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a b s t r a c t

Many scientific and economic applications involve the statistical learning of high-
dimensional functional time series, where the number of functional variables is compa-
rable to, or even greater than, the number of serially dependent functional observations.
In this paper, we model observed functional time series, which are subject to errors in
the sense that each functional datum arises as the sum of two uncorrelated components,
one dynamic and one white noise. Motivated from the fact that the autocovariance
function of observed functional time series automatically filters out the noise term, we
propose a three-step framework by first performing autocovariance-based dimension
reduction, then formulating a novel autocovariance-based block regularized minimum
distance estimation to produce block sparse estimates, and based on which obtaining the
final functional sparse estimates. We investigate theoretical properties of the proposed
estimators, and illustrate the proposed estimation procedure with the corresponding
convergence analysis via three sparse high-dimensional functional time series models.
We demonstrate via both simulated and real datasets that our proposed estimators
significantly outperform their competitors.
Crown Copyright© 2023 Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Functional time series refers to functional data objects that are observed consecutively over time. Existing research
n functional time series has mainly focused on extending the univariate or low-dimensional multivariate time series
ethods to the functional domain. An incomplete list of the relevant references includes Bosq (2000), Bathia et al.

2010), Hörmann and Kokoszka (2010), Panaretos and Tavakoli (2013), Aue et al. (2015), Hörmann et al. (2015), Li et al.
2020) and Chen et al. (2022). The rapid development of data collection technology has made high-dimensional functional
ime series datasets increasingly common. Examples include hourly measured concentrations of various pollutants such
s PM10 trajectories (Hörmann et al., 2015) collected at different measuring stations, daily electricity load curves (Cho
t al., 2013) for a large number of households, cumulative intraday return trajectories (Horváth et al., 2014), daily return
ensity curves (Bathia et al., 2010) and functional volatility processes (Müller et al., 2011) for a collection of stocks.
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We consider in this paper a setting for modelling high-dimensional functional time series as follows. Let Wt (·) =

{Wt1(·), . . . ,Wtp(·)}⊤, t = 1, . . . , n, be the observed p-vector of functional time series defined on a compact interval U ,
here the dimension p is large in relation to n, and p may be greater than n. Suppose that Wt (·) is subject to an error:

Wt (·) = Xt (·) + et (·) , (1)

here Xt (·) = {Xt1(·), . . . , Xtp(·)}⊤ is a functional time series of interest, et (·) = {et1(·), . . . , etp(·)}⊤ is white noise in the
ense (3) below, and {Xt (·)}nt=1 and {et (·)}nt=1 are uncorrelated. Note that both Xt (·) and et (·) are latent. We assume that
both Wt (·) and Xt (·) are weakly stationary, and E{Wt (u)} = 0 for any u ∈ U . For any integer h and u, v ∈ U , put

ΣW
h (u, v) = Cov{Wt−h(u),Wt (v)} , Σ X

h (u, v) = Cov{Xt−h(u),Xt (v)} , Σ e
h(u, v) = Cov{et−h(u), et (v)} . (2)

e call et (·) a white noise if

E{et (u)} = 0 and Σ e
h(u, v) = 0 for any u, v ∈ U and h ̸= 0 . (3)

urthermore, we assume that a⊤Xt (·) is not white noise for any non-zero constant vector a ∈ Rp. Under this setting,
he linear dynamic structure of Wt (·) is entirely determined by that of Xt (·), and all white noise elements in Wt (·) are
bsorbed into et (·). The presence of et (·) reflects that signal curves Xt (·) are seldom completely observed. Instead, they
re often only measured, with errors, on a grid. These noisy discrete data are smoothed to yield ‘observed’ curves Wt (·).
ee Bathia et al. (2010) for the univariate version of model (1). When W1(·), . . . ,Wn(·) are univariate and independent,
all and Vial (2006) considered the same model under a ‘low noise’ setting assuming that et (·) goes to 0 as n grows to
. To separate Xt (·) from et (·), e.g., via the covariance function, even in the univariate case, some special structures were

mposed; see, e.g., diagonal Σ e
0 of Yao et al. (2005) and banded Σ e

0 of Descary and Panaretos (2019). In contrast, we do
ot impose any structures on Σ e

0 in this paper, and our estimation filters out the impact of et (·) automatically.
The standard estimation procedures for univariate functional time series models usually consist of three steps (Aue

t al., 2015). Dimension-reduction is performed first via, e.g., functional principal components analysis (FPCA). Each
bserved curve is then approximated by a finite truncation. This effectively transforms functional time series into a vector
ime series of FPC scores. In the second step the estimation of the function-valued parameters in the model is transformed
o that of some appropriate parameter vectors/matrices based on estimated FPC scores. Finally the estimated principal
omponent functions are utilized to obtain function-valued estimates based on the estimated parameter vectors/matrices.
o overcome the difficulties caused by high-dimensionality (i.e. large p in relation to n), some functional sparsity
ssumptions are imposed, which results in the estimation under block sparsity constraints in the second step in the
ense that variables belonging to the same block (or group) are simultaneously included or excluded. In regression
etups, the group-lasso penalized least squares estimation (Yuan and Lin, 2006) is often adopted in the second step to
btain block sparse estimates. Similar three-step procedures have been developed to estimate sparse high-dimensional
unctional models, see, e.g., vector functional autoregression (VFAR) (Guo and Qiao, 2023), scalar-on-function linear
dditive regression (SFLR) (Fan et al., 2015; Kong et al., 2016; Xue and Yao, 2021; Fang et al., 2022) and function-on-
unction linear additive regression (FFLR) (Fan et al., 2014; Luo and Qi, 2017; Fang et al., 2022). However, those estimation
rocedures are developed under an assumption that signal curves are observed directly.
In our setting the observed curvesWt (·) are subject to the error contamination as in model (1). Both FPCA and penalized

least squares estimation based on the estimated covariance function Σ̂
W
0 of Wt (·) are inappropriate since ΣW

0 = Σ X
0 +Σ e

0

and, hence, Σ̂
W
0 is no longer a consistent estimator for Σ X

0 . Motivated from the fact that ΣW
h = Σ X

h for any h ̸= 0, which
automatically removes the impact from the noise et (·) and ensures that the estimator for ΣW

h is also legitimate for Σ X
h ,

we propose an autocovariance-based three-step learning procedure. Differing from FPCA based on the Karhunen–Loève
expansion, our first dimension reduction step is formulated under an alternative data-driven basis expansion of each
Xtj(·) based on the eigenanalysis of a positive-definite operator defined in terms of the autocovariance functions of Wtj(·).
Different from the penalized least squares estimation, our second step makes use of the autocovariance of basis coefficients
to construct high-dimensional moment equations and then applies the proposed block regularized method to estimate
the associated block sparse parameter vectors/matrices. Our third step re-transforms block sparse estimates to functional
sparse estimates via estimated basis functions obtained in the first step.

Our theoretical development stands at the intersection between high-dimensional statistics and functional time
series, facing several challenges due to non-asymptotics and infinite-dimensionality with serial dependence. Firstly, in
the proposed second step we deal with the estimated basis coefficients to produce block sparse estimates whereas
the conventional sparse estimation is applied directly to observed data. Accounting for such approximation is a major
undertaking. Secondly, under a high-dimensional and dependent setting, it is essential to develop non-asymptotic error
bounds on the relevant estimated terms as a function of n, p and the truncated dimension, and to assess how the serial
dependence affects non-asymptotic results. Thirdly, compared to non-functional data, the infinite-dimensional nature
of functional data leads to the additional theoretical complexity that arises from specifying the block structure and
controlling bias terms formed by truncation errors from the dimension reduction step.

The main contribution of our paper is three-fold.

1. Our autocovariance-based learning framework can address the error contamination model (1) in the presence of
infinite-dimensional signal curve dynamics with the addition of ‘genuinely functional’ noise. It makes the good use
of the serial correlation information, which is the most relevant in the context of time series modelling.
2
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2. To provide theoretical guarantees for the first and the third steps and to verify imposed high-level regularity
conditions in the second step, we establish useful non-asymptotic error bounds on the relevant estimated terms
under the autocovariance-based dimension reduction framework.

3. We utilize the autocovariance among basis coefficients to construct high-dimensional moment equations with
partitioned group structure, based on which we formulate the second step in a novel block regularized minimum
distance (RMD) estimation framework to produce block sparse estimates. The group information can be explicitly
encoded in a convex optimization targeting at minimizing the block ℓ1 norm objective function subject to the
block ℓ∞ norm constraint. To theoretically support the second step, we investigate convergence properties of the
block RMD estimator. Besides being useful in the second step, the block RMD estimation framework itself is of
independent interest and can be applied more broadly.

Our paper is set out as follows. In Section 2, we present Step 1, i.e. the autocovariance-based dimension reduction
echnique. We also establish some essential deviation bounds on the relevant estimated terms. In Section 3, we first use
n example to illustrate the construction of high-dimensional moment equations. We then formulate a general block
MD estimation method (i.e. Step 2) and investigate its theoretical properties. In Section 4, we illustrate the proposed
hree-step framework using three examples of sparse high-dimensional functional time series models, i.e. SFLR, FFLR and
FAR. Theoretically, we study convergence rates of the associated estimators in these models. In Section 5, we examine
he finite-sample performance of the proposed estimators through both simulations and an analysis of a real financial
ataset. All technical proofs are relegated to the Appendix.

otation. For a positive integer q, we write [q] = {1, . . . , q}. Let L2(U) be a Hilbert space of square-integrable functions
n a compact interval U . The inner product of f , g ∈ L2(U) is defined as ⟨f , g⟩ =

∫
U f (u)g(u) du. For a Hilbert space

⊂ L2(U), we denote the p-fold Cartesian product by Hp
= H × · · · × H and the tensor product by S = H ⊗ H.

or any f = (f1, . . . , fp)⊤ and g = (g1, . . . , gp)⊤ in Hp, we define ⟨f, g⟩ =
∑p

i=1⟨fi, gi⟩. We use ∥f∥ = ⟨f, f⟩1/2 and
f∥0 =

∑p
i=1 I(∥fi∥ ̸= 0) with I(·) being the indicator function to denote functional versions of induced norm and

0-norm, respectively. For an integral operator K : Hp
→ Hq induced from the kernel function K = (Kij)q×p with

ach Kij ∈ S, K(f)(u) = {
∑p

j=1⟨K1j(u, ·), fj(·)⟩, . . . ,
∑p

j=1⟨Kqj(u, ·), fj(·)⟩}⊤
∈ Hq for any f = (f1, . . . , fp)⊤ ∈ Hp. For

otational economy, we will also use K to denote both the kernel and the operator. We define functional versions of
robenius and matrix ℓ∞-norms by ∥K∥F = (

∑q
i=1

∑p
j=1 ∥Kij∥

2
S )

1/2 and ∥K∥∞ = maxi∈[q]
∑p

j=1 ∥Kij∥S , respectively, where
Kij∥S = {

∫
U

∫
U K 2

ij (u, v) dudv}
1/2 denotes the Hilbert–Schmidt norm of Kij. For any real matrix B = (bij)q×p, we write

B∥max = maxi∈[q],j∈[p] |bij| and use ∥B∥F = (
∑q

i=1
∑p

j=1 |bij|2)1/2 and ∥B∥2 = λ
1/2
max(B⊤B) to denote its Frobenius norm

nd ℓ2-norm, respectively. For two sequences of positive numbers {an} and {bn}, we write an ≲ bn or bn ≳ an if there
xists a positive constant c such that lim supn→∞ an/bn ≤ c. We write an ≍ bn if and only if an ≲ bn and bn ≲ an hold
imultaneously.

. Autocovariance-based dimension reduction

.1. Methodology

Our Step 1 is to approximate each curve Xtj(·) by a finite linear combination: we expand curve Xtj(·) using the
ata-driven orthonormal basis functions {ψjl(·)}∞l=1, and truncate the expansion to the first dj terms:

Xtj(·) =

∞∑
l=1

ηtjlψjl(·) ≈ η⊤

tjψj(·) , j ∈ [p] , (4)

here ηtjl = ⟨Xtj, ψjl⟩, ηtj = (ηtj1, . . . , ηtjdj )
⊤

∈ Rdj and ψj(·) = {ψj1(·), . . . , ψjdj (·)}
⊤. Different from the conventional

arhunen–Loève expansion, the eigenvalues λj1 ≥ λj2 ≥ · · · > 0 and the corresponding eigenfunctions ψj1(·), ψj2(·), . . .
re taken from the spectral decomposition of an operator defined as

Kjj(u, v) =

L∑
h=1

∫
U
ΣX

h,jj(u, z)Σ
X
h,jj(v, z) dz , (5)

here L > 0 is some prescribed fixed integer, and ΣX
h,ij(u, v) denotes the (i, j)th element of Σ X

h (u, v) in (2). Also denote
y ΣW

h,ij and Σ
e
h,ij the (i, j)th element of, respectively, ΣW

h and Σ e
h. The idea of using non-zero lagged autocovariances was

nitiated by Bathia et al. (2010). A direct consequence is the identity

Kjj(u, v) =

L∑
h=1

∫
U
ΣW

h,jj(u, z)Σ
W
h,jj(v, z) dz ,

ince ΣX
h,jj(u, z) = ΣW

h,jj(u, z) for all (u, z) ∈ U2 and h ̸= 0. This paves the way to estimate Kjj, and therefore also ψj(·),
irectly based on observations W (·), . . . ,W (·). The impact of the noise terms e (·) is filtered out automatically. It is
1j nj tj

3
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orth noting that we choose not to use autocovariance functions ΣW
h,jj directly in defining Kjj as they are not nonnegative

efinite. The definition of Kjj in (5) ensures that it is nonnegative definite, and there is no cancellation of the information
ccumulated from lags 1 to L. Hence the estimation is not sensitive to the choice of L. In practice, we choose small L such
s 1 ≤ L ≤ 5, as the most significant autocorrelations typically occur at small lags.
In the standard Karhunen–Loève expansion, {ψjl(·)}∞l=1 is deduced from the spectral decomposition of ΣX

0,jj. Since

ΣX
0,jj(u, v) = ΣW

0,jj(u, v) −Σe
0,jj(u, v) ,

ome strong assumptions have to be imposed to eliminate the impact of Σe
0,jj(u, v) in order to obtain consistent estimates

or ψjl(·). For example, Hall and Vial (2006) assumes that W1j(·), . . . ,Wnj(·) are independent and the noise etj(·) goes to 0
s n grows to ∞. Note that the dimension reduction via FPCA can also be performed based on the spectral decomposition
f ΣW

0,jj instead of ΣX
0,jj, as any basis could be used for expanding the data. However, because of ΣW

0,jj = ΣX
0,jj +Σ

e
0,jj, using

W
0,jj may require a larger truncated dimension to capture the sufficient signal information, leading to reduced statistical
fficiency. It is also worth mentioning that the penalized least squares approach adopted in the covariance-based second
tep is based on ΣX

0,jk(u, v) = ΣW
0,jk(u, v) −Σe

0,jk(u, v) and hence is inappropriate under model (1).
With the available observations {Wt (·)}t∈[n], a natural estimator for Kjj in (5) is defined as

K̂jj(u, v) =

L∑
h=1

∫
U
Σ̂W

h,jj(u, z)Σ̂
W
h,jj(v, z) dz

=
1

(n − L)2

L∑
h=1

n∑
t,s=h+1

W(t−h)j(u)W(s−h)j(v)⟨Wtj,Wsj⟩ ,

(6)

where

Σ̂
W
h (u, v) =

1
n − h

n∑
t=h+1

Wt−h(u)Wt (v)⊤ = {Σ̂W
h,jk(u, v)}j,k∈[p] , (u, v) ∈ U2 , h ≥ 0 . (7)

Performing the spectral decomposition

K̂jj(u, v) =

∞∑
l=1

λ̂jlψ̂jl(u)ψ̂jl(v) , (8)

where λ̂j1 ≥ λ̂j2 ≥ · · · > 0 are the eigenvalues, and ψ̂j1(·), ψ̂j2(·), . . . are the corresponding eigenfunctions.
Let E{η(t−h)jη

⊤

tk} = {σ
(h)
jklm}l∈[dj],m∈[dk] with its estimator (n − h)−1 ∑n

t=h+1 η̂(t−h)jη̂
⊤

tk = {σ̂
(h)
jklm}l∈[dj],m∈[dk] for j, k ∈ [p] and

h ≥ 0, where η̂tj = (η̂tj1, . . . , η̂tjdj )
⊤. Our proposed autocovariance-based Step 2 and Step 3 explicitly rely on the sample

autocovariance among estimated basis coefficients, {σ̂
(h)
jklm : j, k ∈ [p], l ∈ [dj],m ∈ [dk], h ∈ [L]}, and the estimated

basis functions {ψ̂jl(·) : j ∈ [p], l ∈ [dj]}, respectively. See details in Sections 3.1 and 4. Their convergence properties in
elementwise ℓ∞-norm under high-dimensional scaling are investigated in Section 2.2 below.

