
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

Mechanical Systems and Signal Processing 84 (2017) 499–515
http://d
0888-32

☆ This
CSTC of
(Grant n

n Corr
E-m
journal homepage: www.elsevier.com/locate/ymssp
Extracting harmonic signal from a chaotic background
with local linear model$

Chenlong Li a, Liyun Su b,n

a School of Science, Tianjin University, Tianjin 300072, China
b School of Mathematics and Statistics, Chongqing University of Technology, Chongqing 400054, China
a r t i c l e i n f o

Article history:
Received 23 February 2016
Received in revised form
14 June 2016
Accepted 25 July 2016
Available online 3 August 2016

Keywords:
Chaotic background noise
Weak harmonic signal
Two-layer local linear model
Detection and estimation
x.doi.org/10.1016/j.ymssp.2016.07.040
70/& 2016 Elsevier Ltd. All rights reserved.

project was supported by Natural Science F
China (Grant no. cstc2014jcyjA40003), and S
os. KJ130818 and KJ130810).
esponding author.
ail address: cloudhopping@163.com (L. Su).
a b s t r a c t

In this paper, the problems of blind detection and estimation of harmonic signal in strong
chaotic background are analyzed, and new methods by using local linear (LL) model are
put forward. The LL model has been exhaustively researched and successfully applied for
fitting and forecasting chaotic signal in many chaotic fields. We enlarge the modeling
capacity substantially. Firstly, we can predict the short-term chaotic signal and obtain the
fitting error based on the LL model. Then we detect the frequencies from the fitting error
by periodogram, a property on the fitting error is proposed which has not been addressed
before, and this property ensures that the detected frequencies are similar to that of
harmonic signal. Secondly, we establish a two-layer LL model to estimate the determinate
harmonic signal in strong chaotic background. To estimate this simply and effectively, we
develop an efficient backfitting algorithm to select and optimize the parameters that are
hard to be exhaustively searched for. In the method, based on sensitivity to initial value of
chaos motion, the minimum fitting error criterion is used as the objective function to get
the estimation of the parameters of the two-layer LL model. Simulation shows that the
two-layer LL model and its estimation technique have appreciable flexibility to model the
determinate harmonic signal in different chaotic backgrounds (Lorenz, Henon and
Mackey–Glass (M–G) equations). Specifically, the harmonic signal can be extracted well
with low SNR and the developed background algorithm satisfies the condition of con-
vergence in repeated 3–5 times.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos theory has been considered in signal processing for about two decades [1]. Along with the development of the
chaos theory, many researchers have found chaos theory may provide a novel tool to signal processing. As we see from
recent works on chaos, the applications of chaos to varieties of disciplines have drawn great attention, many researchers are
interested in these challenging problems and take many efforts, and there are many applications of chaotic signal processing
that have been considered in many different fields [2–12].
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An interesting conventional signal processing problem is that the determinate signal is corrupted by noise and we need
to extract the signal or reduce the noise. In general, the noise is considered as White Noise. And chaos theory has been found
that it could provide an efficient tool to solve this problem. In Ref. [13], Duffing oscillator is used for detecting signal. An
array of oscillators have been successfully applied in detection applications [14–16]. On the other hand, in our surrounding,
lots of noise have been found chaotic [1–3]. And a variety of researches that the chaotic signal acts as noise in a detection
and estimation problem have been done, and the determinate signal that is of direct interest and is corrupted by chaotic
noise [4–12]. As many signals possess applications, researchers are interested in extracting the determinate signal, and
statistics has been considered as a major tool to perform chaotic signal analysis at first. Then, some researchers applied a
nonlinear predictor to model the chaotic signal background and a model-based algorithm is considered to detect the de-
terminate signal in chaotic background [9]. But it is not real advantages in practical applications when compared to the
conventional approaches because there is lack of efficient processing techniques to exploit the chaotic properties [1]. For
instance, although chaotic signals have chaotic characteristics, chaotic signal processing use conventional concepts such as
correlators and do not exploit any chaotic characteristics in many literatures, and there is no doubt that no significant
benefit is obtained [1].

A natural approach is to investigate whether the received signal matches the nonlinear map f which generates the
chaotic signal, in other words, as chaotic systems are very sensitive to the initial value and if the target signal exists, it will
not fit the mapping f well, and it results in relatively large mean-squared error (mse) on the estimators. If the nonlinear
function f is unknown, we will fit some nonlinear models such as neural networks to the signals in the detection problem
[17,18]. In practice, the frequencies could be detected from the fitting error in some researchers' study. However, it is noted
that extracting target signal's frequencies in fitting error efficiently is a problem because the nonlinear models break the
structure of the target signals, and we cannot ensure that if the frequencies are the same as that of the target signal. In our
opinion, to extract target signal efficiently, more chaotic signal processing techniques should be developed. And these
techniques should be able to exploit the underlying chaotic characteristics.

In this paper, we investigate a variety of signal processing techniques in which chaotic characteristics have been con-
sidered. Based on the short term predictability and sensitivity to initial value, an efficient hybrid processing technique is
proposed, which can be used for detecting and estimating of harmonic signal in chaotic noise background that the nonlinear
mapping f is unknown. We first consider the problem that detection of harmonic signal in chaotic noise background. We use
the LL model to form an approximated model for f. The LL model is one of the local methods using only part of the past
information to approximate the local attractor [19]. The future values can be inferred by using the neighborhoods of the
current point. For most chaotic time series, the LL model is valid. And the frequencies can be detected from the fitting error,
and a property is proved to ensure that they have the similar frequencies. Then a two-layer LL model is proposed to extract
the harmonic signal from chaotic background.

The rest of the paper is organized as follows. In Section 2, we will first give a formulation of detection and estimation, as
most signal processing problems, which can be categorized into these two functions. Then, we develop an detection
technique that has not been proposed in the literature and provide a two-layer LL model for estimating. The results of
simulation are reported in Section 3, up-to-date researches on detection and estimation of the harmonic signal are reported,
which demonstrate that the proposed methodology has appreciable flexibility to detect and estimate the determinate
harmonic signal in strong chaotic background. The conclusion of this paper is given in Section 4.
2. Methodology formulation

We establish a two-layer LL model to estimate the determinate harmonic signal. An exhaustive search is intractable. To
solve this, we develop an efficient backfitting algorithm which has been successfully applied for estimating parameters in
other models such as the AFAR model. Further we provide a property on the detection problem by using LL models fitting
error which has not been addressed before.

The methodology in this section mainly researches three key aspects:

(1) One result on the frequencies in fitting error is derived under some assumptions.
(2) The accuracy of the estimated frequencies of the determinate harmonic signal.
(3) To establish a two-layer LL model and estimate the determinate harmonic signal by the backfitting algorithm.

