

Input: DatasetD; ModelM(θ), θ ∈ �; NumberM
Output: Two-tailed p-value Pr(|Ss− < Ss > | > |S− < Ss > |)
Initialization:
− Estimate θ̂ using GEM
− Calculate the area test statistic S between modelM(θ̂) and dataD
for s = 1 toM do
− Generate a synthetic datasetDs from modelM(θ̂)

− Estimate θ̂ s using dataDs
− Calculate the area test statistic Ss between modelM(θ̂ s) and dataDs
− Collect {Ss}

end for
− Calculate a two-tailed p-value Pr(|Ss− < Ss > | > |S− < Ss > |)

5. Results

Both simulated and real data are used to evaluate the proposed M2CNPP model. For the
simulated data, the performance of the two model evaluation criteria is compared based
on how accurately the models identify the true total number of the states r. Then the better
criterion is chosen and used for parameter estimation for the real data.

5.1. Simulation

Firstly, we verify that the GEM procedure provides valid parameter estimates. Four hun-
dred synthetic time series are generated, each of which has 400 events with 4 cascading
states (i.e. r = 4). The values of the intensity parameters λ(t) and λa are chosen based on
the following assumptions: (1) people usually do not work at night; (2) people only work
from 9: 00 a.m. to 6: 00 p.m.; (3) people check e-mails from 5: 00 p.m. to 6: 00 p.m before
going home. Table 1 lists the parameter values, and Equation (13) provides the transition
matrix A for model simulation.

A =

⎡⎢⎢⎢⎢⎣
0.8 0.2 0 0 0
0.3 0 0.7 0 0
0.1 0 0 0.9 0
0.7 0 0 0 0.3
1 0 0 0 0

⎤⎥⎥⎥⎥⎦ . (13)

5.1.1. Estimating r
Two criteria (i.e. BIC and AIC) are used to estimate the hidden states r. Figure 4 displays
the results based on the simulated data. For AIC, there are 82 out of 400 trials that fail to
estimate the correct number of the hidden states r. However, for BIC, the number of trials
that fail to estimate the correct r decreases to 53. For bothAIC andBIC,most trials estimate
r = 3. The reason why r is more frequently estimated as 3 by two criteria is because we set
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Table 1. The values λhi , λ
d
j , λa and Nw used for simulation.

λhi hour value λhi hour value λdj day value

λh1 0∼ 1 0 λh13 12∼ 13 0.06 λd1 Mon. 0
λh2 1∼ 2 0 λh14 13∼ 14 0.058 λd2 Tue. 0.15
λh3 2∼ 3 0 λh15 14∼ 15 0.1 λd3 Wed. 0.2
λh4 3∼ 4 0 λh16 15∼ 16 0.08 λd4 Thu. 0.2
λh5 4∼ 5 0 λh17 16∼ 17 0.05 λd5 Fri. 0.15
λh6 5∼ 6 0 λh18 17∼ 18 0.15 λd6 Sat. 0.1
λh7 6∼ 7 0 λh19 18∼ 19 0.05 λd7 Sun. 0.2
λh8 7∼ 8 0 λh20 19∼ 20 0.04
λh9 8∼ 9 0.025 λh21 20∼ 21 0.002
λh10 9∼ 10 0.1 λh22 21∼ 22 0.007
λh11 10∼ 11 0.15 λh23 22∼ 23 0.004 λa 20
λh12 11∼ 12 0.16 λh24 23∼ 24 0 Nw 20

Figure 4. Estimating rwith AIC and BIC.

up a3,0 = 0.7, a considerably large transition probability. Both AIC and BIC try to select
simple models.

After r is chosen, the estimates of other parameters can be easily obtained. The
biases and standard deviations of Â− A, λ̂hi − λhi (i = 1, . . . , 24), λ̂dj − λdj (j = 1, . . . , 7),
λ̂a − λa and N̂w − Nw are shown in Matrix (14) and Table 2 (standard deviation (sd)



14 C. LI ET AL.

Table 2. The estimates of λ̂hi , λ̂
d
j , λ̂a and N̂w with standard deviations in parentheses.