2.2. Rates in elementwise ℓ∞-norm

To characterize the effect of serial dependence on the relevant estimated terms, we will use the functional stability
measure of {Wt (·)}t∈Z (Guo and Qiao, 2023).

Condition 1. For {Wt (·)}t∈Z, the spectral density operator fWθ = (2π )−1 ∑
h∈Z Σ

W
h e−ihθ for θ ∈ [−π, π] exists and the

functional stability measure defined in (9) is finite, i.e.

MW
= 2π · ess sup

θ∈[−π,π ],Φ∈Hp
0

⟨Φ, fWθ (Φ)⟩
⟨Φ,ΣW

0 (Φ)⟩
< ∞ , (9)

here Hp
0 = {Φ ∈ Hp

: ⟨Φ,ΣW
0 (Φ)⟩ ∈ (0,∞)}.

The quantity MW in (9) is expressed proportional to functional Rayleigh quotients of fWθ relative to ΣW
0 . Hence it

can more precisely capture the effect of small decaying eigenvalues of ΣW
0 on the numerator in (9), which is essential

to handle truly infinite-dimensional functional objects {Wtj(·)}. We next define the functional stability measure of all
-dimensional subsets of {Wt (·)}t∈Z, i.e. {(Wtj(·) : j ∈ J)⊤}t∈Z for J ⊂ [p] with cardinality |J| ≤ k, by

MW
k = 2π · ess sup

θ∈[−π,π ],∥Φ∥0≤k,Φ∈Hp
0

⟨Φ, fWθ (Φ)⟩
⟨Φ,ΣW

0 (Φ)⟩
, k ∈ [p] . (10)

nder Condition 1, it is easy to verify that MW
k ≤ MW < ∞.

Our non-asymptotic results are developed using the infinite-dimensional analog of Hanson–Wright inequality (Rudel-
on and Vershynin, 2013) in a general Hilbert space H, for which we need to impose the sub-Gaussian condition.
4
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efinition 1. Let Zt (·) be a mean zero random variable in H for any fixed t and Σ0 : H → H be a covariance operator.
Then Zt (·) is a sub-Gaussian process if there exists a constant c > 0 such that E(e⟨x,Z⟩) ≤ ec

2
⟨x,Σ0(x)⟩/2 for all x ∈ H.

Condition 2. (i) {Wt (·)}t∈Z is a sequence of multivariate functional linear processes with sub-Gaussian errors, namely
sub-Gaussian functional linear processes, Wt (·) =

∑
∞

l=0 Bl(εt−l) for any t ∈ Z, where Bl = (Bl,jk)p×p with each Bl,jk ∈ S,
εt (·) = {εt1(·), . . . , εtp(·)}⊤

∈ Hp and the components in {εt (·)}t∈Z are independent sub-Gaussian processes satisfying
Definition 1; (ii) The coefficient functions satisfy

∑
∞

l=0 ∥Bl∥∞ = O(1); (iii) ωε0 = maxj∈[p]
∫
U Σ

ε
0,jj(u, u) du = O(1), where

Σε
0,jj(u, u) = Cov{εtj(u), εtj(u)}.

The multivariate functional linear process can be seen as the generalization of functional linear process (Bosq, 2000)
to the multivariate setting and also the extension of multivariate linear process (Hamilton, 1994) to the functional
domain. Condition 2(ii) ensures the stationarity of {Wt (·)}t∈Z and, together with Condition 2(iii), implies that ωW

0 =

maxj∈[p]
∫
U Σ

W
0,jj(u, u) du = O(1) (see Lemma 5 in Appendix B), which is essential in deriving non-asymptotic results.

The sub-Gaussian condition is imposed on the functional process to facilitate the use of Hanson–Wright-type inequality
in our non-asymptotic analysis. We believe that a Nagaev-type concentration bound can be established to accommodate
functional linear process with functional errors under a weaker finite polynomial moments condition. It is also interesting
to develop non-asymptotic results for more general non-Gaussian functional time series under other commonly adopted
dependence framework.

Condition 3. (i) For each j ∈ [p], λj1 > λj2 > · · · > 0, and there exist some constants c0 > 0 and α > 1 such that
λjl −λj(l+1) ≥ c0l−α−1 for any l ≥ 1; (ii) For each j ∈ [p], the linear space spanned by {νjl(·)}∞l=1 (i.e. eigenfunctions of ΣX

0,jj)
is the same as that spanned by {ψjl(·)}∞l=1.

Condition 3(i) controls the lower bound of eigengaps with larger values of α yielding tighter gaps between adjacent
eigenvalues. See similar conditions in Hall and Horowitz (2007) and Kong et al. (2016). To simplify notation, we assume
the same α across j, but this condition can be relaxed by allowing α to depend on j and our theoretical results can be
generalized accordingly.

We next establish the deviation bounds on estimated eigenpairs, {λ̂jl, ψ̂jl(·)}, and the sample autocovariance among
stimated basis coefficients, {σ̂ (h)

jklm}, in elementwise ℓ∞-norm.

heorem 1. Let Conditions 1–3 hold, and d be a positive integer possibly depending on (n, p). For n ≳ log p, there exist some
ositive constants c1 and c2 independent of (n, p, d) such that

max
j∈[p],l∈[d]

{
|λ̂jl − λjl| +

 ψ̂jl − ψjl

lα+1

}
≲ MW

1

√
log p
n

(11)

olds with probability greater than 1 − c1p−c2 , where MW
1 is defined in (10).

heorem 2. Let conditions in Theorem 1 hold and h ≥ 1 be fixed. For n ≳ d2α+2(MW
1 )2 log p, there exist some positive constants

c3 and c4 independent of (n, p, d) such that

max
j,k∈[p],l,m∈[d]

|σ̂
(h)
jklm − σ

(h)
jklm|

(l ∨ m)α+1 ≲ MW
1

√
log p
n

(12)

olds with probability greater than 1 − c3p−c4 , where MW
1 is defined in (10).

emark 1. (i) The parameter d in Theorems 1 and 2 can be understood as the truncated dimension of infinite-dimensional
unctional objects under the expansion in (4). In general, d can depend on j, say dj, then the maximums in (11) and (12)
re taken over j, k ∈ [p], l ∈ [dj],m ∈ [dk] and the corresponding right-sides remain the same.
(ii) Compared with the normalized deviation bounds under FPCA framework established in Guo and Qiao (2023), we

btain slower rates in (11) and (12) for decaying eigenvalues. Note that {νjl(·)}∞l=1 provides the unique basis with respect
to which Xtj(·) can be expressed as Karhunen–Loève expansion with uncorrelated coefficients. It gives the most rapidly
convergent representation of Xtj(·) in the L2 sense. By comparison, the expansion of Xtj(·) through {ψjl(·)}∞l=1 in (4) results
in a suboptimal convergent representation with correlated coefficients. From a theoretical viewpoint, whether the rates
in (11) and (12) are minimax optimal is of interest and requires further investigation.

3. Block RMD estimation framework

Resulting from Step 1, the estimation of sparse function-valued parameters is transformed to the block sparse
estimation of parameter vectors/matrices in Step 2. To identify these parameters, we choose {η̂(t−h)k : h ∈ [L], k ∈ [p]}
as the vector-valued instrumental variables and construct autocovariance-based moment equations, which is illustrated
using an example of SFLR in Section 3.1. We then formulate a general block RMD estimation method in Section 3.2 and
study its theoretical properties in Section 3.3.
5
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.1. An illustrative example

We illustrate via the high-dimensional SFLR:

Yt =

p∑
j=1

∫
U
Xtj(u)β0j(u) du + εt , t ∈ [n] , (13)

here {Xtj(·)}t∈[n],j∈[p] satisfy model (1), {εt}t∈[n] are i.i.d. and mean-zero random errors, and {Xtj(·)} and {εt} are indepen-
ent. Given observations {(Wt (·), Yt )}t∈[n], our goal is to estimate p functional coefficients β0(·) = {β01(·), . . . , β0p(·)}⊤. To
uarantee a feasible solution under high-dimensional scaling, we assume that β0(·) is functional s-sparse, i.e. s components
n β0(·) are nonzero with s ≪ p.

Resulting from the truncated expansion of Xtj(·) via (4) in Step 1, (13) can be rewritten as

Yt =

p∑
j=1

η⊤

tjb0j + rt + εt ,

where b0j =
∫
U ψj(u)β0j(u) du ∈ Rdj and rt =

∑p
j=1

∑
∞

l=dj+1 ηtjl⟨ψjl, β0j⟩ is the truncation error. Given some prescribed
positive integer L, in Step 2, we choose {η(t−h)k : h ∈ [L], k ∈ [p]} as the vector-valued instrumental variables. Then

b0 = (b⊤

01, . . . , b
⊤

0p)
⊤

∈ R
∑p

j=1 dj can be identified by the following moment equations:

E{η(t−h)kεt} = ghk(b0) + Rhk = 0 , k ∈ [p] , h ∈ [L] , (14)

where ghk(b0) = E{η(t−h)kYt} −
∑p

j=1 E{η(t−h)kη
⊤

tjb0j} and the bias term Rhk = −E{η(t−h)krt}.

With {η̂tj}t∈[n],j∈[p] and {ψ̂j(·)}j∈[p] obtained in Step 1, for any b = (b⊤

1 , . . . , b
⊤

p )
⊤

∈ R
∑p

j=1 dj , we define

ĝhk(b) =
1

n − h

n∑
t=h+1

η̂(t−h)kYt −
1

n − h

n∑
t=h+1

p∑
j=1

η̂(t−h)kη̂
⊤

tjbj , k ∈ [p] , h ∈ [L] , (15)

hich provides the empirical version of ghk(b) = E{η(t−h)kYt} −
∑p

j=1 E{η(t−h)kη
⊤

tjbj}. Applying the block RMD estimation
ntroduced in Section 3.2 below results in a block sparse estimator b̂ = (b̂⊤

1 , . . . , b̂
⊤

p )
⊤.

.2. A general estimation procedure

In this section, we present the proposed Step 2 in a general block RMD estimation framework. Note that Step 2
onsiders the block sparse estimation of some matrix-valued parameters, θ0 = (θ⊤

01, . . . , θ
⊤

0p)
⊤

∈ R
∑p

j=1 dj×d̃ with each
θ0j ∈ Rdj×d̃. For SFLR with a scalar response, d̃ = 1. Given some prescribed positive integer L and q = pL target moment
functions θ ↦→ gi(θ) mapping θ ∈ R

∑p
j=1 dj×d̃ to gi(θ) ∈ Rdk×d̃ with i = (h − 1)p + k and k ∈ [p] for h ∈ [L], where both p

and q are large, we assume that θ0 can be identified by the following moment equations:

gi(θ0) + Ri = 0 , i ∈ [q] , (16)

where Ri’s are formed by autocovariance-based truncation errors due to finite approximations in Step 1. We are interested
in estimating the block sparse θ0 based on empirical mappings θ ↦→ ĝi(θ) of θ ↦→ gi(θ) for i ∈ [q]. See Sections 4 and 3.1
for detailed expressions of gi(·) and ĝi(·) in some exemplified models.

It follows from (16) that

ĝi(θ0) ≈ 0 , i ∈ [q] . (17)

Based on (17), we define the block RMD estimator θ̂ = (θ̂
⊤

1 , . . . , θ̂
⊤

p )
⊤

∈ R
∑p

j=1 dj×d̃ as a solution to the following convex
optimization problem:

θ̂ = argmin
θ

p∑
j=1

∥θj∥F subject to max
i∈[q]

∥ĝi(θ)∥F ≤ γn , (18)

where γn ≥ 0 is a regularization parameter. The group information is encoded in the objective function, which forces the
elements of θ̂j to either all be zero or nonzero, thus producing the block sparsity in θ̂. It is worth noting that, without
the bias terms Ri’s in (16), our proposed block RMD estimation framework can be seen as a blockwise generalization of
the RMD estimation (Belloni et al., 2018) by replacing | · | by ∥ · ∥F. To solve the large-scale convex optimization problem
in (18), we use the R package CVXR (Fu et al., 2020), which is easy to implement and converges fast. In Sections 4.1–4.3,
we will illustrate our proposed autocovariance-based block RMD estimation framework using examples of SFLR, FFLR and
VFAR, respectively.
6
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.3. Theoretical properties

For a block matrix B = (Bij)i∈[N1],j∈[N2] ∈ RN1m1×N2m2 with the (i, j)th block Bij ∈ Rm1×m2 , we write ∥B∥
(m1,m2)
max =

axi∈[N1],j∈[N2] ∥Bij∥F, and ∥B∥
(m1,m2)
1 =

∑N1
i=1 ∥Bi∥F when N2 = 1. To simplify notation in this section and theoretical

nalysis in Section 4, we assume the same truncated dimension dj = d across j ∈ [p], but our theoretical results can be
xtended naturally to the more general setting where dj’s are different.
Let g(θ) = {g1(θ)⊤, . . . , gq(θ)⊤}

⊤ and R = (R⊤

1 , . . . ,R
⊤

q )
⊤

∈ Rqd×d̃. We focus on the case of which the moment function
↦→ g(θ) mapping from Rpd×d̃ to Rqd×d̃ is linear with respect to θ in the form of g(θ) = Gθ + g(0) for some G ∈ Rqd×pd.
his together with (16) implies that

Gθ0 + g(0) + R = 0 , (19)

he form of which can be easily verified for, e.g., SFLR, FFLR and VFAR models considered in Section 4. Now we reformulate
he optimization task in (18) as

θ̂ = argmin
θ

∥θ∥
(d,d̃)
1 subject to ∥ĝ(θ)∥(d,d̃)

max ≤ γn , (20)

here ĝ(θ) = Ĝθ + ĝ(0) is the empirical version of g(θ). It is worth noting that θ0 is block s-sparse with support
= {j ∈ [p] : ∥θ0j∥F ̸= 0} and its cardinality s = |S|.
Before presenting properties of the block RMD estimator θ̂, we impose some high-level regularity conditions.

ondition 4. (i) There exist ϵn1, δn1 > 0 such that ∥̂G − G∥
(d,d)
max ∨ ∥ĝ(0) − g(0)∥(d,d̃)

max ≤ ϵn1 with probability at least 1 − δn1;

ii) There exists ϵ2 > 0 such that ∥R∥
(d,d̃)
max ≤ ϵ2; (iii) There exists δn2 > 0 such that ∥ĝ(θ0)∥

(d,d̃)
max ≤ γn with probability at

east 1 − δn2.

Conditions 4(i) and 4(ii) together ensure that the empirical moment functions are nicely concentrated around the
arget moment functions. Using our derived non-asymptotic results in Section 2.2, we can easily specify the concentration
ounds in Condition 4(i) for SFLR, FFLR and VFAR. With further imposed smoothness conditions on coefficient functions,
ondition 4(ii) can also be verified. Condition 4(iii) indicates that θ0 is feasible in the optimization problem (20) with
igh probability, in which case a solution θ̂ of (20) exists and satisfies ∥θ̂∥

(d,d̃)
1 ≤ ∥θ0∥

(d,d̃)
1 . The non-block version of such

roperty typically plays a crucial role to tackle high-dimensional models in the literature.
Let δ = θ − θ0. We define a block ℓ1-sensitivity coefficient

κ(θ0) = inf
T : |T |≤s

inf
δ∈CT : ∥δ∥

(d,d̃)
1 >0

∥Gδ∥(d,d̃)
max

∥δ∥
(d,d̃)
1

, (21)

here CT = {δ ∈ Rpd×d̃
: ∥δT c∥

(d,d̃)
1 ≤ ∥δT∥

(d,d̃)
1 } for T ⊂ [p]. Provided that δ̂ = θ̂−θ0 ∈ CS under Condition 4(iii) as justified

in Lemma 1 in Appendix B, the lower bound of κ(θ0) is useful to establish the error bound for ∥δ̂∥
(d,d̃)
1 . See also Gautier and

Rose (2019) for non-block ℓq-sensitivity quantities to handle high-dimensional instruments. We then need Condition 5
below to determine such lower bound. Note that G can be divided into q × p blocks of the size d × d. Let GJ,M be the
submatrix of G consisting of all the (j, k)-blocks with j ∈ J ⊂ [q] and k ∈ M ⊂ [p]. For an integer m ≥ s, let

σmin(m,G) = min
|M|≤m

max
|J|≤m

σmin(GJ,M ) and σmax(m,G) = max
|M|≤m

max
|J|≤m

σmax(GJ,M ) ,

here σmin(GJ,M ) and σmax(GJ,M ) are the smallest and largest singular values of GJ,M .

ondition 5. There exist universal constants c5 > 0 and µ > 0 such that σmax(m,G) ≥ c5 and σmin(m,G)/σmax(m,G) ≥ µ
or m = 16s/µ2.