2.1. Phase space reconstruction and LL model

For a scalar chaotic signal ( ) ( ) … ( )x x x n1 , 2 , , , the first step of establishing a LL model is the phase space reconstruction.
According to Takens' embedding theory [20], the phase space can be reconstructed, and the reconstructed phase points are

τ τ( ) = ( ( ) ( − ) … ( − ( − ) ))′X t x t x t x t m, , , 1 , where = + …t n n n, 1, ,1 1 and τ= + ( − )n m1 11 . The embedding dimension m and

the time delay τ can be obtained by using Cao's method [21]. Then, a continued vector mapping →F R R: m m or →f R R: m

can be used to describe the unknown evolution from X(t) to ( + )X t 1 or ( + )x t 1 . That is ( + ) = ( ( ))X t F X t1 or
( + ) = ( ( ))x t f X t1 . Then, we approximate the mapping f by a LL model. That is,



Fig. 1. Local linear (LL) model.
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where θ ( ) = ( ( ) ( ) … ( ))′t c t c t c t, , , m1 2 . This model is displayed in Fig. 1. In order to obtain LL model's parameters at the current
state point X(t) in the reconstructed phase space, we select q nearest neighbor points ( )( = … )X t i q1, 2, ,i by using the
Euclidean distances ( ) = ∥ ( ) − ( )∥d j X j X t 2 ( = + … −j n n n, 1, , 11 1 and ≠j t). We can estimate the parameters θ ( )t at the
current state point X(t) through the least square equation
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It follows from least squares theory that

θ χ χ χ^( ) = { ′( ) ( )} ′ ( ) ˜ ( ) ( )−t t t t X t . 31

Then we can fit the mapping f, and the fitting error can be obtained. The LL filtering is shown in Fig. 2.
Indeed, we observe that some of the chaotic time series cannot be approximated well by LL model. And in this paper, we

focus on studying the harmonic signal in chaotic noise which can be approximated well by LL model. Hence we present the
hypothesis (or the prerequisite) that the chaotic noise can be approximated well by LL model.

2.2. Detection method

We first consider the problem of detection of deterministic harmonic signal in chaotic noise. The relative signal pro-
cessing problem can be formulated as a binary hypotheses problem (H0: no harmonic signal; H1: harmonic signal exists).
That is,

( ) = ( )

( ) = ( ) + ( ) ( )

H y t x t

H y t x t s t

: ,

: , 4

0

1

where y(t) is the measured signal, x(t) is the chaotic signal, s(t) is the deterministic harmonic signal and independent of x(t).
A natural approach is to investigate whether the received signal match f, in practical, frequencies could be detected from the
fitting error. In this paper, we use a LL model to form an approximated model for f. Furthermore, based on the property of
below, we think that the detected frequencies of fitting error are as same as that of original signal.

Property of fitting error of LL model: Assume that hypotheses of the prerequisite and H1 hold, and

πω φ( ) = ∑ ( + )=s t A tsin 2k
p

k k k1 are weak signals which is independent of chaotic noise. Then, for gt defined by LL model

obtained by using y(t), one gets:

∑ ψ πω φ ϕ( + ) − ( ( )) = ( ) ( + + ( ))
( )=

s t g S t A t t t1 sin 2 ,
5

t
k

p

k k k k k
1



Fig. 2. LL Filtering.
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where τ τ( ) = ( ( ) ( − ) … ( − ( − ) ))′S t s t s t s t m, , , 1 , the embedding dimension m and the time delay τ are obtained by Cao's
method, ψ ( )tk and ϕ ( )tk change with time.

Proof. We firstly verify the explicit form of ( + ) − ( ( ))s t g S t1 t . According to hypotheses H1, we have

( ) = ( ) + ( )y t x t s t ,

where y(t) is the measured signal, x(t) is the chaotic signal and s(t) is the deterministic harmonic signal.
Note that s(t) is the weak signal and independent of chaotic noise, we can reconstruct y(t) with embedding dimension m

and time delay τ by Cao's method. Then, we can get the reconstructed phase points

τ τ( ) = ( ( ) ( − ) … ( − ( − ) ))′ = ( ) + ( )Y t y t y t y t m X t S t, , , 1 ,

where τ τ( ) = ( ( ) ( − ) … ( − ( − ) ))′X t x t x t x t m, , , 1 , τ τ( ) = ( ( ) ( − ) … ( − ( − ) ))′S t s t s t s t m, , , 1 and = + …t n n n, 1, ,1 1 . Thus, we
can establish a LL model. That is,

∑ τ θ( ( )) = ( ) ( − ( − ) ) = ′( ) ( )
( )=

g Y t c t y t j t Y t1 ,
6

t
j

m

j
1

where τ τ( ) = ( ( ) ( − ) … ( − ( − ) ))′Y t y t y t y t m, , , 1 . It follows from Eq. (22) that

θ χ χ χ^( ) = { ′( ) ( )} ′ ( ) ˜ ( ) ( )−t t t t Y t , 71

where the elements of χ ( )t and ˜ ( )Y t are replaced by y(t), respectively. Then, we compute

∑ πω φ θ( + ) − ( ( )) = [ ( ( + ) + ) − ^′( ) ( )]
( )=

s t g S t A t t U t1 sin 2 1 ,
8

t
k

p

k k k k
1

where πω φ πω τ φ πω τ φ( ) = ( ( + ) ( ( − ) + ) … ( ( − ( − ) ) + ))U t t t t msin 2 , sin 2 , , sin 2 1k k k k k k k .
Notice that

( ( ) ) ( ) ( )∑ ∑πω φ θ γ πω φ γ πω φ+ + − ^′( ) ( ) = ( ) + + ( ) ¯ +
( )= =

⎛
⎝
⎜⎜
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⎝
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⎟⎟t t U t c t t c t tsin 2 1 sin 2 cos 2 ,

9
k k k

j

m

j j k k
j

m

j j k k
0 0

where ( ) ≡c t 10 ,
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Then, we have

πω φ θ ψ πω φ ϕ( ( + ) + ) − ^′( ) ( ) = ( ) ( + + ( )) ( )t t U t t t tsin 2 1 sin 2 , 10k k k k k k k

where ( ) ( )( )
( ) ( )ψ Ω Υ Ω Υ ϕ Ω θ Υ γ γ γ Υ γ γ γ( ) = ( ′( ) ) + ( ′ ¯ ) ( ) = ( ) = ( ^′( ))′ = ( … )′ ¯ = (¯ ¯ … ¯ )′
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t

t m m
2 2
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This completes the proof. □

Note that

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ( )) ( ) ( ( )) ( )ε+ = + − = + + + − − = + − + + ( )e t y t g Y t x t s t g X t g S t s t g S t t1 1 1 1 1 1 , 11t t t t

where ε ( + ) = ( + ) − ( ( ))t x t g X t1 1 t are independent of ( + ) − ( ( ))s t g S t1 t . Hence, we consider using periodogram to identify
the frequencies of harmonic signal from e(t). Here we assume that ε ( )t cannot affect the detection because of the in-
dependence and the large fitting error is caused by s(t). It looks like that the harmonic signal is converted into narrow-band
signal by the LL model. And the central frequencies of ( + ) − ( ( ))s t g X t1 t can be detected by periodogram, which has been
considered as a tool to detect frequencies of signal for years, hence, we will no longer introduce it in this paper.
2.3. Two-layer LL model and estimation of harmonic signal

In this section, we think about building a two-layer LL model and estimate the deterministic harmonic signal in chaotic
noise. If hypothesis H1 holds, LL model cannot match the nonlinear mapping f well, hence large fitting error will result.
Hypothesis testing can be applied to the fitting error. That is,

δ

δ

* <
* > ( )

H mse

H mse

: ,

: , 12

0

1

where = ∑ ( + )− =
−mse e t 1

n n t n
n1 1 2

1 1
is the mean square function of fitting error ( + )e t 1 and δ is the detection threshold.