λ̂hi − λhi mean×10−4 (sd×10−2) λ̂hi − λhi mean×10−4 (sd×10−2) λ̂dj − λdj mean×10−4 (sd×10−2)
λ̂h1 − λh1 0 (0) λ̂h13 − λh13 −7.21 (1.57) λ̂d1 − λd1 0 (0)
λ̂h2 − λh2 0 (0) λ̂h14 − λh14 −1.77 (1.52) λ̂d2 − λd2 −6.05 (2.16)
λ̂h3 − λh3 0 (0) λ̂h15 − λh15 −5.98 (2.02) λ̂d3 − λd3 −10.30 (2.47)
λ̂h4 − λh4 0 (0) λ̂h16 − λh16 −12.00 (1.70) λ̂d4 − λd4 17.20 (2.39)
λ̂h5 − λh5 0 (0) λ̂h17 − λh17 0.41 (1.33) λ̂d5 − λd5 12.00 (2.12)
λ̂h6 − λh6 0 (0) λ̂h18 − λh18 −0.92 (2.35) λ̂d6 − λd6 10.10 (1.75)
λ̂h7 − λh7 0 (0) λ̂h19 − λh19 5.79 (1.38) λ̂d7 − λd7 1.02 (2.54)
λ̂h8 − λh8 0 (0) λ̂h20 − λh20 0.78 (0.38)
λ̂h9 − λh9 2.78 (0.98) λ̂h21 − λh21 0.92 (0.27)
λ̂h10 − λh10 11.80 (1.81) λ̂h22 − λh22 1.81 (0.52)
λ̂h11 − λh11 14.20 (2.23) λ̂h23 − λh23 0.96 (0.39) λ̂a − λa 9.42(130.77)
λ̂h12 − λh12 0.25 (2.38) λ̂h24 − λh24 5.14× 10−6 (7.92× 10−6) N̂w − Nw −2.5× 103 (213.54)

in parentheses).

Â− A : 10−2 ×

⎡⎢⎢⎢⎢⎣
−4.68(3.46) 4.22(3.46) 0 0 0
9.81(8.77) 0 −10.29(8.72) 0 0
7.06(7.35) 0 0 −6.9(7.14) 0
−2.17(9.54) 0 0 0 3.36(9.33)

0(0) 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

(14)
Matrix (14) and Table 2 show that the biases are very close to zero for most parame-

ters. Even for the parameters with large biases, the true values of the parameters actually
fall in the 95% confidence interval of the estimates. This results suggest that these param-
eter estimates are asymptotically unbiased. Furthermore, we also confirm empirically that
parameter estimates are insensitive to the choice of initial values. The mean and the
standard deviation of iterations are 6.46 and 0.474, respectively. This indicates that the
algorithm converges to the true values very quickly.

5.2. Results from real data

In this section, we implement the proposed M2CNPP model to the university e-mail data
described in Section 2. The data have been studied in [9] and [22]. Figure 5 displays
the e-mail communication patterns of 4 users with an increasing order of e-mail usage.
Figure 5(a,b) indicates that the active intervals much more likely happen during weekdays
rather than weekends and during daytime rather than nighttime. These observations are
similar to those reported in the previous research [22]. In fact, the parameter estimates
of the M2CNPP proposed in this paper and CNPP1 proposed in [22] are consistent, see
Appendix 1.

Figure 6 compares the prediction of the proposed M2CNPP model with the empirical
cumulative distribution of inter-event times P(τ ) for the 4 users from Figure 5. In these
empirical inter-event time distributions of e-mail communication, the heavy tail exists
because of the prolonged periods of inactivity and short-term bursts of active intervals.
The method of Monte Carlo hypothesis testing is used to assess the significance of the
agreement between the prediction of our model and the data. Except for the user with
id 2881, the results presented from the remaining three users have high p-values and are
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Figure 5. E-mail communication patterns of four users in an increasing order of e-mail usage. These
cases exemplify the e-mail usage patterns that are typically observed in the e-mail communication. (A)
Distributionof active sessionsoccurringwithin aweek; (B)Distributionof active sessionsoccurringwithin
a day; (C) Transition probability.