In Condition 5, the quantity µ serves as a key factor to determine the lower bound of κ(θ0), which is justified in
emma 4 in Appendix B. When µ is bounded away from zero, we have a strongly-identified model. When µ → 0, it
orresponds to the scenario with weak instruments. See also Belloni et al. (2018) for similar conditions.

heorem 3. Let Conditions 4–5 hold. If ∥θ0∥
(d,d̃)
1 ≤ K for some K > 0 and the regularization parameter γn ≲ (K + 1)ϵn1 + ϵ2,

hen with probability at least 1 − (δn1 + δn2), the block RMD estimator θ̂ satisfies

∥θ̂ − θ0∥
(d,d̃)
1 ≲ sµ−2

{(K + 1)ϵn1 + ϵ2} . (22)

emark 2. (i) The error bound in (22) has the familiar variance-bias tradeoff as commonly considered in nonparametric
tatistics, suggesting us to carefully select the truncated dimension d so as to balance the variance and bias terms for the

ptimal estimation.

7
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(ii) With commonly imposed smoothness conditions on functional coefficients, it is easy to verify that K ∨ ϵ2 = o(s)
or SFLR, FFLR and VFAR in Section 4.

(iii) For three examples we consider, G is formed by {σ
(h)
jklm : j, k ∈ [p], l,m ∈ [d], h ∈ [L]} with the components

(h)
jklm satisfying |σ

(h)
jklm| ≤ [E{η2(t−h)jl}]

1/2
{E(η2tkm)}

1/2
= λ

1/2
jl λ

1/2
km → 0 as l,m → ∞. Consider a general cross-covariance

atrix G = E(xy⊤) ∈ Rqd×pd with entries decaying to zero as d → ∞, where x = (x1, . . . , xqd)⊤ with E(x) = 0 and
y = (y1, . . . , ypd)⊤ with E(y) = 0, it is more sensible to impose Condition 5 on its normalized version G̃ = DxGDy instead
of G itself, where Dx = diag[{Var(x1)}−1/2, . . . , {Var(xqd)}−1/2

] and Dy = diag[{Var(y1)}−1/2, . . . , {Var(ypd)}−1/2
]. For three

exemplified models, Dx and Dy are formed by {λ
−1/2
jl : j ∈ [p], l ∈ [d]}.

Remark 2(iii) motivates us to present the following proposition that will be used in the theoretical analysis of associated
estimators for SFLR, FFLR and VFAR in Section 4.

Proposition 1. Suppose that all conditions in Theorem 3 hold except that Condition 5 holds for G̃, then with probability at least
1 − (δn1 + δn2), the block RMD estimator θ̂ satisfies

∥θ̂ − θ0∥
(d,d̃)
1 ≲ sµ−2

∥Dx∥max∥Dy∥max{(K + 1)ϵn1 + ϵ2} . (23)

4. Applications

In this section, we illustrate the proposed estimation procedures with the three concrete models, namely SFLR, FFLR
and VFAR.

4.1. High-dimensional SFLR

Consider the high-dimensional SFLR in (13), we first perform autocovariance-based dimension reduction on {Wtj(·)}t∈[n]
or each j ∈ [p]. According to Section 3.1 and following the optimization framework in (18), we then develop the block
MD estimator b̂ as a solution to the constrained optimization problem:

b̂ = argmin
b

p∑
j=1

∥bj∥2 subject to max
k∈[p],h∈[L]

∥ĝhk(b)∥2 ≤ γn ,

here γn ≥ 0 is a regularization parameter and ĝhk(b) is defined in (15). Given that the recovery of functional sparsity in
0(·) is equivalent to estimating the block sparsity in b0, in Step 3, we estimate functional sparse coefficients by

β̂j(·) = ψ̂j(·)
⊤b̂j , j ∈ [p] . (24)

We next present the convergence analysis of {β̂j(·)}j∈[p]. To simplify the notation, we assume the same truncated
dimension dj = d across j ∈ [p]. We rewrite (14) in the form of (19), where g = (g⊤

11, . . . , g
⊤

1p, . . . , g
⊤

L1, . . . , g
⊤

Lp)
⊤,

R = (R⊤

11, . . . ,R
⊤

1p, . . . ,R
⊤

L1, . . . ,R
⊤

Lp)
⊤ and G = (Gij) ∈ RpLd×pd whose (i, j)th block is Gij = E{η(t−h)kη

⊤

tj } ∈ Rd×d with
i = (h− 1)p+ k and k ∈ [p] for h ∈ [L]. Applying Theorem 2 and Proposition 3 in Appendix A on Ĝ and ĝ(0), respectively,
we can verify Condition 4(i) with the choice of ϵn1 ≍ MW ,Ydα+2(n−1 log p)1/2, where MW ,Y is defined in the same manner
as MW ,Z specified in Proposition 3 with selecting Zt = Yt . Before presenting the main theorem, we list the regularity
conditions below.

Condition 6. (i) For each j ∈ S = {j ∈ [p] : ∥β0j∥ ̸= 0}, β0j(·) =
∑

∞

l=1 ajlψjl(·) and there exists some positive constant
τ > α + 1/2 such that |ajl| ≲ l−τ for l ≥ 1; (ii) Let G̃ = (̃Gij) be the normalized version of G = (Gij) by replacing each Gij

by G̃ij = E{Dkη(t−h)kη
⊤

tjDj}, i = (h − 1)p + k, k ∈ [p] for h ∈ [L] and j ∈ [p], where Dj = diag(λ−1/2
j1 , . . . , λ

−1/2
jd ). There exist

universal constants c6 > 0 and µ > 0 such that σmax(m, G̃) ≥ c6 and σmin(m, G̃)/σmax(m, G̃) ≥ µ for m = 16s/µ2.

Condition 6(i) restricts each component in {β0j(·) : j ∈ S} based on its expansion through basis {ψjl(·)}∞l=1. The parameter
τ determines the decay rate of basis coefficients and hence controls the level of smoothness with large values yielding
smoother functions in {β0j(·) : j ∈ S}. See similar conditions in Hall and Horowitz (2007) and Kong et al. (2016). Noting
that components of G decay to zero as d grows to infinity, we impose Condition 6(ii) on G̃, which can be viewed as the
normalized counterpart of Condition 5 for SFLR.

Applying Proposition 1 and Theorem 1 yields the convergence rate of the SFLR estimate β̂(·) = {β̂1(·), . . . , β̂p(·)}⊤ under
functional ℓ1 norm in the following theorem.

Theorem 4. Suppose that Conditions 1–3, 6 and 9(ii) in Appendix A hold, and {Yt}t∈[n] is sub-Gaussian linear process. Let the
regularization parameter γn ≍ s{dα+2MW ,Y (n−1 log p)1/2 + d−τ+1/2

}, where MW ,Y is defined in the same manner as MW ,Z

specified in Proposition 3 in Appendix A with selecting Zt = Yt . Then the estimate β̂(·) satisfies
p∑

∥β̂j − β0j∥ = Op

{
µ−2s2

(
d2α+2MW ,Y

√
log p
n

+ dα−τ+1/2
)}

. (25)

j=1

8
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emark 3. (i) The rate of convergence in (25) is governed by both dimensionality parameters (n, p, s) and internal
parameters (MW ,Y , d, α, τ , µ). Typically, the rate is better when τ , µ are large and MW ,Y , α are small. To balance
the variance and bias terms in (25) for the optimal estimation, we can choose the optimal truncated dimension d ≍

(M2
W ,Yn

−1 log p)−1/(2τ+2α+3).
(ii) Note that our convergence analysis relies on (12) rather than the normalized deviation bounds in Guo and Qiao

(2023), the rate in (25) is slightly slower than that in Fang et al. (2022) by a multiplicative factor dα/2. For univariate
functional linear regression, we similarly observe a slower rate for the autocovariance-based generalized methods-of-
moments estimator (Chen et al., 2022) compared to the covariance-based least squares estimator (Hall and Horowitz,
2007).

4.2. High-dimensional FFLR

Consider high-dimensional FFLR in the form of

Yt (v) =

p∑
j=1

∫
U
Xtj(u)β0j(u, v) du + εt (v) , t ∈ [n] , v ∈ V , (26)

where {Xt (·)}t∈[n] satisfy model (1) and are independent of i.i.d. mean-zero functional errors {εt (·)}t∈[n], and {β0j(·, ·)}j∈[p]
re functional coefficients to be estimated. With observed data {(Wt (u), Yt (v)) : (u, v) ∈ U × V, t ∈ [n]}, we target to
stimate β0 = {β01(·, ·), . . . , β0p(·, ·)}⊤ under a functional sparsity constraint when p is large. Specifically, we assume β0
s functional s-sparse with support S = {j ∈ [p] : ∥β0j∥S ̸= 0} and cardinality s = |S| ≪ p.

Provided that each observed Yt (·) is decomposed into the sum of dynamic and white noise components in (26), we
approximate Yt (·) under the Karhunen–Loève expansion truncated at d̃, i.e. Yt (·) ≈ ζ⊤

t φ(·), where ζt = (ζt1, . . . , ζtd̃)
⊤

nd φ(·) = {φ1(·), . . . , φd̃(·)}
⊤. Note that we can relax the independence assumption for {εt (·)}t∈[n] and model observed

esponses via Ỹt (·) = Yt (·) + eYt (·), where Yt (·) and eYt (·) correspond to the dynamic signal and white noise elements,
espectively. Then Yt (·) can be approximated under the autocovariance-based expansion in the sense of (4) and our
ubsequent analysis still follow.
For each j ∈ [p], we expand Xtj(·) according to (4) truncated at dj. Some specific calculations lead to the representation

of (26) as

ζ⊤

t =

p∑
j=1

η⊤

tjB0j + r⊤

t + ε⊤

t , (27)

where B0j =
∫
U×V ψj(u)β0j(u, v)φ(v)⊤ dudv ∈ Rdj×d̃, and rt = (rt1, . . . , rtd̃)

⊤
∈ Rd̃ is the truncation error with each rtm =∑p

j=1
∑

∞

l=dj+1 ηtjl⟨⟨ψjl, β0j⟩, φm⟩ for m ∈ [d̃]. Let B0 = (B⊤

01, . . . ,B
⊤

0p)
⊤

∈ R
∑p

j=1 dj×d̃. We choose {η(t−h)k : h ∈ [L], k ∈ [p]} as
the vector-valued instrumental variables, which are assumed to be uncorrelated with the random error εt in (27). Within
the framework of (16), we assume that B0 is the unique solution to the following moment equations:

0 = E{η(t−h)kε
⊤

t } = ghk(B0) + Rhk , h ∈ [L] , k ∈ [p] , (28)

where ghk(B0) = E{η(t−h)kζ
⊤

t } −
∑p

j=1 E{η(t−h)kη
⊤

tjB0j} and Rhk = −E{η(t−h)kr⊤

t }.
Given the recovery equivalence between functional sparsity in β0 and the block sparsity in B0, we aim to estimate the

block sparse matrix B0 using the empirical versions B ↦→ ĝhk(B) for h ∈ [L] and k ∈ [p],

ĝhk(B) =
1

n − h

n∑
t=h+1

η̂(t−h)kζ̂
⊤

t −
1

n − h

n∑
t=h+1

p∑
j=1

η̂(t−h)kη̂
⊤

tjBj ,

where ζ̂t = (ζ̂t1, . . . , ζ̂td̃)
⊤ with ζ̂tm = ⟨Yt , φ̂m⟩ for m ∈ [d̃] and {η̂tj}t∈[n],j∈[p] are obtained in Step 1. In Step 2, according to

(18), we formulate the block RMD estimator B̂ by solving the convex optimization problem below:

B̂ = argmin
B

p∑
j=1

∥Bj∥F subject to max
k∈[p],h∈[L]

∥ĝhk(B)∥F ≤ γn ,

where γn ≥ 0 is a regularization parameter. In Step 3, we estimate the coefficient functions by

β̂j(u, v) = ψ̂j(u)
⊤B̂jφ̂(v) , (u, v) ∈ U × V , j ∈ [p] , (29)

where {ψ̂j(u)}j∈[p] and φ̂(v) = {φ̂1(v), . . . , φ̂d̃(v)}
⊤ are obtained in Step 1.

In the following, we investigate the convergence property of {β̂j(·, ·)}j∈[p] in (29). To simplify the notation, we assume
the same truncated dimension dj = d across j ∈ [p]. We first rewrite (28) in the form of (19) and apply Theorem 2 and
Proposition 2 in Appendix A on Ĝ and ĝ(0) to verify Condition 4(i) with the choice of ϵn1 ≍ MW ,Ydα∨α̃+2(n−1 log p)1/2,
where M is specified in Proposition 2. In a similar fashion to α, the parameter α̃ as specified in Condition 10 in
W ,Y

9
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ppendix A determines the tightness of eigengaps of the covariance function of {Yt (·)}. We then impose the following
moothness condition on nonzero coefficient functions.

ondition 7. For each j ∈ S, β0j(u, v) =
∑

∞

l,m=1 ajlmψjl(u)φm(v) and there exists some positive constant τ > α ∨ α̃+ 1/2
such that |ajlm| ≲ (l + m)−τ−1/2 for l,m ≥ 1.

We are now ready to present the convergence rate of the FFLR estimate β̂(·, ·) = {β̂1(·, ·), . . . , β̂p(·, ·)}⊤ under functional
ℓ1 norm in Theorem 5.

Theorem 5. Suppose that Conditions 1–3, 6(ii), 7 and 9(i), 10 in Appendix A hold, and {Yt (·)}t∈[n] is sub-Gaussian functional
linear process. Let d ≍ d̃, and the regularization parameter γn ≍ s{dα∨α̃+2MW ,Y (n−1 log p)1/2 + d−τ+1/2

}, where MW ,Y is
specified in Proposition 2 in Appendix A. Then the estimate β̂(·, ·) satisfies

p∑
j=1

∥β̂j − β0j∥S = Op

{
µ−2s2

(
dα+α∨α̃+2MW ,Y

√
log p
n

+ dα−τ+1/2
)}

. (30)

Remark 4. (i) With the same expression of G for both SFLR and FFLR, Condition 6(ii) is required in both Theorems 4 and
5. Note we can further remove the assumption d ≍ d̃, and establish the general convergence rate as a function of d, d̃ and
other parameters.

(ii) The rate for the autocovariance-based estimator in (30) is slightly slower than that for the covariance-based
estimator in Fang et al. (2022) by a multiplicative factor dα/2.