Further, we change the idea to consider this hypothesis testing in Section 2.3.2.
2.3.1. Two-layer LL model
Denote

πω πω πω πω

β

β

( ) = ( ( ) … ( ) ( ) … ( ))′

= ( … … )′

* ( ) = ( ) − ′ ( )

ss t t t t t

a a b b

y t y t ss t

cos 2 , , cos 2 , sin 2 , , sin 2 ,

, , , , , ,

,

p p

p p

1 1

1 1

where ω = …i p, 1, 2, ,i are the detected frequencies from above section and p is the number of frequencies. We use *( )y t to
establish the LL model, and then a two-layer LL model can be established. That is,

∑

β

τ

* ( ) = ( ) − ′ ( )

* ( + ) = ( *( )) = ( ) * ( − ( − ) )
( )=

⎧
⎨⎪

⎩⎪

y t y t ss t

y t g Y t c t y t j

,

1 1 ,
13

t
j

m

j
1

where τ τ*( ) = ( *( ) *( − ) … *( − ( − ) ))′Y t y t y t y t m, , , 1 . This model is displayed in Fig. 3.
Fig. 3. Two-layer LL model.



Fig. 4. Backfitting algorithm.
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2.3.2. Estimation method
The parameters β are selected to against hypothesis *H1 . Thus, we select the optimal β directly at which the mean-squared

error is minimized. That is,

∑β θ= [ * ( + ) − ^( ) *( )]
( )β =

−

y t t Y targ min 1 ,
14t n

n 1
2

1

where θ θ^ ( ) = ∑ [ *( + ) − ( ) *( )]θ ( ) =t y t t Y targmin 1t i
q

i i1
2. Then, the estimation of s(t) can be denoted as β^ ( ) = ′ ( )s t ss t .

For estimating β, one needs θ ( )t known, however, the estimators of θ ( )t relay on β. An exhaustive research is knotty, thus
we follow the backfitting algorithm [22] and develop it to estimate β and θ ( )t . Based on the backfitting algorithm, this issue
can be split into two parts: estimation of function (·)gt with given β and estimation of β with given (·)gt . The estimation
method is given below and its diagram is displayed in Fig. 4.

(a) Estimation of LL model with given β: For given β, we need to estimate

∑θ θ( ) = [ * ( + ) − ′( ) *( )] = … −
( )θ ( ) =

t y t t Y t t n narg min 1 , , , 1.
15t

i

q

i i
1

2
1

With *( )y t , *( )Y t and ˜*( )Y t instead of x(t), X(t) and ˜ ( )X t in Section 2.1, respectively. The estimators (·)gt can be obtained. That
is,

θ χ χ χ^( ) = { ′( ) ( )} ′ ( ) ˜*( ) ( )−t t t t Y t . 161

(b) Search for β-direction with the (·)gt fixed. For given (·)gt , we search for β to minimize

∑β θ( ) = [ * ( + ) − ^′( ) *( )]
( )=

−

R y t t Y t1 .
17t n
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1
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It is easy to see from Eq. (17) that
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It follows from least squares theory that

β̂ = { ′ } ′ ( )−V V V Z, 191

where = ( ( ) ( + ) … ( − ))V V n V n V n, 1 , , 11 1 , = ( ( + ) ( + ) … ( ))′Z z n z n z n1 , 2 , ,1 1 .
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2.3.3. The convergence conditions
In this subsection, we shall give the convergence conditions of the process of successive approximations of items (a) and (b).
In item (a), in order to estimate θ ( )tk with given βk, one needs to minimize

∑θ θ( ( )) = [ * ( + ) − ′( ) *( )] = … −
( )

β
=

mse t y t t Y t t n n1 , , , 1.
20
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Substituting β*( ) = ( ) − ′ ( )y t y t ss t and ( ) = ( ) + ( )y t x t s t into Eq. (20), one gets
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where β χϵ( ) = ˜ ( ) − ′ ( )t S t tk1 2 and ξ χ( ) = ˜ ( ) − ( )t S t t2 3 .
In item (b), in order to estimate βkþ1 with given θ ( )tk , we need to minimize
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Then we have

β ε Ξ Ξ χ β( ) = ∥ + ( − ) ˜ − ( − ) ∥ ( )θ ( )
+ +′mse E S E , 23b t s, 2

2
k

Compared with the original optimization objectives below

θ θ χ( ( )) = ∥ ˜ ( ) − ′( ) ( )∥ ( )mse t X t t t , 24a 1 2
2

β χ β( ) = ∥ ˜ − ∥ ( )
+ +′mse S , 25b s 2

2

it can be seen that the optimization objectives (Eqs. (21) and (23)) are disturbed by a jamming. If the jamming is weak, the
solutions of optimizing objectives (Eqs. (21) and (23)) can be treated as a suboptimum solutions of optimizing objectives
(Eqs. (24) and (25)), respectively.
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In fact, since s(t) is the weak signal, we select 0 as the initial value of β. And the meaning of weak in Eq. (21) can be
defined by the SNR(t) (signal-to-noise ratio). That is,

( ) ( )
( ) ( )χ

( ) =
∥ ˜ ∥

∥ ˜ ∥
≤ ▵ ( ) =

∥ ˜ ∥

∥ ∥
≤ ▵′

( )
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⎠
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⎠
⎟⎟SNR t

S t

X t
SNR t

S t

t
10 log , 10 log ,

26
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2

2
2 1 2 10

2
2

1
2 1

where matrix norm ( )∥ ∥ = ∑ ∑ ( )= =A aF i
m

j
n

ij1 1
2 1/2

is the Frobenius norm, = + … −t n n n, 1, , 11 1 . For the data with sample size

−n n1, we have

= ∥ ˜ ∥
∥ ˜ ∥ ( )

⎛
⎝⎜

⎞
⎠⎟SNR

S
X

10 log .
27

10
1 2

2

2
2

Since = + … −t n n n, 1, , 11 1 take almost all points and the local points are selected by Euclidean distance, one can con-
jecture that the SNR has a relationship with SNR(t): suppose the sum of ∥ ˜ ( )∥S t1 2