Figure 6. Comparison of the prediction of the proposed M2CNPP model (red line) with the empirical
cumulative distribution of inter-event times P(τ ) (black line) for the 4 users in Figure 5.

consistent with the empirical cumulative distribution of inter-event times of e-mail com-
munication. Figure 7 displays the conditional probability density p(R|τ) with log-residual
R = ln(pM(τ |θ̂)/p(τ )), where pM(τ |θ̂) is the inter-event time distribution of the best-fit
M2CNPP model M(θ̂), and p(τ ) is the empirical inter-event time distribution obtained
for all 394 users under consideration. From Figure 7, it can be seen that ourmodel does not
display any large systematic deviations.We also discover there are no systematic deviations
between the model prediction and the data at the tail of the inter-event time distribution
where the power-law scaling approximately holds. The cascading pattern distributions are
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Figure 7. Conditional probability density p(R|τ) with log-residual R = ln(pM(τ |θ̂)/p(τ )), where
pM(τ |θ̂) is the inter-event time distribution of the best-fitM2CNPPmodelM(θ̂) and p(τ ) is the empir-
ical inter-event timedistribution obtained for all 394 users under consideration. The average log-residual
at each inter-event time is represented by the dashed line.

Figure 8. The cascading pattern distributions. The frequency of transition probabilities equaling zero is
removed to clearly display the distribution.

shown in Figure 8, from which we can see that most people successively send less than 4
e-mails, and there are about half of the people who successively send 2 e-mails with the
sending probability (transition probability a1,2) less than 0.5.
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Figure 9. Model comparison: the complementary cumulative distribution function (CCDF) vs. p-values
for all users.

5.3. Comparison

In this section, we compare the proposed M2CNPP model with the CNPP1 model and
a truncated power-law model using Algorithm 3. Figure 9 describes the complementary
cumulative distribution function (CCDF) (i.e. one minus CDF) of p-values for all users.
Note that if the data were actually generated by one of the models compared, we would
expect to see a uniform distribution of p-values (dashed line). From Figure 9, it can be
seen that our model is approximately consistent with the CNPP1 model and the empirical
data. At the 5% significance level, the proposedM2CNPPmodel fails tomodel the periodic
patterns and bursts phenomenon for 83 users. In comparison, the CNPP1 model failed
to describe 1 user, whereas the truncated power-law model failed for 344 users [22]. We
will provide an explanation of the discrepancy between the number of users failed to be
modeled by the M2CNPP and the CNPP1 models in the following paragraphs.

(1) Parameter estimation. One reason why there is a big discrepancy between the num-
ber of users that were failed to be modeled by our proposed model and the CNPP1 model
is because the parameter estimation method used in [22] tends to result in larger p-values
than those of our estimationmethod. In fact, the parameters for ourmodel are estimated by
Maximum Likelihood Estimation (MLE), whereas the CNPP1 model used Least Area Esti-
mation (LAE), which minimizes the area test statistic S. Because the results of the Monte
Carlo hypothesis testing procedure rely on S. The LAE tends to result in a small value of S
with a larger p-value. Consequently, the LAE is overfitting, which can be directly verified
by the fact that the CNPP1 model failed to describe only 1 user (User 2241). To further
investigate the difference of the estimated parameters by the M2CNPP and the CNPP1
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Figure 10. Comparison of parameter estimation (red line: the M2CNPP model; blue line: the CNPP1
model; black line: the empirical cumulative distribution (ECD) of inter-event times). (A) Distribution of
active sessions occurring within a week; (B) Distribution of active sessions occurring within a day; (C)
Transition probability; (D) ECD and cumulative distributions of the M2CNPP and the CNPP1 models.

models, we plot Figure 10. In Figure 10, the estimated parameters of three users (User
2570, User 2881 and User 2241) by LAE and MLE are displayed. The red line is the esti-
mated parameters of the M2CNPP model, the blue line is the estimated parameters of the
CNPP1 model and the black line is the empirical cumulative distribution (ECD) of inter-
event times. User 2570 was successfully modeled by both the M2CNPP and the CNPP1
models. User 2881 was successfully modeled by only CNPP1. User 2241 was successfully
modeled by only M2CNPP. Although the ECDs of the M2CNPP and the CNPP1 models
have only small difference, the estimated parameters by the CNPP1 and M2CNPP mod-
els vary a lot. Thus, the results of the Monte Carlo hypothesis testing strongly rely on the
accuracy of the parameter estimation.