4.3. High-dimensional VFAR

The high-dimensional VFAR of a fixed lag order H , namely VFAR(H), takes the form of

Xt (v) =

H∑
h′=1

∫
U
A(h′)
0 (u, v)Xt−h′ (u) du + εt (v) , t = H + 1, . . . , n , (31)

where {Xt (·)} satisfy model (1), the errors εt (·) = {εt1(·), . . . , εtp(·)}⊤ are i.i.d. sampled from a p-vector of mean-zero
random functions, independent of Xt−1(·),Xt−2(·), . . . , and A(h′)

0 = {A(h′)
0,jj′ (·, ·)}j,j′∈[p] is the unknown functional transition

matrix at lag h′. In the special case H = 1 with A0 = A(1)
0 , Theorem 3.1 of Bosq (2000) ensures the stationarity of {Xt (·)} if

there exists an integer l0 such that sup∥f∥≤1 ∥Al0
0 (f)∥ < 1 for f ∈ Hp. According to Guo and Qiao (2023), all VFAR(H) models

can be reformulated as a VFAR(1) model and hence it is not hard to adjust the stationarity condition for the general case
H > 1. To make a feasible fit to (31) under a high-dimensional regime based on observed curves {Wt (·)}t∈[n], we assume
{A(h′)

0 }h′∈[H] is rowwise functional s-sparse with s = maxj∈[p] sj ≪ p. To be specific, for the jth row of components in {A(h′)
0 },

we denote the set of nonzero functions by Sj = {(j′, h′) ∈ [p] × [H] : ∥A(h′)
0,jj′∥S ̸= 0} and its cardinality by sj = |Sj| for

j ∈ [p].
For each j ∈ [p], we approximate Xtj(·) based on the expansion in (4) truncated at dj. With some specific calculations,

model (31) can be rowwisely rewritten as

η⊤

tj =

H∑
h′=1

p∑
j′=1

η⊤

(t−h′)j′Ω
(h′)
0,jj′ + r⊤

tj + ε⊤

tj , j ∈ [p] , (32)

where Ω (h′)
0,jj′ =

∫
U2 ψj′ (u)A

(h′)
0,jj′ (u, v)ψj(v)⊤ dudv ∈ Rdj′×dj and rtj = (rtj1, . . . , rtjdj )

⊤ is the truncation error with each

rtjm =
∑H

h′=1
∑p

j′=1

∑
∞

l=dj′+1 η(t−h′)j′ l⟨⟨ψj′ l, A
(h′)
0,jj′⟩, ψjm⟩ for m ∈ [dj]. Let Ω0j = {Ω (1),⊤

0,j1 , . . . ,Ω
(1),⊤
0,jp , . . . ,Ω

(H),⊤
0,j1 , . . . ,Ω

(H),⊤
0,jp }

⊤

∈ RH
∑p

j′=1
dj′×dj . We choose {η(t−H−h)k : h ∈ [L], k ∈ [p]} as the vector-valued instrumental variables, which are assumed

to be uncorrelated with the random error εtj in (32). Within the framework of (16), we assume that Ω0j is the unique
solution to the following moment equations:

0 = E{η(t−H−h)kε
⊤

tj } = gj,hk(Ω0j) + Rj,hk , h ∈ [L] , k ∈ [p] , (33)

where gj,hk(Ω0j) = E{η(t−H−h)kη
⊤

tj } −
∑H

h′=1
∑p

j′=1 E{η(t−H−h)kη
⊤

(t−h′)j′Ω
(h′)
0,jj′} and Rj,hk = −E{η(t−H−h)kr⊤

tj }.

Given that estimating the functional sparsity in the jth row of {A(h′)
0 }h′∈[H] is equivalent to estimating the block sparsity

in Ω0j for each j, our goal is to estimate the block sparse matrix Ω0j using the empirical versions Ω j ↦→ ĝj,hk(Ω j) for
h ∈ [L] and k ∈ [p], where

ĝj,hk(Ω j) =
1

n − H − h

n∑
η̂(t−H−h)kη̂

⊤

tj −
1

n − H − h

n∑ H∑ p∑
η̂(t−H−h)kη̂

⊤

(t−h′)j′Ω
(h′)
jj′
t=H+h+1 t=H+h+1 h′=1 j′=1

10
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nd {η̂tj}t∈[n],j∈[p] are obtained in Step 1. Step 2 follows (18) to formulate the block RMD estimator Ω̂ j by solving the
ollowing optimization task:

Ω̂ j = argmin
Ω j

H∑
h′=1

p∑
j′=1

∥Ω (h′)
jj′ ∥F subject to max

k∈[p],h∈[L]
∥ĝj,hk(Ω j)∥F ≤ γnj ,

here γnj ≥ 0 is a regularization parameter. Step 3 estimates functional transition matrices by

Â(h′)
jj′ (u, v) = ψ̂j′ (u)

⊤Ω̂
(h′)
jj′ ψ̂j(v) , (u, v) ∈ U2 , j, j′ ∈ [p] , h′

∈ [H] ,

here {ψ̂j(·)}j∈[p] are obtained in Step 1.
We next present convergence analysis of {Â(h′)

jj′ (·, ·) : j, j′ ∈ [p], h′
∈ [H]}. To simplify the notation, we assume the same

runcated dimension dj = d across j ∈ [p]. For each j, we first express (33) as below:

gj(Ω0j) + Rj = GjΩ0j + gj(0) + Rj = 0 ,

here gj = (g⊤

j,11, . . . , g
⊤

j,1p, . . . , g
⊤

j,L1, . . . , g
⊤

j,Lp)
⊤, Rj = (R⊤

j,11, . . . ,R
⊤

j,1p, . . . ,R
⊤

j,L1, . . . ,R
⊤

j,Lp)
⊤ and Gj = (Gj,ii′ ) ∈ RpLd×pHd

whose (i, i′)th block is Gj,ii′ = E{η(t−H−h)kη
⊤

(t−h′)j′} ∈ Rd×d with i = (h − 1)p + k, k ∈ [p] for h ∈ [L] and i′ =

(h′
− 1)p + j′, j′ ∈ [p] for h′

∈ [H]. Applying Theorem 2 on Ĝj and ĝj(0), we can verify Condition 4(i) with the choice
of ϵn1 ≍ MW

1 dα+2(n−1 log p)1/2, where MW
1 is defined in (10). Similar to Condition 6 for SFLR, we then give the following

regularity conditions.

Condition 8. (i) For each j ∈ [p] and (j′, h′) ∈ Sj, A
(h′)
0,jj′ (u, v) =

∑
∞

l,m=1 a
(h′)
jj′ lmψj′m(u)ψjl(v) and there exists some constant

τ > α + 1/2 such that |a(h
′)

jj′ lm| ≲ (l + m)−τ−1/2 for l,m ≥ 1; (ii) For each j ∈ [p], let G̃j = (̃Gj,ii′ ) be the normalized version
of Gj = (Gj,ii′ ) by replacing each Gj,ii′ by G̃j,ii′ = E{Dkη(t−H−h)kη

⊤

(t−h′)j′Dj′} for i = (h − 1)p + k and i′ = (h′
− 1)p + j′ with

k, j′ ∈ [p], h ∈ [L] and h′
∈ [H], where Dj = diag(λ−1/2

j1 , . . . , λ
−1/2
jd ). There exist universal constants c̃j > 0 and µj > 0 such

that σmax(m, G̃j) ≥ c̃j and σmin(m, G̃j)/σmax(m, G̃j) ≥ µj for m = 16sj/µ2
j .

We finally establish the convergence rate of the VFAR estimate {Â(h′)
jj′ (·, ·)}j,j′∈[p],h′∈[H] in the sense of functional matrix

ℓ∞ norm as follows.

Theorem 6. Suppose that Conditions 1–3 and 8 hold. Let the regularization parameters satisfy γnj ≍ sj{dα+2MW
1 (n−1 log p)1/2+

d−τ+1/2
} for j ∈ [p] and µ = minj∈[p] µj, where MW

1 is defined in (10). Then the estimate {Â(h′)
jj′ (·, ·)} satisfies

max
j∈[p]

p∑
j′=1

H∑
h′=1

∥Â(h′)
jj′ − A(h′)

0,jj′∥S = Op

{
µ−2s2

(
d2α+2MW

1

√
log p
n

+ dα−τ+1/2
)}

. (34)

Remark 5. Similar to Remarks 3(ii) and 4(ii) for SFLR and FFLR respectively, the rate for {Â(h′)
jj′ (·, ·)} in (34) is slightly slower

than that for the covariance-based estimator in Guo and Qiao (2023) by the same factor dα/2.

5. Empirical studies

5.1. Simulation study

In this section, we conduct a number of simulations to evaluate the finite-sample performance of the proposed
autocovariance-based estimators for SFLR, FFLR and VFAR models.

In each simulated scenario, to mimic the infinite-dimensional feature of signal curves, we generate Xtj(u) =∑25
l=1 ηtjlψl(u) = η⊤

tjψ(u) with ηtj = (ηtj1, . . . , ηtj25)⊤ and ψ(·) = {ψ1(·), . . . , ψ25(·)}⊤ for t ∈ [n], j ∈ [p] and u ∈ U = [0, 1],
where {ψl(u)}1≤l≤25 is formed by 25-dimensional Fourier basis functions, 1,

√
2 cos(2π lu),

√
2 sin(2π lu) for l = 1, . . . , 12

nd each ηt = (η⊤

t1, . . . , η
⊤

tp)
⊤

∈ R25p is generated from a stationary vector autoregressive (VAR) model, ηt = Ωηt−1 + ϵt ,
ith block transition matrix Ω = (Ω jk)j,k∈[p] ∈ R25p×25p and ϵt = (ϵ⊤

t1, . . . , ϵ
⊤

tp)
⊤

∈ R25p, where the components of each
tj = (ϵtj1, . . . , ϵtj25)⊤ are sampled independently according to ϵtjl ∼ N (0, 0.7 − 0.1l) for l = 1, . . . , 5 and N (0, l−2) for
l = 6, . . . , 25. Therefore, Xt (·) follows a VFAR(1) model Xt (v) =

∫
U A(u, v)Xt−1(u) du + εt (v), where εtj(v) = ψ(v)⊤ϵtj and

autocoefficient functions satisfy Ajk(u, v) = ψ(v)⊤Ω jkψ(u) for j, k ∈ [p] and u, v ∈ U . In our simulations, we generate
= 100, 200, 400 serially dependent observations of p = 40, 80 functional variables. The observed curves are generated

romWtj(u) = Xtj(u)+etj(u), where white noise curves etj(u) =
∑5

l=1 ztjlψl(u), ztj = (ztj1, . . . , ztj5)⊤ and {ztj}t∈[n] are sampled
ndependently from multivariate normal distribution with mean zero and covariance matrix diag(1, 0.8, 0.3, 1.5, 1.6). For
ach of the three models, the data is generated as follows.
11
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VFAR: We generate block sparse Ω with 5% or 10% nonzero blocks for p = 80 or p = 40, respectively. Specifically, for
the jth block row, we set the diagonal blockΩ jj = diag(0.60, 0.59, 0.58, 0.3, 0.2, 6−2, . . . , 25−2) and randomly choose one
off-diagonal block being 0.4Ω jj and two off-diagonal blocks being 0.1Ω jj. Such block sparse design onΩ can guarantee the
stationarity of the generated VFAR(1) process. It is worth noting that estimating VFAR(1) results in a very high-dimensional
task, since, e.g. even under the most ‘low-dimensional’ setting with p = 40, n = 400 and truncated dimension d = 3, one
needs to estimate (40 × 3)2 = 14,400 parameters based on only 400 observations. The p-vector of functional covariates
{Xt (·)}t∈[n] for SFLR and FFLR below are generated in the same way as those for VFAR.

SFLR: We generate the scalar responses {Yt}t∈[n] from model (13), where εt ’s are independent N (0, 1) variables. For
each j ∈ S = {1, . . . , 5}, we generate βj(u) =

∑25
l=1 bjlψl(u) for u ∈ U , where bj1, bj2, bj3 are sampled from the uniform

distribution with support [−1,−0.5] ∪ [0.5, 1] and bjl = (−1)ll−2 for l = 4, . . . , 25. For j ∈ [p] \ S, we let βj(u) = 0.
FFLR: We generate the functional responses {Yt (v) : v ∈ V}t∈[n] with V = [0, 1] from model (26), where εt (v) =∑5
m=1 gtmψm(v) with gtm’s being independent N (0, 1) variables. For j ∈ S, we generate βj(u, v) =

∑25
l,m=1 bjmlψl(u)ψm(v)

for (u, v) ∈ U×V , where components in {bjlm}1≤l,m≤3 are sampled from the uniform distribution with support [−1,−0.5]∪
[0.5, 1] and bjlm = (−1)l+m(l + m)−2 for l or m = 4, . . . , 25. For j ∈ [p] \ S, we let βj(u, v) = 0.

Implementing our proposed autocovariance-based learning framework (AUTO) requires choosing L and dj’s. As our
simulated results suggest that the estimators are not sensitive to the choice of L, we set L = 3 in simulations. To select
dj, we take the standard approach by selecting the largest dj eigenvalues of K̂jj in (6) such that the cumulative percentage
of selected eigenvalues exceeds 90%. To choose the regularization parameter(s) for each model and comparison method,
there are several possible methods one could adopt such as AIC, BIC and cross-validation. The AIC and BIC methods require
the calculation of the effective degrees of freedom, which leads to a very challenging task given the high-dimensional,
functional and dependent nature of the model structure and hence is left for future research. In our simulations, we
generate a training sample of size n and a separate validation sample of the same size. Using the training data, we compute
a series of estimators with 30 different values of the regularization parameters, i.e. {b̂(γn)

j }j∈[p] (or {̂B(γn)
j }j∈[p]) as a function

of γn for SFLR (or FFLR) and {Ω̂
(γnj)
jk }k∈[p] as a function of γnj for VFAR, calculate the squared error between observed and

fitted values on the validation set, i.e.
∑n

t=1{Yt −
∑p

j=1 b̂
(γn),⊤
j η̂tj}

2 for SFLR,
∑n

t=1 ∥ζ̂t −
∑p

j=1 B̂
(γn),⊤
j η̂tj∥

2 for FFLR and∑n
t=1 ∥η̂tj −

∑p
k=1 Ω̂

(γnj),⊤
jk η̂(t−1)k∥

2 for VFAR, and choose the one with the smallest error.
We compare AUTO with the standard covariance-based estimation framework (COV), which proceeds in the following

three steps. The first step performs FPCA on {Wtj(·)}t∈[n] for each j ∈ [p], where the truncated dimension was selected in
the same way as dj. Therefore, estimating SFLR and FFLR models are transformed into fitting multiple linear regressions
with the univariate response (Kong et al., 2016) and the multivariate response (Fang et al., 2022), respectively and the
VFAR estimation is converted to the VAR estimation (Guo and Qiao, 2023). The second step considers minimizing the
covariance-based criterion, essentially the least squares with the addition of a group lasso type penalty. Such criterion can
be optimized using an efficient block fast iterative shrinkage-thresholding algorithm developed in Guo and Qiao (2023),
which converges faster than the commonly adopted block coordinate descent algorithm (Fan et al., 2015). The third step
recovers functional sparse estimates using estimated eigenfunctions.

We examine the performance of COV and AUTO for three models in terms of relative estimation errors, i.e. ∥̂A −

A∥F/∥A∥F for VFAR, (
∑p

j=1 ∥β̂j−β0j∥
2)1/2/(

∑p
j=1 ∥β0j∥

2)1/2 for SFLR and (
∑p

j=1 ∥β̂j−β0j∥
2
S )

1/2/(
∑p

j=1 ∥β0j∥
2
S )

1/2 for FFLR. We
ran each simulation 100 times. Fig. 1 displays boxplots of relative estimation errors for three models. Several conclusions
can be drawn from Fig. 1. First, AUTO significantly outperforms COV for three models under all scenarios we consider.
Second, as discussed in Section 2.1, AUTO provides consistent estimates, while the consistency of COV estimates is
jeopardized by the white noise contamination. This can be demonstrated by our empirical results that AUTO provides
more substantially improved estimates over COV as n increases from 100 to 400. Third, the performance of AUTO slightly
deteriorates as p increases from 40 to 80, providing empirical evidence to support that the rates in (25), (30) and (34) for
SFLR, FFLR and VFAR models, respectively, all depend on the (log p)1/2 term.

5.2. Real data analysis

In this section, we illustrate our developed methodology using a public financial dataset, which was obtained from
the WRDS database and consists of high-frequency observations of prices for S&P 100 index and component stocks (list
available in Table 2 in Appendix C, we removed several stocks for which the data were not available so that p = 98 in our
analysis) in year 2017 comprising 251 trading days. We obtain one-minute resolution prices by using the last transaction
price in each one-minute interval after removing the outliers, and hence convert the trading period (9:30–16:00) to
minutes [0, 390]. We construct cumulative intraday return (CIDR) trajectories (Horváth et al., 2014), in percentage, by
Wtj(uk) = 100[log{Ptj(uk)} − log{Ptj(u1)}], where Ptj(uk) (t ∈ [n], j ∈ [p], k ∈ [N]) denotes the price of the jth stock at the
kth minute after the opening time on the tth trading day. We work with mildly smoothed CIDRs obtained by expanding
the data with respect to a 45-dimensional B-spline basis. The CIDR curves always start from zero and have nearly the same
shape as the original price curves, but make the stationarity assumption more plausible. We performed the functional
KPSS test (Horváth et al., 2014) on CIDR curves for each stock using the R package fsta (Shang, 2013). The p-values are

all larger than 1%, which indicates that there is no overwhelming evidence against the stationarity.