2 for all t and that of ∥ ˜ ( )∥X t 2
2 are respectively

q times ∥ ˜ ∥S1 2
2 and ∥ ˜ ∥X 2

2 where q is the number of local points. Then we have ∥ ˜ ∥ =q S1 2
2
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holds under the similar assumption. That is,

≤ {▵ ▵′} ( )SNR min , . 281 1

If inequation (28) holds with the same assumptions above, one gets

∑ ∑( ) ≤ ▵ ( ) ≤ ▵′
( )=

−
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1 1

1
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which means that the upper bound ▵1,1 of SNR should be less than {▵ ▵′}min ,1 1 to ensure most of the ( )SNR t1 and ( )SNR t2 at
point t less than ▵1 and ▵′1, respectively. It depends on the variances of ( )SNR t1 and ( )SNR t2 . Now, for the first iteration, the
optimal solution of minimum (Eq. (21)) in term (a) can be treated as a suboptimum solution of minimum Eq. (24).

For Eq. (23), the meaning of weak can be defined by the SNR1. That is,

ε
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Using the matrix norm, one gets ε Ξ Ξ∥ ∥ ≤ ∥( − ) ˜ ∥ ≤ ∥( − )∥ ∥ ˜ ∥
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in which the point at =t n1 is ignored (the same below). Let ▵ = − ▵ +
ε

Ξ
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, and ≥ ▵SNR 3,1, one gets

inequation (30). Note that the unknown sine signal can be expressed as β′ ( )ss ttrue where β′true is the truth-value. Let β β= true

with condition

(A1): The frequencies of sine signal are known, one gets Ξ Ξ χ β χ β∥( − ) ˜ − ( − ) ∥ = ∥ ˜ − ∥ =+ +′ + +′E S E S 0s s2
2

2
2 . Hence the op-

timal solution of minimum Eq. (23) in term (b) can be treated as suboptimum solution of Eq. (25) under condition
≥ ▵SNR 3,1.

Here we summarize the analysis. In the initial iteration of item (a), we take β β= = 01 . Under condition.
(A2.1): ≤ ▵SNR 1,1, one gets θ θ( ) = ( ( ))θ β( )t mse targmin t a1 , 1 . In the initial iteration of item (b), we take θ θ( ) = ( )t t1 . Under

condition.
(A3.1): ≥ ▵SNR 3,1, one gets β β= ( )β θ ( )mseargmin b t2 , 1 which is a suboptimum solution of the optimization objective

equation (25). In the second iteration of item (a), we take β β= 2. Under the condition (A2.2): ≤ ▵SNR 1,2 and the prerequisite
condition.

(A4): The less jamming in chaotic signal, the more prediction accuracy of chaotic signal can be obtained by LL model, that
is, if β β( ) ≤ ( )θ θ( ) ( )mse mseb t b t, 2 , 11 1 , then β β( ) ≤ ( )θ θ( ) ( )mse mseb t b t, 2 , 12 1 , where ▵1,2 is a new upper bound that makes inequation

(26) holds and θ θ( ) = ( ( ))θ β( )t mse targmin t a2 , 2 . In the second iteration of item (b), we take θ θ( ) = ( )t t2 . Under condition.

(A3.2): ≥ ▵SNR 3,2, where ▵3,2 is a new lower bound that makes inequation (30) holds, one gets

β β( ) ≤ ( )θ θ( ) ( )mse mseb t b t, 3 , 22 2 in which β β= ( )β θ ( )mseargmin a t3 , 2 . Which means β3 is a better suboptimum solution of the op-

timization objective equation (25) than β2. Thus, by using condition (A4) again, and conditions {(A2.k)} and {(A3.k)} hold in
the following iteration, one gets



Fig. 5. Two-layer LL filtering algorithm.

C. Li, L. Su / Mechanical Systems and Signal Processing 84 (2017) 499–515 507
( ) ( ) ( )( ) ( ) ( )β β β≤ ⋯ ≤ ≤ ( )θ θ θmse mse mse . 32b t k b t b t, , 2 , 1k 2 1

Then the algorithm is convergent and one gets a series of {▵ }k1, and {▵ }k3, . For SNR, there is a upper bound denoted by
▵* = {▵ ▵ … ▵ }max , , , k1 1,1 1,2 1, and a lower bound ▵* = {▵ ▵ … ▵ }min , , , k3 3,1 3,2 3, to ensure all {(A2.k)} and {(A3.k)} hold. So these
conditions can be replaced by conditions (A2): ≤ ▵*SNR 1 and (A3): ≥ ▵*SNR 3, respectively. And in the meaning that

β β( ) ≤ ( )θ θ( ) ( ) −− −mse mseb t k b t k, , 1k k1 1 , the βk is estimated better than βk�1.

Remark 1. Eq. (28) shows that the SNR needs a upper bound. Eq. (31) shows that the SNR needs a lower bound. Since β1 is
selected and β2 is a suboptimum solution, it can be seen that the first nmse1 should be small and the second mse2 where

β= ( )θ− ( )mse msek n n b t k
1

, k1
should be rapid reduce. One can see these in Fig. 8 in Example 2. On the other hand, we first detect

the frequencies of sine signal from the fitting error by periodogram with high accuracy so that the condition (A1) holds. If
the sine signal is proper weak, the conditions (A2) and (A3) hold. The condition (A4) is a prerequisite condition, which is
compatible with the prerequisite condition.
(A5): The chaotic signal is well approximated by LL model, that is, ε∥ ∥2

2 is small.

2.4. Performance of algorithm

We now outline the algorithm. Fig. 5 presents the algorithm diagram.
Step 1: For a scalar time series y(t), = … −t n1, 2, , 1, reconstruct phase space with the embedding dimension m and the

time delay τ.
Step 2: Compute the Euclidean distances and select the nearest q points.
Step 3: Establish LL model and identify the frequencies from fitting error by using periodogram.
Step 4: Specify an initial value of β, repeat (a) and (b) below until two successive values of β defined in Eq. (14) differ

insignificantly.

(1) For a given β, estimate (·)gt by Eq. (16).
(2) For given (·)gt , estimate β by Eq. (19).

Step 5: Fit s(t) with the obtained β̂ in step 4.
Some additional remarks are now in order.