(2) Pattern diversity. The other reason is because the CNPP1 model is more general than
the M2CNPP model, i.e. the CNPP1 model does not have too many constraints. Although
we try to model the general pattern of individual e-mail communication, we also want to
identify those different behaviors. Our M2CNPP model is able to capture the e-mail com-
munication patterns, i.e. the periodic cascading patterns and the heavy tail property, of
79% individuals. This indicates the rest of 21% individuals have slightly different patterns.
While the CNPP1 model is too general to distinguish the slightly different e-mail commu-
nication patterns. Further the M2CNPP model spends much less computation time than
the CNPP1 model.

To improve our M2CNPP model, we will investigate more generalized forms of λ(t).
In this paper, we set λ(t) to be a stepwise function, then the estimated parameters are
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influenced by the division of the time window, and there are too many parameters to be
estimated. To solve these problems, a general intensity function λ(t) should be consid-
ered, such as kernel density functions, which were used in a self-exciting process proposed
by [12].

6. Conclusions and future research

In this paper, we propose an extension of the CNPP1 and the CNPP2 models in order to
describe more complex periodic patterns and cascades phenomenon of human communi-
cation as well as efficiently compute the parameter estimates. Our motivation is to leverage
the rapidly increasing volume of e-mail communication to characterize individual behav-
iors. We apply the newmodel, M2CNPP to simulated data and a university e-mail data set.
Our results clearly demonstrate that the proposedM2CNPPmodel can accurately describe
both the periodic cascading patterns and the heavy tail property observed in e-mail com-
munication. Additionally, we use BIC to reduce the possibility of overfitting, whereas in
[22], the area statistic S in Equation 12 is directly minimized using numerical methods
without considering the overfitting problem. Our model does not display any large sys-
tematic deviations from data (Figure 7). In addition to providing a better explanation of
patterns in e-mail communication, this model can be easily adapted to describing other
human actions such as individual mobility patterns [14]. Furthermore, our method uses
a non-parametric method rather than specifying a deterministic distribution structure to
mining the cascading behavior.

Future research will involve the generalization of λ(t) including many different forms.
As in [22], we assume our estimate λ̂(t) be a stepwise function, then the estimated parame-
ters are influenced by the division of timewindow. To solve the problem, a general intensity
function λ(t) should be considered, such as kernel density functions.
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Appendices

Appendix 1. Proof of Theorem 4.1

For easy reference, a set of properties about a point process are described below.
Let {Np(t)} be the primary non-homogeneous Poisson process, and let {Nc(t)} be the cas-

cading homogeneous Poisson process. Define Np
t,t+h = Np(t + h)− Np(t), �(t) = ∫ t

0 λ(x) dx and
�t,t+h = �(t + h)−�(t), one gets

P{Np
t,t+h = n} = �n

t,t+h
n!

exp{−�t,t+h}.

For the non-homogeneous Poisson counting process, the probability density function of an event
occurring at tk and no event occurring in (tk−1, tk] is

f (tk) � lim
�t→0

P{Np
tk−�t,tk = 1,Np

tk−1,tk−�t = 0}
�t = λ(tk) exp{−�tk−1,tk}, (A1)

tk−1 ≤ tk, otherwise, f (tk) = 0. For the homogeneous Poisson counting process, the probability
density function of an event occurring at tk and no event occurring in (tk−1, tk] is

g(tk) � lim
�t→0

P{Nc
tk−�t,tk = 1,Nc

tk−1,tk−�t = 0}
�t = λa exp{−λa(tk − tk−1)} (A2)

when tk−1 ≤ tk, otherwise, gt(tk) = 0.
Since the M2CNPP model has both discrete and continuous random variables involved, the

likelihood function can be written as in Equation A3,

L = P{Xj = 0, j ∈ J = {j1, . . . , jm} ⊂ {1, . . . , n− 1}, tni }

� lim
�t→0

P{Xj = 0, j ∈ J, ti −�t ≤ ti ≤ ti, 1 ≤ i ≤ n}
�tn . (A3)

Then one can obtain Equation 7.
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Proof: The conditional expectation of log-likelihood function with the current state variables
{X1, . . . ,Xn−1} can be calculated as follows:

Q(�,A;�(l),A(l)) =
1∑

i=0
log a0,iP(i1 = i|tn1 ;�(l),A(l))