12
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Fig. 1. The boxplots of relative estimation errors for (a) VFAR, (b) SFLR and (c) FFLR.

Our target is to predict the intraday return of the S&P 100 index based on observed CIDR trajectories of component
tocks, Wtj(u), u ∈ U = [0,N] up to time N , where, e.g., N = 360 corresponds to 30 min prior to the closing time of the
trading day. With this in mind, we construct a sparse SFLR model with erroneous functional covariates as follows

Yt =

p∑
j=1

∫
U
Xtj(u)β0j(u) du + εt , Wtj(u) = Xtj(u) + etj(u) , t ∈ [n] , j ∈ [p] , (35)

here Yt is the intraday return of the S&P 100 index on the tth trading day, Xtj(·) and etj(·) represent the signal and
oise components in Wtj(·), respectively. We split the whole dataset into three subsets: training, validation and test
ets consisting of the first 171, the subsequent 40 and the last 40 observations, respectively. We apply the validation
et approach to select the regularization parameters for AUTO and COV, based on which we estimate sparse functional
13
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Table 1
MSPEs up to different current times, N = 300, 315, 330, 345, 360, 370 and 380 min, for
AUTO and four competing methods. All entries have been multiplied by 100 for formatting
reasons. The lowest MSPE for each value of N is in bold font.
Method u ⩽ 300 u ⩽ 315 u ⩽ 330 u ⩽ 345 u ⩽ 360 u ⩽ 370 u ⩽ 380

AUTO 5.068 4.936 4.814 4.161 3.892 3.798 3.726
COV 5.487 5.360 5.222 5.090 4.976 4.927 4.882
AGMM 6.506 6.470 6.454 6.441 6.408 6.385 6.364
CLS 6.859 6.798 6.730 6.655 6.583 6.546 6.507
Mean 8.832 8.832 8.832 8.832 8.832 8.832 8.832

coefficients in (35) and calculate the mean squared prediction errors (MSPEs) on the test set. For comparison, we also
implement autocovariance-based generalized method-of-moments (AGMM) (Chen et al., 2022) and covariance-based least
squares method (CLS) (Hall and Horowitz, 2007) to fit the univariate version of (35) for each component stock, among
which we choose the best models leading to the lowest test MSPEs. Finally, we include the null model using the mean of
training responses to predict test responses.

The resulting test MSPEs for different values of N and all comparison approaches are presented in Table 1. We observe
few apparent patterns. First, in all scenarios we consider, AUTO provides the best predictive performance, while the
utocovariance-based methods are superior to the covariance-based counterparts. Second, the predictive accuracy for
unctional regression type of methods improves as N approaches to 390 providing more recent information into the
ovariates. Third, AUTO and COV significantly outperform AGMM and CLS, while Mean gives the worst results. This
ndicates that using multiple selected functional covariates from the trading histories indeed improves the prediction
esults.

ppendix

This appendix contains further non-asymptotic results in Appendix A, all technical proofs in Appendix B and list of
&P 100 stocks in Appendix C.

ppendix A. Further non-asymptotic results

To provide theoretical guarantees for the proposed estimators in Sections 4.1 and 4.2, we present essential non-
symptotic error bounds on the relevant estimated cross-(auto) covariance terms based on the functional cross-spectral
tability measure (Fang et al., 2022) between {Wt (·)}t∈Z and p̃-vector of mean-zero functional time series (or scalar time
eries) {Yt (·)}t∈Z (or {Zt}t∈Z). Define ΣW ,Y

h (u, v) = Cov{Wt−h(u),Yt (v)} and ΣW ,Z
h (u) = Cov{Wt−h(u), Zt} for h ∈ Z and

u, v) ∈ U × V .

ondition 9. (i) For {Wt (·)}t∈Z and {Yt (·)}t∈Z, the cross-spectral density function fW ,Yθ = (2π )−1 ∑
h∈Z Σ

W ,Y
h e−ihθ for

∈ [−π, π] exists and the functional cross-spectral stability measure defined in (A.1) is finite, i.e.

MW ,Y
= 2π · ess sup

θ∈[−π,π ],Φ1∈Hp
0,Φ2∈H̃p

0

|⟨Φ1, fW ,Yθ (Φ2)⟩|√
⟨Φ1,Σ

W
0 (Φ1)⟩

√
⟨Φ2,Σ

Y
0 (Φ2)⟩

< ∞ , (A.1)

where Hp
0 = {Φ ∈ Hp

: ⟨Φ,ΣW
0 (Φ)⟩ ∈ (0,∞)} and Hp̃

0 = {Φ ∈ Hp̃
: ⟨Φ,Σ Y

0 (Φ)⟩ ∈ (0,∞)}. (ii) For {Wt (·)}t∈Z and {Zt}t∈Z,
he cross-spectral density function fW ,Zθ = (2π )−1 ∑

h∈Z Σ
W ,Z
h e−ihθ for θ ∈ [−π, π] exists and the functional cross-spectral

stability measure defined in (A.2) is finite, i.e.

MW ,Z
= 2π · ess sup

θ∈[−π,π ],Φ∈Hp
0,v∈R

p̃
0

|⟨Φ, fW ,Zθ v⟩|√
⟨Φ,Σ X

0 (Φ)⟩
√
v⊤Σ Z

0v
< ∞ , (A.2)

where Rp̃
0 = {ν ∈ Rp̃

: v⊤Σ Z
0v ∈ (0,∞)}.

In analogy to (10), we can define the functional cross-spectral stability measure of all k1-dimensional subsets of {Wt (·)}
nd k2-dimensional subsets of {Yt (·)} (or {Zt}) as MW ,Y

k1,k2
(or MW ,Z

k1,k2
). It is easy to verify that MW ,Y

k1,k2
≤ MW ,Y < ∞

(or MW ,Z
k1,k2

≤ MW ,Z < ∞) for k1 ∈ [p] and k2 ∈ [p̃]. For scalar time series {Zt}, the non-functional stability measure
egenerates to

MZ
= 2π · ess sup

p̃

v⊤fZθv
v⊤Σ Zv

,

θ∈[−π,π ],v∈R0
0

14
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hich is equivalent to that proposed in Basu and Michailidis (2015). The stability measure of all k-dimensional subsets
f {Zt}, i.e. MZ

k for k ∈ [p̃], can be defined similarly according to (10).
For each k ∈ [p̃], we represent Ytk(·) =

∑
∞

m=1 ζtkmφkm(·) under the Karhunen–Loève expansion, where ζtkm =

⟨Ytk, φkm⟩ and {(θkm, φkm)}m≥1 are the pairs of eigenvalues and eigenfunctions ofΣY
0,kk. Let {(θ̂km, φ̂km)}m≥1 be the estimated

igenpairs of Σ̂Y
0,kk and ζ̂tkm = ⟨Ytk, φ̂km⟩. We next impose a condition on the eigenvalues {θkm}m≥1 and then develop the

eviation bound in elementwise ℓ∞-norm on how σ̂
W ,Y
h,jklm = (n − h)−1 ∑n

t=h+1 η̂(t−h)jlζ̂tkm concentrates around σW ,Y
h,jklm =

ov{η(t−h)jl, ζtkm}, which plays a crucial role in the convergence analysis of the FFLR estimate in Section 4.2.

ondition 10. (i) For each k ∈ [p̃], θk1 > θk2 > · · · > 0, and there exist some positive constants c̃ and α̃ > 1 such that
km − θk(m+1) ≥ c̃m−α̃−1 for m ≥ 1; (ii) maxk∈[p̃]

∑
∞

m=1 θkm = O(1).

roposition 2. Suppose that Conditions 1–3, 9(i) and 10 hold, {Yt (·)}t∈[n] is sub-Gaussian functional linear process and h
s fixed. Let d and d̃ be positive integers possibly depending on (n, p, p̃) and MW ,Y = MW

1 + MY
1 + MW ,Y

1,1 . For n ≳

(d2α+2
∨ d̃2α̃+2)(MW ,Y )2 log(pp̃), there exist some positive constants c7 and c8 independent of (n, p, p̃, d, d̃) such that

max
j∈[p],k∈[p̃],l∈[d],m∈[d̃]

|σ̂
W ,Y
h,jklm − σ

W ,Y
h,jklm|

lα+1 ∨ mα̃+1 ≲ MW ,Y

√
log(pp̃)

n
(A.3)

holds with probability greater than 1 − c7(pp̃)−c8 .

We next consider a mixed process scenario consisting of {Wt (·)} and {Zt} and establish the deviation bound on how
ϱ̂
X,Z
h,jkl = (n − h)−1 ∑n

t=h+1 η̂(t−h)jlZtk concentrates around ϱX,Z
h,jkl = Cov{η(t−h)jl, Ztk}, which is essential in deriving the

convergence rate of the SFLR estimate in Section 4.1.

Proposition 3. Suppose that Conditions 1–3 and 9(ii) hold, {Zt}t∈[n] is sub-Gaussian linear process and h is fixed. Let d be a
positive integer possibly depending on (n, p, p̃) and MW ,Z = MW

1 + MZ
1 + MW ,Z

1,1 . For n ≳ (MW ,Z )2 log(pp̃), there exist some
positive constants c9 and c10 independent of (n, p, p̃, d) such that

max
j∈[p],k∈[p̃],l∈[d]

|ϱ̂
W ,Z
h,jkl − ϱ

W ,Z
h,jkl |

lα+1 ≲ MW ,Z

√
log(pp̃)

n
(A.4)

olds with probability greater than 1 − c9(pp̃)−c10 .

Appendix B. Technical proofs

Throughout, we use c, c̄ , c̃ , č and ċ to denote generic positive finite constants that may be different in different uses.

.1. Auxiliary lemmas

emma 1. Suppose that Condition 4(iii) holds. Then ∥δ̂Sc∥
(d,d̃)
1 ≤ ∥δ̂S∥

(d,d̃)
1 with probability at least 1 − δn2.

roof. It follows from Condition 4(iii) and θ0,Sc = 0 by definition that with probability at least 1−δn2, ∥θ̂∥
(d,d̃)
1 ≤ ∥θ0∥

(d,d̃)
1 =

∥θ0,S∥
(d,d̃)
1 , which implies that ∥θ0,S∥

(d,d̃)
1 ≥ ∥θ̂S∥

(d,d̃)
1 + ∥θ̂Sc∥

(d,d̃)
1 ≥ ∥θ0,S∥

(d,d̃)
1 − ∥θ̂S − θ0,S∥

(d,d̃)
1 + ∥θ̂Sc∥

(d,d̃)
1 . By cancelling

∥θ0,S∥
(d,d̃)
1 on both sides above, we obtain ∥θ̂Sc − θ0,Sc∥

(d,d̃)
1 ≤ ∥θ̂S − θ0,S∥

(d,d̃)
1 . □

Lemma 2. For A ∈ Rq×p with rank(A) ≤ min(p, q) and x ∈ Rp×d, let A = UΛV⊤ be the singular value decomposition of A
with Λ = diag{σ1, . . . , σr} and σ1 ≥ · · · ≥ σr > 0. Then we have σr∥x∥F ≤ ∥Ax∥F ≤ σ1∥x∥F.

Proof. Let vj denotes the jth row of V⊤x for j ∈ [r]. Write σ 2
r ∥x∥2

F ≤ ∥Ax∥2
F = tr(x⊤A⊤Ax) = tr(x⊤VΛ2V⊤x) =

(
∑r

j=1 σ
2
j v

⊤

j vj)
1/2

≤ σ 2
1 ∥x∥2

F , where, in the inequalities above, we have used ∥V⊤x∥F = ∥x∥F due to the orthonormality of
V. Taking the squared root on both sides completes the proof of this lemma. □

To simplify the notation, we will use σmin(m) and σmax(m) to represent σmin(m,G) and σmax(m,G), respectively.

Lemma 3. It holds that

κ(θ0) ≥ max
{
σmin(m)

√ −
2σmax(m)

√

√
s

}
s−1/2

√ .

m≥s m m m 2(1 + 2 s/m)
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roof. Let T ⊂ [p] and ∥δT c∥
(d,d̃)
1 ≤ ∥δT∥

(d,d̃)
1 by (21). Let T1 denote the largest m components of {∥δi∥F}i∈[p], and T2 be the

ubsequent m-largest, etc. Let Vµ = diag(µ ⊗ 1d) where µ ∈ Rq with
∑q

i=1 I(|µi| ̸= 0) ≤ m and 1d = (1, . . . , 1)⊤ ∈ Rd.
We let ∥µ∥ = (

∑q
i=1 µ

2
i )

1/2 and ∥µ∥∞ = maxi∈[q] |µi|. Then, we have

∥Gδ∥(d,d̃)
max = max

µ

 1
∥µ∥

VµGδ

F
≥

 1
√
m∥µ∥∞

VµGδ

F

≥

 1
√
m∥µ∥∞

VµG·,T1δT1


F
−

∑
j≥2

 1
√
m∥µ∥∞

VµG·,TjδTj


F
, (B.1)

where G·,Tj is the block submatrix of G consisting of all rows and all block columns in Tj of G for j ≥ 1.
Define J̃1 = argmax|J|≤m σmin(GJ,T1 ). We can let µ = (µi) with µi = 1 if i ∈ J̃1 and 0 otherwise, so that ∥µ∥∞ = 1. Then

the first term in (B.1) becomes 1
√
m∥µ∥∞

VµG·T1δT1


F
=

 1
√
m

GJ̃1,T1
δT1


F

≥
σmin(GJ̃1,T1

)
√
m

∥δT1∥F =
1

√
m

max
|J|≤m

σmin(GJ,T1 )∥δT1∥F

≥
1

√
m

min
|M|≤m

max
|J|≤m

σmin
(
GJ,M

)
∥δT1∥F =

σmin(m)
√
m

∥δT1∥F ,

(B.2)

where the first inequality comes from Lemma 2. Define J̃j = argmax|J|≤m σmax(GJ,Tj ) for each j ≥ 2. By the similar
arguments as above, the second term in (B.1) becomes∑

j≥2

 1
√
m∥µ∥∞

VµG·,TjδTj


F
=

1
√
m

∑
j≥2

∥GJ̃j,Tj
δTj∥F

≤
1

√
m

∑
j≥2

σmax(GJ̃j,Tj
)∥δTj∥F =

1
√
m

∑
j≥2

max
|J|≤m

σmax(GJ,Tj )∥δTj∥F

≤
1

√
m

max
|M|≤m

max
|J|≤m

σmax
(
GJ,M

)∑
j≥2

∥δTj∥F =
σmax(m)

√
m

∑
j≥2

∥δTj∥F .