Remark 2.

i. The embedding dimension m and the time delay τ can be obtained by the autocorrelation function method and Cao's
method in step 1, and we let the number of nearest points = +q m2 1 in step 2.

ii. We extract the determinate signal in step 4, there are some key aspects:

(1) Denote ω̂k are estimation of ωk, and they are not the same. As → ∞t , it will cause a sufficiently large error for a sine
function. Then, the estimation of β in step 4 may not be estimated well because of the error. In order to solve this
problem, for y(t) with data size T, we search for ωk further in step 4. We let ω̂k change ω▿ = −10 k where > + ( )k T1 log10
each time in the interval ω δ ω δ[ ^ − ^ + ],k k to ensure the estimation of β in step 4 is convergent. We let δ¼0.1 in terms of
the examples reported in Section 3. Further the ω̂*

k can be selected with the minimization mse.
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(2) We expect that the estimator derived will be good if the initial value of β is reasonably good. Note that s(t) is weak
signal, we select 0 as the initial value of the β. Because Cao's method has antinoise ability and the independence of s(t)
which is also weak signal, the embedding dimension and the time delay are not necessarily recomputed and the Eu-
clidean distances does not need to be calculated again when the β is iterated.

iii. After obtaining embedding dimension and time delay, we select sample size to reduce the computational error when the
frequencies are estimated. For example, we have data with sample size 5000 and embedding dimension and the time
delay are repetitive m and τ, we select data with sample size τ+ ( − )m4001 1 to estimate frequencies.

Remark 3.

i. To speed up the computation further, we can use parallel computing technique in step 4.
ii. In particular, the y(t) with data size T can be split into M parts with enough number to ensure the accuracy of the

estimation of β, such that we can speed up the computation and amend the estimation of phase of the deterministic
harmonic signal. For implementing this technique, the formulation of Eq. (18) should be rewritten as

∑β β( ) = [ ( + ) − ′ ( )] = …
=

−+

R z t V t i M1 , 1, 2, , ,i
t n

n

i

1
2

i

i 1

where = + ( − )−⎡⎣ ⎤⎦n n i 1i
n n

M1
1 , = …i M1, 2, , , [·] said rounding and =+n nM 1 . The parameters βi can be estimated:

β̂ = { ′ } ′−V V V Z ,i i i i i
1

where = ( ( ) ( + ) … ( − ))+V V n V n V n, 1 , , 1i i i i 1 , = ( ( + ) ( + ) … ( ))′+Z z n z n z n1 , 2 , ,i i i i 1 . Then we can obtain

β^ ( ) = ^ ( ) ∈ −+
⎡⎣ ⎤⎦s t ss t t n n, , 1i i i 1 in steps 4 and 5. Furthermore, we can use low accuracy of ω▿ to obtain high accuracy

of estimation of s(t) by using this technique. We shall illustrate this in Example 3.
3. Simulation

Here, for the finite sample, we demonstrate the performance of the two-layer LL model by the fitting error and the SNR in
below examples. Three different equations (Lorenz, Henon and M–G equations) are considered to generate chaotic signals as
background noises. We mainly investigate two key aspects:

(1) Detection of frequencies of the deterministic harmonic signal and the performance with different SNRs and chaotic
backgrounds.

(2) Estimation of the deterministic harmonic signal and the performance with different SNRs and chaotic backgrounds.

Later, some results about these two aspects are reported in Example 1 and Examples 2–5, respectively.
The SNR can be described as follows

σ
σ

=
( )

⎛
⎝⎜

⎞
⎠⎟SNR 10 log ,

33
s

x
10

2

2

where ss
2
and sx

2
are quadratic sum of s(t) and x(t), respectively. The mse(y) is defined as Eq. (31). Cause the harmonic signal

is weak, we use the normalized mean square error, that is ( ) = ( ) ( )nmse s mse s var s/ , to describe the performance of esti-
mation of harmonic signal.

The Lorenz chaotic signal can be produced as follows [23]:

σ̇ = ( − )
̇ = ( − ) −
̇ = − ( )

⎧
⎨⎪

⎩⎪
x y x
y r z x y

z xy bz

,
,

, 34

where s, r and b are dimensionless parameters and mostly commonly selected to be s¼10, r¼28 and =b 8/3. The standard
fourth-order Runge–Kutta method is used to get the Lorenz chaotic signal and the x-coordinate is used for simulation.

Henon mapping is an evident dynamic system [24]. Its equations are written by

( + ) = − ( ) + ( )
( + ) = ( ) ( )

⎪

⎧⎨
⎩

x t ax t y t

y t bx t

1 1 ,

1 , 35

2

where a¼1.4 and b¼0.3.
The M–G equation has been used in the literature as a benchmark model due to its chaotic characteristics [25]. M–G time

series can be generated by the following discrete form:



Fig. 6. Simulation results for Example 1: (a1)–(a4) periodograms of fitting error of mixed harmonic and Lorenz signals with sample size 500, 1000, 2000
and 4000, respectively; (b1)–(b4) and (c1)–(c4) show that of mixed harmonic and Henon, M–G signals, respectively.
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τ
τ

( + ) = ( − ) ( ) + ( − )
+ ( − ) ( )

x t b x t
ax t

x t
1 1

1
,

3610

where a¼0.2, b¼0.1 and τ¼17, initial conditions ( ) | =≤x t 1.2t 0 .
Then we can get the mixed-signal ( ) =̂ ( ) + ( )y t x t s t by using above equations in Examples 1–5.

3.1. Example 1

Consider the harmonic signal

∑ πω( ) = ( + )
( )=

s t A tsin 2 1 ,
37k

k k
1

3

where =A 0.0031 , =A 0.0052 , =A 0.0073 , ω = 0.251 , ω = 0.152 , ω = 0.23 .
We compute that the embedding dimensions are 6, 4, 6 and the time delays are 7, 1, 6 of the mixed harmonic and Lorenz,

Henon, M–G signals, respectively. Then the mixed signals are selected with sample size 4036, 4004 and 4031, respectively.
The results are summarized in Fig. 6. Figs. 6(a1)–(a4) display periodograms of fitting error of mixed harmonic and Lorenz
signals with sample size 500, 1000, 2000 and 4000, respectively. Figs. 6(b1)–(b4) and 6(c1)–(c4) show the results of mixed
harmonic and Henon, M–G signals, respectively. It can be seen that the frequencies are detected more and more accurate
with the increase of sample size. For different SNRs, by using Eq. (38) with respective sample size 4036, 4004 and 4031 in
Example 4, we got the results that are displayed in Table 1. From Table 1, it can be seen that the frequencies can be detected
from fitting error of the mixed harmonic and Lorenz signal in the range from �171.03 dB to �74.47 dB, that of the mixed
harmonic and Henon signal in the range from �156.39 dB to �59.81 dB, and that of the mixed harmonic and M-G signal in
the range from �160.90 dB to �64.36 dB.