+
n−2∑
k=1

r∑
i=0

∑
j∈{0,i+1}

j≤r

log ai,jP(Xk = i,Xk+1 = j|tn1 ;�(l),A(l))

+ log f (t1)+
n−1∑
k=1

r∑
i=0

log bi(tk+1)P(Xk = i|tn1 ;�(l),A(l))

=
1∑

i=0
log a0,i

n−2∑
k=0

P(Xk = 0,Xk+1 = i|tn1 ;�(l),A(l))

+
n−2∑
k=1

r−1∑
i=1

∑
j∈{0,i+1}

log ai,jP(Xk = i,Xk+1 = j|tn1 ;�(l),A(l))

+
n−1∑
k=0

log f (tk+1)P(Xk = 0|tn1 ;�(l),A(l))

+
n−1∑
k=1

r∑
i=1

log g(tk+1)P(Xk = i|tn1 ;�(l),A(l))

=
1∑

i=0
log a0,i

n−2∑
k=0

P(Xk = 0,Xk+1 = i|tn1 ;�(l),A(l))

+
n−2∑
k=1

r−1∑
i=1

∑
j∈{0,i+1}

log ai,jP(Xk = i,Xk+1 = j|tn1 ;�(l),A(l))

+
24∑
i=1

7∑
j=1

⎡⎣∑
k∈K1

P(Xk = 0|tn1 ;�(l),A(l)) log λi,j

−λi,j

(n−1∑
k=0

(tk+1 − tk)i,jP(Xk = 0|tn1 ;�(l),A(l))

)]

+
[n−1∑
k=1

r∑
i=1

P(Xk = i|tn1 ;�(l),A(l))

]
log λa

− λa

n−1∑
k=1

[(
tk+1 − tk

) r∑
i=1

P(Xk = i|tn1 ;�(l),A(l))

]

where P(i0 = 0) = P(X0 = 0) = 1; log ar,0 = 0; K1 = {k : [tk+1/24]|7 = j, [tk+1]|24 = i, 0 ≤ k ≤
n− 1}, [·] is the function rounding up to the nearest integer; (tk+1 − tk)i,j is the time interval
(tk, tk+1] corresponding to the intensity rate λi,j; a|b = a mod b represents arithmetic modulus b.

Under the constraint ak,0 + ak,k+1 = 1, 0 ≤ k ≤ r− 1 and using Lagrangian multiplier method,
one gets the estimated parameters ak,0, ak,k+1, 0 ≤ k ≤ r− 1 by letting the corresponding partial
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derivatives equal zero. That is,

â(l+1)
0,i =

∑n−2
k=0 P(Xk = 0,Xk+1 = i|tn1 ;�(l),A(l))∑n−2

k=0 P(Xk = 0|tn1 ;�(l),A(l))
, i = 0, 1,

â(l+1)
i,j =

∑n−2
k=1 P(Xk = i,Xk+1 = j|tn1 ;�(l),A(l))∑n−2

k=1 P(Xk = i|tn1 ;�(l),A(l))
, j ∈ {0, i+ 1}, i = 1, . . . , r− 1,

The parameter λa can also be estimated by letting the corresponding partial derivative equal zero,
which is

λ̂(l+1)
a =

∑n−1
k=1

∑r
i=1 P(Xk = i|tn1 ;�(l),A(l))∑n−1

k=1[(tk+1 − tk)
∑r

i=1 P(Xk = i|tn1 ;�(l),A(l))]
.

For estimating Nw, λhi , λ
d
j , i = 1, . . . , 24, j = 1, . . . , 7, we first fix Nw = N̂(l)

w and λhi = λ̂hi
(l)
. Under

the constraint
∑7

j=1 λdj = 1 and using Lagrangian multiplier method, one gets the estimated
parameters λdj , j = 1, . . . , 7 by letting the corresponding partial derivatives equal zero. That is,

λ̂dj
(l+1) =

λ̃dj
(l+1)