(B.3)

y the construction of sets {Tj}j≥1, we have ∥δTj∥
(d,d̃)
1 =

∑
l∈Tj

∥δl∥F ≥ m∥δTj+1∥
(d,d̃)
max ≥

√
m∥δTj+1∥F, which implies that

∑
j≥2

∥δTj∥F ≤
1

√
m

∑
j≥1

∥δTj∥
(d,d̃)
1 ≤

∥δ∥
(d,d̃)
1

√
m

. (B.4)

ombining (B.2)–(B.4) yields

∥Gδ∥(d,d̃)
max ≥

σmin(m)
√
m

∥δT1∥F −
σmax(m)

√
m

∥δ∥
(d,d̃)
1 /

√
m

≥
σmin(m)

√
m

∥δT1∥F −
σmax(m)

√
m

2
√

s
m

∥δT∥F

=

{
σmin(m)

√
m

− 2
σmax(m)

√
m

√
s
m

∥δT∥F

∥δT1∥F

}
∥δT1∥F ,

(B.5)

here the second inequality comes from ∥δ∥
(d,d̃)
1 ≤ 2∥δT∥

(d,d̃)
1 ≤ 2

√
s∥δT∥F with |T | ≤ s. This fact together with (B.4)

mplies that

∥δ∥F ≤ ∥δT1∥F +

∑
j≥2

∥δTj∥F ≤ ∥δT1∥F + 2
√
s/m∥δT∥F ≤ (1 + 2

√
s/m)∥δT1∥F . (B.6)

ombining (B.5) and (B.6) yields that

∥Gδ∥(d,d̃)
max ≥

{
σmin(m)

√
m

− 2
σmax(m)

√
m

√
s
m

}
∥δ∥F

(1 + 2
√
s/m)

≥

{
σmin(m)

√
m

− 2
σmax(m)

√
m

√
s
m

}
∥δ∥

(d,d̃)
1 /

√
s

2(1 + 2
√
s/m)

,

(B.7)

here the second inequality comes from ∥δ∥F ≥ ∥δT∥F ≥ ∥δT∥
(d,d̃)
1 /

√
s ≥ ∥δ∥

(d,d̃)
1 /

√
4s. We complete our proof by (21)

nd dividing ∥δ∥
(d,d̃) on both sides of (B.7). □
1
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emma 4. Suppose that Condition 5 holds. Then there exists some positive constant c such that κ(θ0) ≥ cµ2/(24s).

roof. Applying Lemma 3 and choosing m = 16s/µ2 yields that

κ(θ0) ≥ max
m≥s

σmax(m,G)
√
m

{
σmin(m,G)
σmax(m,G)

−
µ

2

}
s−1/2

2(1 + µ/2)

≥
cµ
4
√
s

(
µ−

µ

2

){
2
(
1 +

µ

2

)}−1

s−1/2
≥

cµ2

24s
,

which completes our proof. □

For each j ∈ [p], let ωj1 ≥ ωj2 ≥ · · · > 0 be the eigenvalues of ΣX
0,jj with the corresponding eigenfunctions

j1(·), νj2(·), . . . . Similarly, let {(ωW
jl , ν

W
jl (·))}

∞

l=1 be the eigenpairs of ΣW
0,jj.

emma 5. Suppose that Condition 2 holds. Then we have ωW
0 = maxj

∑
∞

l=1 ω
W
jl = O(1).

roof. This lemma follows directly from Lemma 2 of Fang et al. (2022) and hence the proof is omitted here. □

emma 6. For p×p lag-h autocovariance function of {Wt (·)}, {ΣW
h,jk(·, ·)}j,k∈[p], we have ∥ΣW

h,jk∥S ≤ ωW
0 and ∥ΣW

h,jk(ψkm)∥S ≤
1/2
km (ωW

0 )1/2 for m ≥ 1.

roof. This lemma follows directly from Lemma 8 of Guo and Qiao (2023) and hence the proof is omitted here. □

.2. Proof of Theorem 1

Along the line of the proofs of Theorem 1 in Fang et al. (2022) and Proposition 1 in Guo and Qiao (2023), we can obtain
hat for h ≥ 1

P
{⏐⏐⏐⏐ ⟨Φ1, (Σ̂

W
h − ΣW

h )(Φ2)⟩
⟨Φ1,Σ

W
0 (Φ1)⟩ + ⟨Φ2,Σ

W
0 (Φ2)⟩

⏐⏐⏐⏐ > 2MW
k δ

}
≤ 8 exp{−cnmin(δ2, δ)} . (B.8)

or each j ∈ [p], consider the spectral decomposition ΣW
0,jj(u, v) =

∑
∞

l=1 ω
W
jl ν

W
jl (u)ν

W
jl (v) and ω0 = maxj

∑
∞

l=1 ω
W
jl = O(1),

mplied from Lemma 5. For each (j, k, l,m), choosing Φ1 = {0, . . . , 0, (ωW
jl )

−1/2νWjl , 0, . . . , 0}
⊤ and Φ2 = {0, . . . , 0,

ωW
km)

−1/2νWkm, 0, . . . , 0}
⊤ on (B.8) and following the same procedure to prove Theorem 2 of Guo and Qiao (2023) with

he choice of suitable constant c̄ , we can obtain that

P
{
∥Σ̂W

h,jk −ΣW
h,jk∥S >MW

1 δ
}

≤ 8 exp{−c̄nmin(δ2, δ)} . (B.9)

y (5), (6) and Cauchy–Schwarz inequality, we have ∥K̂jj−Kjj∥
2
S ≤ 2L

∑L
h=1 ∥Σ̂W

h,jj−Σ
W
h,jj∥

2
S∥ΣW

h,jj∥
2
S+L

∑L
h=1 ∥Σ̂W

h,jj−Σ
W
h,jj∥

4
S .

et Ω (h)
ω,jk = {∥Σ̂W

h,jk −ΣW
h,jk∥S ≤ ω0} and Ω (h)

jk = {∥Σ̂W
h,jk −ΣW

h,jk∥S ≤ MW
1 δ}. On the event Λj = Ω

(1)
ω,jj ∩ · · · ∩Ω

(L)
ω,jj ∩Ω

(1)
jj ∩

· · ∩Ω
(L)
jj , it follows from the above results and Lemma 6 that

∥K̂jj − Kjj∥S ≤
√
3Lω0MW

1 δ . (B.10)

pplying (B.9) and choosing δ = (MW
1 )−1ω0 for Ω (1)

ω,jj, . . . ,Ω
(L)
ω,jj yields P(Λc

j ) ≤ 8L exp{−cnmin(δ2, δ)} + 8L exp[−cn
in{(MW

1 )−2ω2
0, (M

W
1 )−1ω0}]. Combining the above results, we obtain

P
(
∥K̂jj − Kjj∥S >MW

1 δ
)

≤ c̄ exp{−cnmin(δ2, δ)} + c̄ exp(−cn) . (B.11)

or each j ∈ [p], it follows from Lemma 4.3 of Bosq (2000) and Condition 3 with mink∈[l]{λjk − λj(k+1)} ≥ c0l−α−1 that

max
l∈[d]

|λ̂jl − λjl| ≤ ∥K̂jj − Kjj∥S and max
l∈[d]

(
∥ψ̂jl − ψjl∥/lα+1)

≤ 2
√
2c−1

0 ∥K̂jj − Kjj∥S . (B.12)

ombining (B.11), (B.12) and the union bound of probability yields that

P
(

max
j∈[p],l∈[d]

|λ̂jl − λjl| >MW
1 δ

)
∨ P

{
max

j∈[p],l∈[d]
(∥ψ̂jl − ψjl∥/lα+1) > 2

√
2c−1

0 MW
1 δ

}
≤ c̄p exp{−cnmin(δ2, δ)} + c̄p exp(−cn) .

et δ = ρ
√
n−1 log p ≤ 1. Choosing suitable positive constants c̃ and č = cρ2

− 1, we obtain that (11) holds with
probability greater than 1 − c̃p−č , which completes the proof of Theorem 1. □
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w

.3. Proof of Theorem 2

For each (j, k, l,m) and h ≥ 1, we write

σ̂
(h)
jklm − σ

(h)
jklm = ⟨ψ̂jl, Σ̂

W
h,jk(ψ̂km)⟩ − ⟨ψjl,Σ

W
h,jk(ψkm)⟩

= ⟨(ψ̂jl − ψjl), Σ̂W
h,jk(ψ̂km − ψkm)⟩ + ⟨ψjl, (Σ̂W

h,jk −ΣW
h,jk)(ψkm)⟩

+ {⟨(ψ̂jl − ψjl), (Σ̂W
h,jk −ΣW

h,jk)(ψkm)⟩ + ⟨ψjl, (Σ̂W
h,jk −ΣW

h,jk)(ψ̂km − ψkm)⟩}

+ {⟨(ψ̂jl − ψjl),ΣW
h,jk(ψkm)⟩ + ⟨ψjl,Σ

W
h,jk(ψ̂km − ψkm)⟩}

= : J1 + J2 + J3 + J4 .

On the event Ω̃jk = Ω
(h)
ω,jk ∩Ω

(h)
jk ∩Λj ∩Λk, it follows from Lemma 6, (B.10), (B.12), the orthonormality of {ψjl}, {ψkm} that

axl,m∈[d]{|J1|/(l∨m)2(α+1)
} ≲ (MW

1 )2δ2, maxl,m∈[d] |J2| ≤ MW
1 δ, maxl,m∈[d]{|J3|/(l∨m)α+1

} ≲ MW
1 δ and maxl,m∈[d]{|J4|/(l∨

m)α+1
} ≲ MW

1 δ. Then maxl,m∈[d]{
∑4

i=1 |Ji|/(l ∨ m)α+1
} ≤ cMW

1 δ + c̃dα+1(MW
1 )2δ2. Applying (B.9) and choosing δ =

(MW
1 )−1ω0 for Ω (h)

ω,jk, Ω
(1)
ω,jj, . . . ,Ω

(L)
ω,jj,Ω

(1)
ω,kk, . . . ,Ω

(L)
ω,kk yields that P(Ω̃c

jk) ≤ (16L + 8) exp{−cnmin(δ2, δ)} + (16L +

8) exp[−cnmin{(MW
1 )−2ω2

0, (M
W
1 )−1ω0}]. Combining the above results, choosing suitable positive constants c̄, c̃, č , and

applying the union bound of probability yields that

P
{

max
j,k∈[p],l,m∈[d]

⏐⏐⏐⏐ σ̂ (h)
jklm − σ

(h)
jklm

(l ∨ m)α+1

⏐⏐⏐⏐ >MW
1 δ + c̄dα+1(MW

1 )2δ2
}

≤ c̃p2[exp{−čnmin(δ2, δ)} + exp(−čn)] . (B.13)

Choosing δ = ρ1
√
n−1 log p ≤ 1 and 1 + c̄dα+1MW

1 δ ≤ ρ2 for some positive constants ρ1, ρ2, which can be achieved
for sufficiently large n ≳ d2α+2(MW

1 )2 log p, it follows from (B.13) that there exist positive constants c, ċ such that, with
robability greater than 1 − cp−ċ ,

max
j,k∈[p],l,m∈[d]

⏐⏐⏐⏐ σ̂ (h)
jklm − σ

(h)
jklm

(l ∨ m)α+1

⏐⏐⏐⏐ ≤ ρ1ρ2MW
1

√
log p
n

,

which completes the proof of Theorem 2. □

B.4. Proof of Proposition 2

For each (h, j, k, l,m), we write

σ̂
W ,Y
h,jklm − σ

W ,Y
h,jklm = ⟨(ψ̂jl − ψjl), Σ̂

W ,Y
h,jk (φ̂km − φkm)⟩ + ⟨ψjl, (Σ̂

W ,Y
h,jk −Σ

W ,Y
h,jk )(φkm)⟩

+ {⟨(ψ̂jl − ψjl), (Σ̂
W ,Y
h,jk −Σ

W ,Y
h,jk )(φkm)⟩ + ⟨ψjl, (Σ̂

W ,Y
h,jk −Σ

W ,Y
h,jk )(φ̂km − φkm)⟩}

+ {⟨(ψ̂jl − ψjl),Σ
W ,Y
h,jk (φkm)⟩ + ⟨ψjl,Σ

W ,Y
h,jk (φ̂km − φkm)⟩}

= : I1 + I2 + I3 + I4 .

LetΩY
0kk = {∥Σ̂Y

0,kk−Σ
Y
0,kk∥S ≤ MY

1 δ} andΩ
W ,Y
hjk = {∥Σ̂

W ,Y
h,jk −Σ

W ,Y
h,jk ∥S ≤ MW ,Y δ}. On the eventΛj∩Ω

Y
0,kk∩Ω

W ,Y
h,jk , it follows

from ∥⟨Σ
W ,Y
h,jk , φkm⟩∥ ≤ ω

1/2
0 θ

1/2
km and ∥⟨ψjl,Σ

W ,Y
h,jk ⟩∥ ≤ ω

1/2
0 θ

1/2
0 , derived by the similar techniques to prove Lemma 6,

together with Lemma 5, (B.10), (B.12), the orthonormality of {ψjl}, {φkm} and Condition 10 that maxl∈[d],m∈[d̃]{|I1|/(l
2(α+1)

∨

m2(α̃+1))} ≲ (MW
1 )2δ2+(MY

1 )
2δ2, maxl∈[d],m∈[d̃] |I2| ≤ MW ,Y δ, maxl∈[d],m∈[d̃]{|I3|/(l

α+1
∨mα̃+1)} ≲ MW

1 MW ,Y δ
2
+MY

1MW ,Y δ
2

and maxl∈[d],m∈[d̃]{|I4|/(l
α+1

∨mα̃+1)} ≲ MW
1 δ+MY

1 δ. Combining the above results and MW ,Y = MW
1 +MY

1 +MW ,Y
1,1 yields

that maxl∈[d],m∈[d̃]{
∑4

i=1 |Ii|/(lα+1
∨ mα̃+1)} ≤ cMW ,Y δ + c̄(dα+1

∨ d̃α̃+1)(MW ,Y )2δ2. Following the same developments to
prove (B.13), we apply (B.11), Theorem 2, Lemma 24 of Fang et al. (2022) and the union bound of probability, choose
suitable positive constants c̃, č, ċ and hence obtain that

P
{

max
j∈[p],k∈[p̃],l∈[d],m∈[d̃]

|σ̂
W ,Y
h,jklm − σ

W ,Y
h,jklm|

lα+1 ∨ mα̃+1 >MW ,Y δ + c̃(dα+1
∨ d̃α̃+1)(MW ,Y )2δ2

}
≤ čpp̃[exp{−ċnmin(δ2, δ)} + exp(−ċn)] .

(B.14)

hoosing δ = ρ3
√
n−1 log(pp̃) ≤ 1 and 1 + c̃(dα+1

∨ d̃α̃+1)MW ,Y δ ≤ ρ4 for some positive constants ρ3, ρ4, which can be
achieved for sufficiently large n ≳ (d2α+2

∨ d̃2α̃+2)(MW ,Y )2 log(pp̃), it follows from (B.14) that there exist positive constants
c, c̄ such that, with probability greater than 1 − c(pp̃)−c̄ ,

max
j∈[p],k∈[p̃],l∈[d],m∈[d̃]

|σ̂
W ,Y
h,jklm − σ

W ,Y
h,jklm|

lα+1 ∨ mα̃+1 ≤ ρ3ρ4MW ,Y

√
log(pp̃)

n
,

hich completes the proof of Proposition 2. □
18
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.5. Proof of Proposition 3

For each (h, j, k, l), we write ϱ̂W ,Z
h,jkl − ϱ

W ,Z
h,jkl = ⟨(ψ̂jl − ψjl), (Σ̂

W ,Z
h,jk − Σ

W ,Z
h,jk )⟩ + ⟨ψjl, (Σ̂

W ,Z
h,jk − Σ

W ,Z
h,jk )⟩ + ⟨(ψ̂jl −

ψjl),Σ
W ,Z
h,jk ⟩ =: T̃1 + T̃2 + T̃3. Let Ω

W ,Z
hjk = {∥Σ̂

W ,Z
h,jk − Σ

W ,Z
h,jk ∥S ≤ MW ,Zδ}. On the event Λj ∩ Ω

W ,Z
hjk , it follows from

(B.10), (B.12), the orthonormality of {ψjl} and ∥ΣWZ
h,jk∥ ≤ ω

1/2
0 σ Z

0,kk that maxl∈[d](|T̃1|/lα+1) ≲ MW
1 δMW ,Zδ, maxl∈[d] |T̃2| ≤

MW ,Zδ and maxl∈[d](|T̃3|/lα+1) ≲ MW
1 δ. Combining the above results and MW ,Z = MW

1 + MZ
1 + MW ,Z

1,1 implies that
maxl∈[d](

∑3
i=1 |T̃i|/lα+1) ≤ cMW ,Zδ + c̄(MW ,Z )2δ2. Following the same developments to prove (B.13), we apply (B.11),

Remark 3 and Lemma 28 of Fang et al. (2022) and the union bound of probability, choose suitable positive constants
c̃, č, ċ and hence obtain that

P
{

max
j∈[p],k∈[p̃],l∈[d]

|ϱ̂
W ,Z
h,jkl − ϱ

W ,Z
h,jkl |

lα+1 >MW ,Zδ + c̃(MW ,Z )2δ2
}

≤ čpp̃[exp{−ċnmin(δ2, δ)} + exp(−ċn)] . (B.15)

Choosing δ = ρ5
√
n−1 log(pp̃) ≤ 1 and 1 + c̃MW ,Zδ ≤ ρ6 for some positive constants ρ5, ρ6, which can be achieved

or sufficiently large n ≳ (MW ,Z )2 log(pp̃), it follows from (B.15) that there exist positive constants c, c̄ such that, with
robability greater than 1 − c(pp̃)−c̄ ,

max
j∈[p],k∈[p̃],l∈[d]

|ϱ̂
W ,Z
h,jkl − ϱ

W ,Z
h,jkl |

lα+1 ≤ ρ5ρ6MW ,Z

√
log(pp̃)

n
,

which completes the proof of Proposition 3. □

B.6. Proof of Theorem 3

By g(θ) = Gθ+ g(0) and (19), we have g(θ̂) = Gθ̂+ g(0), Gθ0 + g(0)+ R = 0 and ĝ(θ̂) = Ĝθ̂+ ĝ(0). Consider the event
A = {∥̂G − G∥

(d,d)
max ∨ ∥ĝ(0) − g(0)∥(d,d̃)

max ≤ ϵn1} ∩ {∥ĝ(θ0)∥
(d,d̃)
max ≤ γn}. By the union bound of probability and Conditions 4(i)

and 4(iii), this event occurs with probability at least 1 − δn1 − δn2. On event A, we have

∥G(θ̂ − θ0)∥(d,d̃)
max ≤ ∥g(θ̂)∥(d,d̃)

max + ∥R∥
(d,d̃)
max

≤ ∥ĝ(θ̂) − g(θ̂)∥(d,d̃)
max + ∥ĝ(θ̂)∥(d,d̃)

max + ∥R∥
(d,d̃)
max

≤ ∥(̂G − G)θ̂∥(d,d̃)
max + ∥ĝ(0) − g(0)∥(d,d̃)

max + ∥ĝ(θ̂)∥(d,d̃)
max + ∥R∥

(d,d̃)
max

≤ ∥̂G − G∥
(d,d)
max ∥θ0∥

(d,d̃)
1 + ∥ĝ(0) − g(0)∥(d,d̃)

max + ∥ĝ(θ̂)∥(d,d̃)
max + ∥R∥

(d,d̃)
max

≤ Kϵn1 + ϵn1 + γn + ϵ2 ,

(B.16)

where, in the last two inequalities, we have used facts that ∥(̂G − G)θ̂∥(d,d̃)
max = maxi∈[q]

∑p
j=1 ∥(̂G − G)ijθ̂j∥F ≤ maxi,j ∥(̂G −

G)ij∥F
∑

j ∥θ̂j∥F = ∥̂G − G∥
(d,d)
max ∥θ̂∥

(d,d̃)
1 , ∥θ̂∥

(d,d̃)
1 ≤ ∥θ0∥

(d,d̃)
1 ≤ K and ∥ĝ(θ̂)∥(d,d̃)

max ≤ γn by the definition of the block RMD

estimator in (20) and ∥R∥
(d,d̃)
max ≤ ϵ2 by Condition 4(ii).