3.2. Example 2

The harmonic signal is generated by Eq. (37). Consider that we obtain ω ∈ [ ]0.24, 0.261 , ω ∈ [ ]0.14, 0.162 and
ω ∈ [ ]0.19, 0.213 . As we note in Remark 1 ii(1), we let ω▿ = −10 k where = > + ( )k t5 1 log10 to select frequencies more ac-
curately. Here, we conducted three simulations with

ω ω ω

ω ω ω

ω ω ω

= = =

= = =

= = =

0.25, 0.15, 0.2

0.2501, 0.1501, 0.2001

0.25001, 0.15001, 0.20001

1 2 3

1 2 3

1 2 3
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to illustrate Remark 1 (ii). From Fig. 7, we can see that both the harmonic signals of three groups can be extracted. The
performance of extracting the harmonic signal depends on the accuracy of estimation of the frequencies. Furthermore, from
Fig. 8, we can see that mse satisfies the condition of convergence in repeated 3–5 times. And the nmse of the harmonic
signals in Fig. 8 is convergent if the accuracy of the estimated frequencies are obtained accurately. Otherwise, they may not
be convergent. Note that we use the mse of the mixed signals to determine the convergence of the algorithm, and the nmse
of the harmonic signals is displayed to show the performance and it generally cannot be obtained. On the other hand, from
(a3), (b3) and (c3) of Fig. 8, for the estimated frequencies with no error, we can see that the frequencies cannot be detected
from the fitting error of ( ) − ^ ( )y t s t . Which means that the harmonic signals can be counteracted by adding minus ^ ( )s t . And
from (a6), (a9), (b6), (b9), (c6) and (c9) of Fig. 8, one can see that the frequencies can still be detected from the fitting error of

( ) − ^ ( )y t s t with the estimated frequencies that have errors. Which means that the harmonic signals are still residual by
adding minus ^ ( )s t . In addition, from (a4), (b4), and (c4) of Fig. 8, we can see that the obtained mse is larger than that
obtained with other estimated frequencies. And we should choose the frequencies that lead to minimize the mse as
estimators.
3.3. Example 3

Example 3 concerns the Remark 3 (ii), which forms an efficient technique to speed up the computation and amend the
estimation of phase of the deterministic harmonic signal. The harmonic signal is still generated by Eq. (37).

Set ω ω ω= = =0.2501, 0.1501, 0.20011 2 3 and M¼20. Thus, reduce the error caused by ω̂k from π( * )sin 4000 0.0001 to
Fig. 7. Simulation results for Example 2 (estimated signal (- � ) and the real signal (-)): (a1)–(a3) extracting results from the mixed Lorenz and harmonic
signal with ω ω ω( ) = ( ), , 0.25, 0.15, 0.21 2 3 , ω ω ω( ) = ( ), , 0.2501, 0.1501, 0.20011 2 3 , ω ω ω( ) = ( ), , 0.25001, 0.15001, 0.200011 2 3 , respectively; (b1)–(b4) and
(c1)–(c4) display the estimation results of the mixed harmonic and Henon, M–G signals, respectively.

Table 1
Simulation results for Example 1: varied amplitude.

SNR Lorenz SNR Henon SNR M-G

ω ω ω, ,1 2 3 (out of order) ω ω ω, ,1 2 3 (out of order) ω ω ω, ,1 2 3 (out of order)

�267.60 0.0355 0.0423 0.0770 �220.76 0.3863 0.3345 0.3850 �225.28 0.0195 0.0683 0.0200
�235.41 0.0355 0.0423 0.0770 �188.57 0.4570 0.2965 0.2500 �193.09 0.2500 0.0195 0.2000
�203.22 0.2500 0.2000 0.0770 �156.39 0.2500 0.2000 0.1500 �160.90 0.2500 0.2000 0.1500
�171.03 0.2500 0.2000 0.1500 �124.20 0.2500 0.2000 0.1500 �128.71 0.2500 0.2000 0.1500
�138.85 0.2500 0.1500 0.2000 �92.01 0.2500 0.1500 0.2000 �96.52 0.2500 0.2000 0.1500
�106.66 0.1500 0.2500 0.2000 �59.81 0.2500 0.1500 0.2000 �64.36 0.2500 0.1500 0.2000
�74.47 0.1500 0.2500 0.2000 �27.63 0.1500 0.2500 0.3000 �32.15 0.2500 0.2123 0.1500
�42.28 0.1500 0.1633 0.2500 4.56 0.1630 0.0690 0.3888 0.04 0.0670 0.1100 0.0633
�10.09 0.1500 0.0258 0.0283 36.75 0.0528 0.0405 0.0605 32.23 0.4410 0.4455 0.0633



Fig. 8. Simulation results for Example 2: (a1), (a4) and (a7) iteration results of mse of the mixed Lorenz and harmonic signal with
ω ω ω( ) = ( ), , 0.25, 0.15, 0.21 2 3 , ω ω ω( ) = ( ), , 0.2501, 0.1501, 0.20011 2 3 , ω ω ω( ) = ( ), , 0.25001, 0.15001, 0.200011 2 3 , respectively; (a2), (a5) and (a8) iteration
results of nmse of harmonic signal with the three groups of frequencies; (a3), (a6) and (a9) periodograms of fitting error of the Lorenz and harmonic signal
minus estimation of harmonic signal with the three groups of frequencies, respectively; (b1)–(b9) and (c1)–(c9) display the results of the mixed harmonic
and Henon, M–G signals, respectively.
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π( * )sin 200 0.0001 . The extracted results of the last part of three mixed signals are shown in Fig. 9. Comparing with Figs. 7 and
8, we can see that the harmonic signal can be extracted well. The mse of the mixed signals is convergent in repeated 3–5
times. And the nmse of the harmonic signals in Fig. 9 is convergent even if the accuracy of the estimated frequencies is
obtained not accurately. And the frequencies cannot be detected from the mixed signals minus estimation of harmonic
signals with the estimated frequencies that have errors.

3.4. Example 4

We consider the harmonic signal with different parameters

∑ πω( ) = ( ) ( + )
( )=

s t A j tsin 2 1 ,
38k

k k
1

3

where ω ω ω( ), ,1 2 3 takes =̂ ( )W 0.25, 0.15, 0.21 or =̂ ( )W 0.2501, 0.1501, 0.20012 , and ( ) = + ( − )−A j 0.00001 0.00001 5 1k
j 1 ,

= …j 1, 2, , 9 and =k 1, 2, 3.
For different harmonic signals in the same chaotic background, we use the same embedding dimensions and time delays

as above since Cao's method has antinoise ability. The extracted results with varied amplitudes are summarized in Table 2.
We use the original algorithm to estimate the harmonic signal with the accurate estimated frequencies and the advanced
version to obtain the harmonic signal with the low accurate estimated frequencies. From Table 2, for the accurate estimated
frequencies, it can be seen that the frequencies can be extracted from fitting error of the mixed harmonic and Lorenz, Henon
and M–G signals in the range from �203.22 dB to �42.28 dB, �220.76 dB to �59.81 dB, and �160.90 dB to �64.36 dB,
respectively; for the low accurate estimated frequencies, it can be seen that the frequencies can be extracted from fitting
error of the three mixed signals in the range from �171.03 dB to �42.28 dB, �156.39 dB to �59.81 dB, and �128.71 dB to
�64.36 dB, respectively.

3.5. Example 5

Although Cao's method has antinoise ability, it may cause small difference, larger or smaller, for embedding dimension
and delay of the same mixed signal because of personal experience of using Cao's method.