∑7
j=1 λ̃dj

(l+1) , j = 1, . . . , 7,

where

λ̃dj
(l+1) =

∑24
i=1 d

(l)
i,j∑24

i=1 λ̂hi
(l)
c(l)i,j

, j = 1, . . . , 7,

ci,j =
∑

k(tk+1 − tk)i,jP(Xk = 0|tn1 ;�(l),A(l)) and di,j =
∑

k∈K1
P(Xk = 0|tn1 ;�(l),A(l)). We then fix

Nw = N̂(l)
w and λhj = λ̂hj

(l+1)
. Under the constraint

∑24
i=1 λdi = 1 and using Lagrangian multiplier

method, one gets the estimated parameters λdi , i = 1, . . . , 24 by letting the corresponding partial
derivatives equal zero. That is,

λ̂hi
(l+1) = λ̃hi

(l+1)

∑24
i=1 λ̃hi

(l+1) , i = 1, . . . , 24,

where

λ̃hi
(l+1) =

∑7
j=1 d

(l)
i,j∑7

j=1 λ̂dj
(l+1)

c(l)i,j
, i = 1, . . . , 24.

Finally, let λhj = λ̂hj
(l+1)

and λhi = λ̂hi
(l+1)

, we have the estimated parameter Nw, which is

N̂(l+1)
w =

⎛⎝ 7∑
j=1

λ̃dj
(l+1)

⎞⎠( 24∑
i=1

λ̃hi
(l+1)

)
.
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Let �
(l+1)
1 =

{
N̂w

(l), λ̂a
(l+1), λ̂hi

(l)
, λ̂dj

(l+1)
, i = 1, . . . , 24, j = 1, . . . , 7

}
and �

(l+1)
2 ={

N̂w
(l), λ̂a

(l+1), λ̂hi
(l+1)

, λ̂dj
(l+1)

, i = 1, . . . , 24, j = 1, . . . , 7
}
, one has

Q(�(l),A(l);�(l),A(l)) ≤ Q(�
(l+1)
1 ,A(l+1);�(l),A(l))

≤ Q(�
(l+1)
2 ,A(l+1);�(l),A(l))

≤ Q(�(l+1),A(l+1);�(l),A(l)).

This completes the proof. �

Remark A.1: In application, the basic time unit is an hour. The beginning of the day, regardless of
what day of the week it is, of the first time in the data is determined as t0 = 0. λ1,1 represents the
intensity rate parameter of the first hour in the day that contains the first time in the data. Then the
time can be adjusted to the standard one after the parameters are estimated. Note that the probability
distribution of the first hidden state needs not to be π = {a0,0, a0,1, 0, . . . , 0} in practice, however,
with this assumption, it is easier to derive the parameter estimates. Therefore in this paper, we assume
that the initial status is 0.

Remark A.2: For efficiently calculating the above estimates, one can refer to [4].

Appendix 2. The relationship between CNPP1 and the proposedM2CNPP

In [22], the proposed cascading structure of CNPP1 requires intensive computation. To handle this
problem, we propose our multi-state Markov CNPP. Although the assumption of the Markov prop-
erty for cascading process is stronger than the assumed cascading structure in the CNPP1 model,
we can show that the maximum likelihood estimates of the intensity parameters of the M2CNPP
model are the same as those estimated in the CNPP1 model with the full likelihood function in the
following.

In fact, since
∑r

k=0 P(Na = k) = 1, one gets the unique feasible solution that matches the tran-
sition probability A to P, which is the distribution law of Na in the CNPP1 model by solving the
system of equations (Equation (A4)).

P(Na = 0) = a0,0,

P(Na = k) =
k∏

i=1
ai−1,iak,0, k = 1, 2, . . . , r.

(A4)

The transition probabilities are expressed in Equation (A5).

a0,0 = P(Na = 0),

a0,1 = 1− P(Na = 0),

ak,0 = P(Na = k)

1−∑k−1
i=0 P(Na = i)

, k = 1, 2, . . . , r,

ak,k+1 =
1−∑k

i=0 P(Na = i)

1−∑k−1
i=0 P(Na = i)

, k = 1, 2, . . . , r− 1.

(A5)

Suppose A∗, �∗ and I∗ are the unique optimal solutions of the likelihood functions L. Then the
P that satisfies Equations (A4) with �∗ and I∗ are the unique optimal solutions of the likelihood
functions L1. Otherwise, by using Equations (A5), one can always obtain another set of solutions,
which is different from (A∗,�∗, I∗) and can achieve a higher likelihood value.
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