On event A, choosing the set T = S in (21) and applying Lemma 1 under Condition 4(iii) yields ∥δ̂Sc∥
(d,d̃)
1 ≤ ∥δ̂S∥

(d,d̃)
1

and hence δ̂ ∈ CS . Then by (21), (B.16) and Lemma 4 under Condition 5, we have ∥θ̂−θ0∥
(d,d̃)
1 ≤ κ(θ0)−1

· ∥G(θ̂−θ0)∥
(d,d̃)
max ≲

sµ−2
{(K + 1)ϵn1 + γn + ϵ2}, which completes the proof. □

B.7. Proof of Proposition 1

Define κ̃(θ0) by substituting G in (21) by G̃. By G̃ = DxGDy with Dx and Dy being diagonal matrices, we have
∥θ̂ − θ0∥

(d,d̃)
1 ≤ κ̃(θ0)−1

· ∥̃G(θ̂ − θ0)∥
(d,d̃)
max ≤ κ̃(θ0)−1

· ∥Dx∥max∥Dy∥max∥G(θ̂ − θ0)∥
(d,d̃)
max . Following the same procedure

to prove Theorem 3, we can obtain (23). □

B.8. Proof of Theorem 4

We first verify Condition 4(i) for SFLR. For sufficiently large positive constants c, c̄ , define two events

I1 =

{
max

j,k∈[p],h∈[L],l,m∈[d]

⏐⏐σ̂ (h)
jklm − σ

(h)
jklm

⏐⏐ ≤ cdα+1MW
1

√
log p
n

}
, (B.17)

I2 =

{
max

k∈[p],h∈[L],m∈[d]

⏐⏐⏐⏐ 1
n − h

n∑
η̂(t−h)kmYt − E{η(t−h)kmYt}

⏐⏐⏐⏐ ≤ c̄dα+1MW ,Y

√
log p
n

}
.

t=h+1

19



J. Chang, C. Chen, X. Qiao et al. Journal of Econometrics 239 (2024) 105385

O

B
B

B

w
a

n event I1 ∩ I2, we have

∥̂G − G∥
(d,d)
max = max

j,k∈[p],h∈[L]

 1
n − h

n∑
t=h+1

η̂(t−h)kη̂
⊤

tj − E{η(t−h)kη
⊤

tj }


F
≤ cdα+2MW

1

√
log p
n

, (B.18)

∥ĝ(0) − g(0)∥(d,1)
max = max

k∈[p],h∈[L]

 1
n − h

n∑
t=h+1

η̂(t−h)kYt − E{η(t−h)kYt}

 ≤ c̄dα+3/2MW ,Y

√
log p
n

. (B.19)

y Theorem 2, Proposition 3 and the union bound of probability, P(I1 ∩ I2) ≥ 1 − c̃p−č for some positive constants c̃, č.
y (B.18) and (B.19), Condition 4(i) can be verified by choosing δn1 = c̃p−č (p depends on n) and

ϵn1 = (c ∨ c̄)dα+2MW ,Y

√
log p
n

. (B.20)

We next verify Condition 4(ii) for SFLR. If follows from rt =
∑p

j=1
∑

∞

l=d+1 ηtjl⟨ψjl, β0j⟩, orthonormality of {ψjl},
Cauchy–Schwarz inequality and Condition 6(i) that{

∥R∥
(d,1)
max

}2
= max

k∈[p],h∈[L]
∥E{η(t−h)krt}∥

2
= max

k,h

d∑
m=1

{
E
(
η(t−h)km

p∑
j=1

∞∑
l=d+1

ηtjlajl

)}2

≤ max
k,h

d∑
m=1

[∑
j∈S

∞∑
l=d+1

√
E{η2(t−h)km}E(η2tjl)ajl

]2

≤ s2 max
k,j

d∑
m=1

( ∞∑
l=d+1

λ
1/2
km λ

1/2
jl ajl

)2

≤ s2 max
k

d∑
m=1

λkm max
j

{ ∞∑
l=d+1

λjl

∞∑
l=d+1

a2jl

}
≲ λ20s

2
∞∑

l=d+1

l−2τ
= O(s2d−2τ+1) ,

where the asymptotic inequality comes from Condition 6(i) and λ0 = maxj
∑

∞

l=1 λjl = O(1) implied by some calculations
based on (5) and Lemma 5. Therefore

∥R∥
(d,1)
max ≤ ċsd−τ+1/2

= ϵ2 . (B.21)

By the similar technique above and Condition 6(i),

∥b0∥
(d,1)
1 =

∑
j∈S

( d∑
l=1

a2jl

)1/2

≲ smax
j∈S

( d∑
l=1

l−2τ
)1/2

= O(s) . (B.22)

Finally, we verify Condition 4(iii) for SFLR. On event I1 ∩ I2, combining (B.20)–(B.22) yields that

∥ĝ(b0)∥(d,1)
max ≤ ∥ĝ(b0) − g(b0)∥(d,1)

max + ∥R∥
(d,1)
max

≤ ∥(̂G − G)b0∥
(d,1)

+ ∥ĝ(0) − g(0)∥(d,1)
max + ∥R∥

(d,1)
max

≤ ∥̂G − G∥
(d,d)
max ∥b0∥

(d,1)
1 + ∥ĝ(0) − g(0)∥(d,1)

max + ∥R∥
(d,1)
max

≤ cs
(
dα+2MW ,Y

√
log p
n

+ d−τ+1/2
)

= γn .

y Condition 3 with maxj ∥Dj∥max ≤ maxj λ
−1/2
jd = O(dα/2) and Proposition 1 under Condition 6(ii), we have

∥b̂ − b0∥
(d,1)
1 = Op

{
µ−2s2dα

(
dα+2MW ,Y

√
log p
n

+ d−τ+1/2
)}

. (B.23)

For each j ∈ [p], let Rj(u) =
∑

∞

l=d+1 ajlψjl(u). By the orthonormality of {ψjl} and ∥Rj∥
2

= ∥
∑

∞

l=d+1 ajlψjl∥
2

=
∑

∞

l=d+1 a
2
jl ≲

d−2τ+1 for j ∈ S under Condition 6(i), we have

∥β̂j − β0j∥ = ∥ψ̂
⊤

j b̂j − ψ⊤

j b0j − Rj∥ ≤ ∥(ψ̂j − ψj)
⊤b̂j∥ + ∥ψ⊤

j (b̂j − b0j)∥ + ∥Rj∥

≤ d1/2 max
l∈[d]

∥ψ̂jl − ψjl∥∥b̂j∥ + ∥b̂j − b0j∥ + O(d−τ+1/2) ,

hich implies that ∥β̂ − β0∥1 ≤ d1/2 maxj∈[p],l∈[d] ∥ψ̂jl − ψjl∥∥b̂∥
(d,1)
1 + ∥b̂ − b0∥

(d,1)
1 + O(sd−τ+1/2), where the third term

bove is of a smaller order of the second term due to (B.23). By ∥b̂∥
(d,1)
1 ≤ ∥b̂− b0∥

(d,1)
1 + ∥b0∥

(d,1)
1 , (B.22) and Theorem 1,

the first term above is of a smaller order of the second term. Hence, we obtain (25) from (B.23), which completes the
proof. □
20
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.9. Proof of Theorem 5

We first verify Condition 4(i) for FFLR. In addition to event I1 in (B.17), we define event

I3 =

{
max

k∈[p],h∈[L],m∈[d],l∈[d̃]

⏐⏐⏐⏐ 1
n − h

n∑
t=h+1

η̂(t−h)kmζ̂tl − E{η(t−h)kmζtl}

⏐⏐⏐⏐ ≤ c̄dα∨α̃+1MW ,Y

√
log p
n

}
or some sufficiently large c̄. On event I1 ∩ I3, we have

∥ĝ(0) − g(0)∥(d,d̃)
max = max

k∈[p],h∈L

 1
n − h

n∑
t=h+1

η̂(t−h)kζ̂
⊤

t − E{η(t−h)kζ
⊤

t }


F
≤ c̄dα∨α̃+2MW ,Y

√
log p
n

. (B.24)

y Theorem 2, Proposition 2 and the union bound probability, P(I1 ∩ I3) ≥ 1 − c̃p−č for some positive constants c̃, č . By
(B.18) and (B.24), Condition 4(i) can be verified with the choice of

ϵn1 = (c ∨ c̄)dα∨α̃+2MW ,Y

√
log p
n

. (B.25)

We next verify Condition 4(ii) for FFLR. If follows from rt = (rt1, . . . , rtd̃)
⊤ with each rtm′ =

∑p
j=1

∑
∞

l=d+1 ηtjl
⟨ψjl, β0j⟩, φm′⟩, orthonormality of {ψjl}, {φm′}, Cauchy–Schwarz inequality and Condition 7 that

{
∥R∥

(d,d̃)
max

}2
= max

k∈[p],h∈[L]
∥E{η(t−h)kr

⊤

t }∥
2
F = max

k,h

d∑
m=1

d̃∑
m′=1

{
E
(
η(t−h)km

p∑
j=1

∞∑
l=d+1

ηtjlajlm′

)}2

≤ max
k,h

d∑
m=1

d̃∑
m′=1

[∑
j∈S

∞∑
l=d+1

√
E{η2(t−h)km}E(η2tjl)ajlm′

]2

≤ s2 max
k,j

d∑
m=1

d̃∑
m′=1

( ∞∑
l=d+1

λ
1/2
km λ

1/2
jl ajlm′

)2

≤ s2 max
k

d∑
m=1

λkm max
j

{ ∞∑
l=d+1

λjl

d̃∑
m′=1

∞∑
l=d+1

a2jlm′

}

≲ λ20s
2

d̃∑
m′=1

∞∑
l=d+1

(l + m′)−2τ−1
= O(s2d−2τ+1) ,

which implies that

∥R∥
(d,d̃)
max ≤ ċsd−τ+1/2

= ϵ2 . (B.26)

By the similar technique above and Condition 7,

∥B0∥
(d,̃d)
1 =

∑
j∈S

( d∑
l=1

d̃∑
m=1

a2jlm

)1/2

≲ smax
j∈S

{ d∑
l=1

d̃∑
m=1

(l + m)−2τ−1
}1/2

= O(s) . (B.27)

Finally, we verify Condition 4(iii) for FFLR. On event I1∩I3, combining (B.25)–(B.27) and applying the similar techniques
for SFLR, we have

∥ĝ(B0)∥(d,d̃)
max ≤ ∥̂G − G∥

(d,d)
max ∥B0∥

(d,d̃)
1 + ∥ĝ(0) − g(0)∥(d,d̃)

max + ∥R∥
(d,d̃)
max

≤ cs
(
dα∨α̃+2MW ,Y

√
log p
n

+ d−τ+1/2
)

= γn .

y Condition 3 and Proposition 1 under Condition 6(ii), we have

∥̂B − B0∥
(d,d̃)
1 = Op

{
µ−2s2dα

(
dα∨α̃+2MW ,Y

√
log p
n

+ d−τ+1/2
)}

. (B.28)

For each j ∈ [p], let Rj(u, v) = (
∑d

l=1
∑d̃

m=1 −
∑

∞

l,m=1)ajlmψjl(u)φm(v) and write

β̂j(u, v) − β0j(u, v) = ψ̂j(u)
⊤B̂jφ̂(v) − ψj(u)

⊤B0jφ(v) + Rj(u, v)
= ψ̂j(u)

⊤B̂j{φ̂(v) − φ(v)} + {ψ̂j(u) − ψj(u)}
⊤B̂jφ(v)

⊤ ˆ
+ ψj(u) (Bj − B0j)φ(v) + Rj(u, v) .
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B

y Lemma 9 of Guo and Qiao (2023), we bound the first three terms byψ̂⊤

j B̂j(φ̂ − φ)

S ≤ d̃1/2 max

m∈[d̃]
∥φ̂m − φm∥∥̂Bj∥F ,(ψ̂j − ψj)

⊤B̂jφ

S ≤ d1/2 max

l∈[d]
∥ψ̂jl − ψjl∥∥̂Bj∥F , (B.29)ψ⊤

j (̂Bj − B0j)φ

S = ∥̂Bj − B0j∥F .

e next bound the fourth term. For j ∈ S, by the orthonormality of {ψjl} and {φm},

∥Rj∥
2
S =

( d∑
l=1

d̃∑
m=1

−

∞∑
l,m=1

)
ajlmψjlφm


2

S

= O(1) ·

( d∑
l=1

∞∑
m=d̃+1

a2jlm +

∞∑
l=1

d̃∑
m=1

a2jlm

)

= O(1) ·

{ d∑
l=1

∞∑
m=d̃+1

(l + m)−2τ−1
+

∞∑
l=1

d̃∑
m=1

(l + m)−2τ−1
}

= O(d−2τ+1) .

(B.30)

ombining (B.29) and (B.30), we obtain ∥β̂ − β0∥1 ≤ ∥̂B∥
(d,d̃)
1 {d̃1/2 maxm∈[d̃] ∥φ̂m − φm∥ + d1/2 maxj∈[p],l∈[d] ∥ψ̂jl − ψjl∥} +

B̂ − B0∥
(d,d̃)
1 + O(sd−τ+1/2), where the third term above is of a smaller order of the second term due to (B.28). By

B̂∥
(d,̃d)
1 ≤ ∥̂B−B0∥

(d,d̃)
1 +∥B0∥

(d,d̃)
1 , (B.27) and Theorem 1, the first term is of a smaller order of the second term. According

o (B.28), we complete the proof. □

.10. Proof of Theorem 6

For each j ∈ [p], we first verify Condition 4(i) for VFAR. On event I1 in (B.17),

∥̂Gj − Gj∥
(d,d)
max = max

j′,k∈[p],h∈[L],h′∈[H]

 1
n − H − h

n∑
t=H+h+1

η̂(t−H−h)kη̂
⊤

(t−h′)j′ − E{η(t−H−h)kη
⊤

(t−h′)j′}


F

≤ cdα+2MW
1

√
log p
n

,

(B.31)

∥ĝj(0) − gj(0)∥(d,d)
max = max

k∈[p],h∈[L]

 1
n − H − h

n∑
t=H+h+1

η̂(t−H−h)kη̂
⊤

tj − E{η(t−H−h)kη
⊤

tj }


F

≤ cdα+2MW
1

√
log p
n

.