In this example, we shall show, for small differences of embedding dimension and delay of the same mixed signal, the
general applicability of the proposed algorithm. The harmonic signal is generated by Eq. (38) with ( ) = +A j 0.00001k



Fig. 9. Simulation results for Example 3: (a1) estimated harmonic signal (- � ) with ω ω ω( ) = ( ), , 0.2501, 0.1501, 0.20011 2 3 , together with the real harmonic
signal (-); (a2) iteration's results ofmse of the mixed Lorenz and harmonic signal with ω ω ω( ) = ( ), , 0.2501, 0.1501, 0.20011 2 3 ; (a3) iteration's results of nmse
of harmonic signal with ω ω ω( ) = ( ), , 0.2501, 0.1501, 0.20011 2 3 ; (a4) periodograms of fitting error of the Lorenz and harmonic signal minus estimation of
harmonic signal with ω ω ω( ) = ( ), , 0.2501, 0.1501, 0.20011 2 3 ; (b1)–(b3) and (c1)–(c3) display the results from the mixed harmonic and Henon, M–G signals,
respectively.

C. Li, L. Su / Mechanical Systems and Signal Processing 84 (2017) 499–515512
( − )−0.00001 5 1j 1 , =j 4, 5, 6 and =k 1, 2, 3, and ω ω ω=̂ ( ) = ( )W , , 0.25, 0.15, 0.21 1 2 3 , ω ω ω=̂ ( ) = (W , , 0.2501, 0.1501,2 1 2 3

)0.2001 are used for showing the performance of the original algorithm and its improved version. In Examples 2 and 3, we
note that, for low accurate estimated frequencies, the performance of the original algorithm is bad. Thus, for low accurate
estimated frequencies, we only use the advanced algorithm.

The extracted results with varied amplitude of different mixed signals are summarized in Tables 3–5, respectively. We
use the original algorithm to estimate the harmonic signal with the accurate estimated frequencies and the advanced
version to obtain the harmonic signal with the low accurate estimated frequencies. From Table 3, for the mixed Lorenz and
harmonic signal, it can be seen that the harmonic signals are extracted well with both the two groups of frequencies. Indeed,
we cannot deny that the performance of the improved version with the low accurate estimated frequencies are reduced
than that of the accurate estimated frequencies and original algorithm. We can get the same conclusions for the other mixed
signals from Tables 4 and 5, respectively.
4. Conclusions

In this paper, we are interested in detecting and extracting harmonic signal in strong chaotic background. Based on the
short term predictability and sensitivity to initial value, we provide a new method. The proposed method first uses LL
model's fitting error to detect the frequencies of harmonic signal by periodogram, a property is proposed which has not
been addressed before. Then we enlarge the modeling capacity substantially. We establish a two-layer LL model to estimate
the harmonic signal in strong chaotic background. To estimate this simply and effectively, we develop an efficient backfitting
algorithm to select and optimize the parameters that are hard to be exhaustively searched for.

Given the conditions (A1)–(A5), the process of successive approximations is convergence. In the numerical experiments,
three different chaotic signals are used as chaotic noise, and different harmonic signals are also used to test the proposed
algorithm. From the simulation, it can be seen that the harmonic signal can be extracted well, the proper SNRs are shown for
three different chaotic backgrounds. Example 1 shows that the frequencies of harmonic signal can be detected well. Ex-
ample 2 shows that the two-layer LL model and its estimation technique have appreciable flexibility to model the de-
terminate harmonic signal in different chaotic backgrounds. Specifically, the harmonic signal can be extracted well with low
SNR and the developed background algorithm satisfies the condition of convergence in repeated 3–5 times. The char-
acteristics of the initial iteration that mse2 rapidly reduces and nmse1 is very small are shown in Fig. 8. Furthermore, we
investigate an improved technique for low accurate estimated frequencies in Example 3 and simulation shows that our
technique is effective, which can help us to reduce searching time and improve accuracy of estimation of frequencies. From
Examples 4 and 5, it can be seen that the two-layer LL model can extract harmonic signal well for different chaotic signals



Table 2
Simulation results for Example 4: varied amplitude.

SNR Lorenz SNR Henon SNR M-G

W1 W2 W1 W2 W1 W2

mse nmse mse nmse mse nmse mse nmse mse nmse mse nmse

�267.60 1.66e�6 3.71 1.65e�6 171 �220.76 1.05e�7 1.45e�2 2.51e�7 4.13 �225.28 1.03e�7 7.99 1.08e�7 409
�235.41 1.66e�6 0.15 1.65e�6 6.85 �188.57 1.00e�7 5.09e�4 2.50e�7 0.39 �193.09 1.04e�7 0.30 1.09e�7 17.3
�203.22 1.65e�6 6.24e�3 1.65e�6 0.28 �156.39 1.16e�7 1.08e�5 8.40e�7 1.13e�2 �160.90 1.03e�7 1.21e�2 1.09e�7 0.75
�171.03 1.64e�6 2.33e�4 1.66e�6 1.27e�2 �124.20 9.67e�8 1.72e�6 6.29e�7 3.07e�3 �128.71 9.99e�8 5.29e�4 1.16e�7 3.20e�2
�138.85 1.65e�6 1.00e�5 1.92e�6 2.04e�3 �92.01 1.25e�7 1.46e�8 2.90e�6 1.75e�3 �96.52 1.01e�7 1.77e�5 3.17e�7 4.28e�3
�106.66 1.67e�6 4.44e�7 6.17e�6 1.45e�3 �59.81 1.24e�5 5.37e�4 3.91e�5 1.70e�3 �64.36 7.55e�6 5.11e�3 1.37e�5 9.47e�3
�74.47 2.41e�6 1.69e�7 7.97e�5 1.55e�3 �27.63 2.17e�2 0.80 1.44e�2 0.58 �32.15 1.51e�3 0.93 1.39e�3 0.98
�42.28 2.79e�4 8.02e�2 1.91e�3 1.73e�3 4.56 2.79e�2 1.01 1.94e�2 1.03 0.04 4.58e�5 1.01 3.74e�5 1.00
�10.09 8.75e�2 1.13 8.86e�2 1.05 36.75 2.51e�3 1.00 2.04e�3 1.00 32.23 1.38e�4 1.00 1.11e�4 1.00
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Table 4
Simulation results for Example 5: the mixed Henon and harmonic signal.