(B.32)

It follows from Theorem 2 that P(I1) ≥ 1 − c̃p−č for some positive constants c̃, č . By (B.31) and (B.32), Condition 4(i) can
be verified by choosing

ϵn1 = cdα+2MW
1

√
log p
n

. (B.33)

We next verify Condition 4(ii) for VFAR. It follows from rtj = (rtj1, . . . , rtjd)⊤ with each rtjm′ =
∑H

h′=1
∑p

j′=1

∑
∞

l=d+1

η(t−h′)j′ l⟨⟨ψj′ l, A
(h′)
0,jj′⟩, ψjm′⟩, orthonormality of {ψjl}, Cauchy–Schwarz inequality and Condition 8(i) that{

∥Rj∥
(d,d)
max

}2
= max

k∈[p],h∈[L]
∥E{η(t−H−h)kr

⊤

tj }∥
2
F

= max
k,h

d∑
m=1

d∑
m′=1

[
E
{
η(t−H−h)km

H∑
h′=1

p∑
j′=1

∞∑
l=d+1

η(t−h′)j′ la
(h′)
jj′ lm′

}]2

≤ max
k,h

d∑
m=1

d∑
m′=1

[ ∑
(j′,h′)∈Sj

∞∑
l=d+1

√
E{η2(t−H−h)km}E{η2(t−h′)j′ l}a

(h′)
jj′ lm′

]2

≤ s2j max
k,j′,h′

d∑ d∑{ ∞∑
λ
1/2
km λ

1/2
j′ l a(h

′)
jj′ lm′

}2
m=1 m′=1 l=d+1
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B

F

B

W

≤ s2j max
k

d∑
m=1

λkm max
j′,h′

[ ∞∑
l=d+1

λj′ l

d∑
m′=1

∞∑
l=d+1

{a(h
′)

jj′ lm′}
2
]

≲ λ20s
2
j

d∑
m′=1

∞∑
l=d+1

(l + m′)−2τ−1
= O(s2j d

−2τ+1) ,

which implies that

∥Rj∥
(d,d)
max ≤ ċsjd−τ+1/2

= ϵ2 . (B.34)

By the similar technique above and Condition 8(i), we have

∥Ω0j∥
(d,d)
1 =

∑
(j′,h′)∈Sj

[ d∑
l=1

d∑
m=1

{a(h
′)

jj′ lm}
2
]1/2

≲ sj max
(j′,h′)∈Sj

{ d∑
l=1

d∑
m=1

(l + m)−2τ−1
}1/2

= O(sj) . (B.35)

Finally, we verify Condition 4(iii) for VFAR. On event I1, combining (B.33), (B.34), (B.35) and applying the similar
techniques, we have

∥ĝj(Ω0j)∥(d,d)
max ≤ ∥̂Gj − Gj∥

(d,d)
max ∥Ω0j∥

(d,d)
1 + ∥ĝj(0) − gj(0)∥(d,d)

max + ∥Rj∥
(d,d)
max

≤ csj

(
dα+2MW

1

√
log p
n

+ d−τ+1/2
)

= γnj .

y Condition 3 and Proposition 1 under Condition 8(ii), we have

∥Ω̂ j − Ω0j∥
(d,d)
1 = Op

{
µ−2

j s2j d
α

(
dα+2MW

1

√
log p
n

+ d−τ+1/2
)}

. (B.36)

or each j′ ∈ [p], let R(h′)
jj′ (u, v) = (

∑d
l=1

∑d
m=1 −

∑
∞

l,m=1)a
(h′)
jj′ lmψj′m(u)ψjl(v) and write

Â(h′)
jj′ (u, v) − A(h′)

0,jj′ (u, v) = ψ̂j′ (u)
⊤Ω̂

(h′)
jj′ ψ̂j(v) − ψj′ (u)

⊤Ω (h′)
0,jj′ψj(v) + R(h′)

jj′ (u, v)

= ψ̂j′ (u)
⊤Ω̂

(h′)
jj′ {ψ̂j(v) − ψj(v)} + {ψ̂j′ (u) − ψj′ (u)}

⊤Ω̂
(h′)
jj′ ψj(v)

+ ψj′ (u)
⊤
{Ω̂

(h′)
jj′ − Ω (h′)

0,jj′}ψj(v) + R(h′)
jj′ (u, v) .

y the same techniques to prove (B.29), we bound the first three termsψ̂⊤

j′ Ω̂
(h′)
jj′ (ψ̂j − ψj)


S ≤ d1/2 max

l∈[d]
∥ψ̂jl − ψjl∥∥Ω̂

(h′)
jj′ ∥F ,(ψ̂j′ − ψj′ )

⊤Ω̂
(h′)
jj′ ψj


S ≤ d1/2 max

m∈[d]
∥ψ̂j′m − ψj′m∥∥Ω̂

(h′)
jj′ ∥F ,ψ⊤

j′ {Ω̂
(h′)
jj′ − Ω (h′)

0,jj′}ψj


S = ∥Ω̂

(h′)
jj′ − Ω (h′)

0,jj′∥F .

(B.37)

e next bound the fourth term. For (j′, h′) ∈ Sj, by the orthonormality of {ψjl},

R(h′)
jj′

2

S
=

( d∑
l=1

d∑
m=1

−

∞∑
l,m=1

)
a(h

′)
jj′ lmψjlψj′m


2

S

= O(1)
[ d∑

l=1

∞∑
m=d+1

{a(h
′)

jj′ lm}
2
]

= O(1)
{ d∑

l=1

∞∑
m=d+1

(l + m)−2τ−1
}

= O(d−2τ+1) .

(B.38)

Combining (B.37) and (B.38), we obtain

max
j∈[p]

p∑
j′=1

H∑
h′=1

∥Â(h′)
jj′ − A(h′)

0,jj′∥S ≤ max
j

∥Ω̂ j∥
(d,d)
1

{
d1/2 max

j∈[p],l∈[d]
∥ψ̂jl − ψjl∥ + d1/2 max

j′∈[p],m∈[d]
∥ψ̂j′m − ψj′m∥

}
+ max

j
∥Ω̂ j − Ω0j∥

(d,d)
1 + O(sjd−τ+1/2) ,

where the third term above is of a smaller order of the second term due to (B.36). By maxj ∥Ω̂ j∥
(d,d)
1 ≤ maxj ∥Ω̂ j −

Ω0j∥
(d,d)
1 + maxj ∥Ω0j∥

(d,d)
1 , (B.35) and Theorem 1, the first term is of a smaller order of the second term. Applying (B.36)
with µ = minj µj and s = maxj sj completes our proof. □
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R

A
B
B
B
B
C
C

D
F

Table 2
List of S&P 100 stocks.
Ticker Company name Ticker Company name

AAPL APPLE INC JPM JPMORGAN CHASE & CO
ABBV ABBVIE INC KHC KRAFT HEINZ
ABT ABBOTT LABORATORIES KMI KINDER MORGAN INC
ACN ACCENTURE PLC CLASS A KO COCA-COLA
AGN ALLERGAN LLY ELI LILLY
AIG AMERICAN INTERNATIONAL GROUP INC LMT LOCKHEED MARTIN CORP
ALL ALLSTATE CORP LOW LOWES COMPANIES INC
AMGN AMGEN INC MA MASTERCARD INC CLASS A
AMZN AMAZON COM INC MCD MCDONALDS CORP
AXP AMERICAN EXPRESS MDLZ MONDELEZ INTERNATIONAL INC CLASS A
BA BOEING MDT MEDTRONIC PLC
BAC BANK OF AMERICA CORP MET METLIFE INC
BIIB BIOGEN INC INC MMM 3M
BK BANK OF NEW YORK MELLON CORP MO ALTRIA GROUP INC
BLK BLACKROCK INC MON MONSANTO
BMY BRISTOL MYERS SQUIBB MRK MERCK & CO INC
C CITIGROUP INC MS MORGAN STANLEY
CAT CATERPILLAR INC MSFT MICROSOFT CORP
CELG CELGENE CORP NEE NEXTERA ENERGY INC
CHTR CHARTER COMMUNICATIONS INC CLASS A NKE NIKE INC CLASS B
CL COLGATE-PALMOLIVE ORCL ORACLE CORP
COF CAPITAL ONE FINANCIAL CORP OXY OCCIDENTAL PETROLEUM CORP
COP CONOCOPHILLIPS PCLN THE PRICELINE GROUP INC
COST COSTCO WHOLESALE CORP PEP PEPSICO INC
CSCO CISCO SYSTEMS INC PFE PFIZER INC
CVS CVS HEALTH CORP PG PROCTER & GAMBLE
CVX CHEVRON CORP PM PHILIP MORRIS INTERNATIONAL INC
DHR DANAHER CORP PYPL PAYPAL HOLDINGS INC
DIS WALT DISNEY QCOM QUALCOMM INC
DUK DUKE ENERGY CORP RTN RAYTHEON
EMR EMERSON ELECTRIC SBUX STARBUCKS CORP
EXC EXELON CORP SLB SCHLUMBERGER NV
F F MOTOR SO SOUTHERN
FB FACEBOOK CLASS A INC SPG SIMON PROPERTY GROUP REIT INC
FDX FEDEX CORP T AT&T INC
FOX TWENTY-FIRST CENTURY FOX INC CLASS B TGT TARGET CORP
FOXA TWENTY-FIRST CENTURY FOX INC CLASS A TWX TIME WARNER INC
GD GENERAL DYNAMICS CORP TXN TEXAS INSTRUMENT INC
GE GENERAL ELECTRIC UNH UNITEDHEALTH GROUP INC
GILD GILEAD SCIENCES INC UNP UNION PACIFIC CORP
GM GENERAL MOTORS UPS UNITED PARCEL SERVICE INC CLASS B
GOOG ALPHABET INC CLASS C USB US BANCORP
GS GOLDMAN SACHS GROUP INC UTX UNITED TECHNOLOGIES CORP
HAL HALLIBURTON V VISA INC CLASS A
HD HOME DEPOT INC VZ VERIZON COMMUNICATIONS INC
HON HONEYWELL INTERNATIONAL INC WBA WALGREEN BOOTS ALLIANCE INC
IBM INTERNATIONAL BUSINESS MACHINES CO WFC WELLS FARGO
INTC INTEL CORPORATION CORP WMT WALMART STORES INC
JNJ JOHNSON & JOHNSON XOM EXXON MOBIL CORP

Appendix C. List of S&P 100 component stocks used in Section 5.2

See Table 2.

eferences

ue, A., Norinho, D., Hörmann, S., 2015. On the prediction of stationary functional time series. J. Amer. Statist. Assoc. 110 (509), 378–392.
asu, S., Michailidis, G., 2015. Regularized estimation in sparse high-dimensional time series models. Ann. Statist. 43 (4), 1535–1567.
athia, N., Yao, Q., Ziegelmann, F., 2010. Identifying the finite dimensionality of curve time series. Ann. Statist. 38 (6), 3352–3386.
elloni, A., Chernozhukov, V., Chetverikov, D., Hansen, C., Kato, K., 2018. High-dimensional econometrics and regularized GMM. arXiv:1806.01888.
osq, D., 2000. Linear Processes in Function Spaces: Theory and Applications, Vol. 149. Springer Science & Business Media.
hen, C., Guo, S., Qiao, X., 2022. Functional linear regression: Dependence and error contamination. J. Bus. Econom. Statist. 40 (1), 444–457.
ho, H., Goude, Y., Brossat, X., Yao, Q., 2013. Modeling and forecasting daily electricity load curves: A hybrid approach. J. Amer. Statist. Assoc. 108

(501), 7–21.
escary, M.-H., Panaretos, V.M., 2019. Functional data analysis by matrix completion. Ann. Statist. 47 (1), 1–38.
an, Y., Foutz, N., James, G.M., Jank, W., 2014. Functional response additive model estimation with online virtual stock markets. Ann. Appl. Stat. 8

(4), 2435–2460.
24

http://refhub.elsevier.com/S0304-4076(23)00016-7/sb1
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb2
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb3
http://arxiv.org/abs/1806.01888
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb5
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb6
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb7
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb7
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb7
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb8
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb9
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb9
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb9


J. Chang, C. Chen, X. Qiao et al. Journal of Econometrics 239 (2024) 105385

F
F

F
G
G

H
H
H
H
H
H
K
L
L
M
P
R
S
X
Y
Y

an, Y., James, G.M., Radchenko, P., 2015. Functional additive regression. Ann. Statist. 43 (5), 2296–2325.
ang, Q., Guo, S., Qiao, X., 2022. Finite sample theory for high-dimensional functional/scalar time series with applications. Electron. J. Stat. 16 (1),

527–591.
u, A., Narasimhan, B., Boyd, S., 2020. CVXR: An R package for disciplined convex optimization. J. Stat. Softw. 94 (14), 1–34.
autier, E., Rose, C., 2019. High-dimensional instrumental variables regression and confidence sets. arXiv:1105.2454.
uo, S., Qiao, X., 2023. On consistency and sparsity for high-dimensional functional time series with application to autoregressions. Bernoulli 29 (1),

451–472.
all, P., Horowitz, J.L., 2007. Methodology and convergence rates for functional linear regression. Ann. Statist. 35 (1), 70–91.
all, P., Vial, C., 2006. Assessing the finite dimensionality of functional data. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (4), 689–705.
amilton, J.D., 1994. Time Series Analysis, Vol. 2. Princeton, New Jersey.
örmann, S., Kidziński, Ł., Hallin, M., 2015. Dynamic functional principal components. J. R. Stat. Soc. Ser. B Stat. Methodol. 77 (2), 319–348.
örmann, S., Kokoszka, P., 2010. Weakly dependent functional data. Ann. Statist. 38 (3), 1845–1884.
orváth, L., Kokoszka, P., Rice, G., 2014. Testing stationarity of functional time series. J. Econometrics 179 (1), 66–82.
ong, D., Xue, K., Yao, F., Zhang, H.H., 2016. Partially functional linear regression in high dimensions. Biometrika 103 (1), 147–159.
i, D., Robinson, P.M., Shang, H.L., 2020. Long-range dependent curve time series. J. Amer. Statist. Assoc. 115 (530), 957–971.
uo, R., Qi, X., 2017. Function-on-function linear regression by signal compression. J. Amer. Statist. Assoc. 112 (518), 690–705.
üller, H.-G., Sen, R., Stadtmüller, U., 2011. Functional data analysis for volatility. J. Econometrics 165 (2), 233–245.
anaretos, V.M., Tavakoli, S., 2013. Fourier analysis of stationary time series in function space. Ann. Statist. 41 (2), 568–603.
udelson, M., Vershynin, R., 2013. Hanson-Wright inequality and sub-Gaussian concentration. Electron. Commun. Probab. 18, 1–9.
hang, H.L., 2013. Ftsa: An R package for analyzing functional time series. R J. 5 (1), 64–72.
ue, K., Yao, F., 2021. Hypothesis testing in large-scale functional linear regression. Statist. Sinica 31, 1101–1123.
ao, F., Müller, H.-G., Wang, J.-L., 2005. Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 (470), 577–590.
uan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (1), 49–67.
25

http://refhub.elsevier.com/S0304-4076(23)00016-7/sb10
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb11
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb11
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb11
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb12
http://arxiv.org/abs/1105.2454
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb14
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb14
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb14
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb15
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb16
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb17
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb18
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb19
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb20
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb21
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb22
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb23
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb24
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb25
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb26
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb27
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb28
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb29
http://refhub.elsevier.com/S0304-4076(23)00016-7/sb30

	An autocovariance-based learning framework for high-dimensional functional time series
	Introduction
	Autocovariance-based dimension reduction
	Methodology
	Rates in elementwise ℓ∞-norm

	Block RMD estimation framework
	An illustrative example
	A general estimation procedure
	Theoretical properties

	Applications
	High-dimensional SFLR
	High-dimensional FFLR
	High-dimensional VFAR

	Empirical studies
	Simulation study
	Real data analysis

	Appendix
	Appendix A. Further non-asymptotic results
	Appendix B. Technical proofs
	Auxiliary lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 3 
	Proof of Proposition 1
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

	Appendix C. List of S&P 100 component stocks used in Section 5.2
	References