SNR W1 W2

τ⧹m 1 2 3 1 2 3

�124.20 3 1.38e�7(8.28e�6) 4.08e�5(1.70e�3) 9.40e�4(0.28) 5.93e�7(2.16e�3) 3.96e�5(0.13) 3.79e�4(1.21)
4 9.67e�8(1.72e�6) 3.93e�4(1.00e�4) 6.39e�3(2.26) 6.29e�7(3.07e�3) 1.38e�4(2.74e�2) 3.12e�3(9.97)
5 2.68e�7(2.41e�6) 3.84e�4(2.62e�5) 1.97e�2(0.33) 4.35e�6(2.89e�3) 7.82e�4(0.58) 1.22e�2(16.5)

�92.01 3 2.37e�7(3.67e�6) 9.85e�5(2.20e�4) 5.56e�4(5.08e�3) 2.47e�6(1.71e�3) 7.01e�5(1.73e�2) 2.52e�4(2.13e�2)
4 1.25e�7(1.46e�8) 3.60e�4(2.17e�6) 3.79e�3(3.40e�2) 2.90e�6(1.75e�3) 3.40e�4(1.29e�2) 3.34e�3(0.35)
5 2.92e�7(6.85e�8) 1.01e�3(3.35e�6) 1.24e�2(3.85e�5) 3.93e�6(2.10e�3) 1.21e�3(4.52e�2) 1.25e�2(0.86)

�59.81 3 4.20e�5(3.09e�3) 6.09e�4(2.53e�5) 2.17e�3(2.66e�3) 6.04e�5(3.72e�3) 5.88e�4(2.91e�3) 1.63e�3(4.94e�3)
4 1.24e�5(5.37e�4) 1.72e�3(1.71e�7) 5.83e�3(1.68e�3) 3.91e�5(1.70e�3) 2.83e�4(2.61e�3) 4.53e�3(1.51e�2)
5 1.59e�6(2.37e�7) 2.82e�3(7.00e�5) 1.51e�2(3.25e�4) 3.90e�5(1.69e�3) 1.62e�3(7.33e�3) 1.22e�2(4.97e�2)

Table 5
Simulation results for Example 5: the mixed M–G and harmonic signal.

SNR W1 W2

τ⧹m 5 6 7 5 6 7

�128.71 5 8.77e�8(5.01e�5) 1.27e�7(2.62e�4) 1.64e�7(4.56e�5) 9.57e�8(7.07e�3) 1.33e�7(2.03e�2) 1.76e�7(1.38e�2)
6 6.31e�8(2.13e�4) 9.99e�8(5.29e�4) 8.00e�8(1.90e�5) 9.01e�8(1.83e�2) 1.16e�7(3.20e�2) 9.05e�8(2.78e�3)
7 5.76e�8(2.30e�4) 6.01e�8(1.98e�4) 3.86e�8(4.29e�5) 7.26e�8(1.25e�2) 7.17e�8(1.09e�2) 5.14e�8(3.17e�3)

�96.52 5 9.89e�8(1.85e�6) 1.50e�7(1.55e�5) 2.00e�7(4.12e�6) 3.15e�7(3.41e�3) 3.17e�7(2.57e�3) 4.70e�7(2.72e�3)
6 6.51e�8(1.53e�5) 1.01e�7(1.77e�5) 8.37e�8(1.96e�6) 3.18e�7(6.21e�3) 3.17e�7(4.28e�3) 3.13e�7(2.03e�3)
7 5.86e�8(1.23e�5) 6.51e�8(1.18e�5) 4.25e�8(3.21e�6) 3.59e�7(6.65e�3) 2.69e�7(3.01e�3) 2.71e�7(2.81e�3)

�64.36 5 1.61e�6(1.45e�3) 1.22e�5(1.18e�2) 5.41e�6(1.67e�3) 6.01e�6(3.36e�3) 2.08e�5(2.03e�2) 1.18e�5(4.92e�3)
6 7.51e�7(4.09e�4) 7.55e�6(5.11e�3) 1.85e�6(3.46e�4) 4.47e�6(2.12e�3) 1.37e�5(9.47e�3) 6.41e�6(2.25e�3)
7 5.04e�7(1.98e�5) 1.48e�6(6.47e�4) 6.68e�7(8.50e�5) 4.43e�6(1.87e�3) 7.50e�6(4.44e�3) 4.56e�6(2.35e�3)

Table 3
Simulation results for Example 5: the mixed Lorenz and harmonic signal.

SNR W1 W2

τ⧹m 6 7 8 6 7 8

�171.03 5 1.68e�6(8.89e�4) 1.91e�6(1.02e�3) 2.34e�6(2.98e�4) 1.66e�6(2.10e�2) 1.86e�6(1.66e�2) 2.33e�6(4.96e�2)
6 1.26e�6(1.65e�4) 1.64e�6(2.33e�4) 2.31e�6(1.20e�3) 1.25e�6(2.93e�2) 1.66e�6(1.27e�2) 2.25e�6(5.04e�2)
7 1.12e�6(4.96e�4) 1.73e�6(4.81e�4) 2.82e�6(6.16e�4) 1.11e�6(2.77e�2) 1.74e�6(2.18e�2) 2.52e�6(0.28)

�138.85 5 1.69e�6(3.09e�5) 2.08e�6(4.74e�5) 2.32e�6(2.96e�5) 1.85e�6(2.22e�3) 2.22e�6(1.99e�3) 2.47e�6(2.95e�3)
6 1.26e�6(3.18e�6) 1.65e�6(1.00e�5) 2.32e�6(6.15e�5) 1.50e�6(2.46e�3) 1.92e�6(2.04e�3) 2.52e�6(4.01e�3)
7 1.10e�6(2.06e�5) 1.72e�6(1.62e�5) 2.83e�6(2.94e�5) 1.43e�6(2.71e�3) 2.04e�6(2.57e�3) 2.70e�6(5.28e�3)

�106.66 5 2.84e�6(1.24e�6) 1.96e�6(1.48e�6) 2.53e�6(2.60e�6) 5.88e�6(1.43e�3) 6.25e�6(1.44e�3) 6.19e�6(1.47e�3)
6 1.31e�6(2.61e�7) 1.67e�6(4.44e�7) 2.38e�6(4.12e�6) 5.62e�6(1.49e�3) 6.17e�6(1.45e�3) 7.34e�6(1.60e�3)
7 1.12e�6(9.89e�7) 1.71e�6(4.85e�7) 2.81e�6(1.26e�6) 5.19e�6(1.54e�3) 6.86e�6(1.60e�3) 7.45e�6(1.91e�3)

Note: Number in parentheses represents nmse of the convergent iteration's results of harmonic signal; number out of the parentheses representsmse of the
convergent iteration's results of the mixed signal. The same to below two tables.
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with different embedding dimensions and delays. The estimated frequencies of sine signal with low accuracy dissatisfies
condition (A1) and the optimization objectives (Eqs. (25) and (23)) have slightly large difference. This explains the slightly
large nmses with low accuracy estimated frequencies in Tables 3–5. The two-layer LL model is exhaustively researched and
successfully applied for extracting the harmonic signal in strong chaotic signal background. Indeed, this depends on the
prerequisite that the chaotic noise can be approximated well by LL model. And the performance of detecting frequencies
from fitting error by periodogram is another restricted factor for extracting harmonic signal.
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