
Bernoulli 30(1), 2024, 712–742
https://doi.org/10.3150/23-BEJ1614

Central limit theorems for high dimensional
dependent data
JINYUAN CHANG1,2,a, XIAOHUI CHEN3,4,c and MINGCONG WU1,b

1Joint Laboratory of Data Science and Business Intelligence, Southwestern University of Finance and Economics,
Chengdu, China, achangjinyuan@swufe.edu.cn, bwumingcong@smail.swufe.edu.cn
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
3Department of Mathematics, University of Southern California, Los Angeles, CA, USA, cxiaohuic@usc.edu
4Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL, USA

Motivated by statistical inference problems in high-dimensional time series data analysis, we first derive non-
asymptotic error bounds for Gaussian approximations of sums of high-dimensional dependent random vectors on
hyper-rectangles, simple convex sets and sparsely convex sets. We investigate the quantitative effect of temporal
dependence on the rates of convergence to a Gaussian random vector over three different dependency frameworks
(α-mixing, m-dependent, and physical dependence measure). In particular, we establish new error bounds under
the α-mixing framework and derive faster rate over existing results under the physical dependence measure. To
implement the proposed results in practical statistical inference problems, we also derive a data-driven parametric
bootstrap procedure based on a kernel-type estimator for the long-run covariance matrices. The unified Gaussian
and parametric bootstrap approximation results can be used to test mean vectors with combined �2 and �∞ type
statistics, do change point detection, and construct confidence regions for covariance and precision matrices, all
for time series data.

Keywords: Central limit theorem; dependent data; Gaussian approximation; high-dimensional statistical
inference; parametric bootstrap

1. Introduction

High-dimensional dependent data are frequently encountered in current practical problems of finance,
biomedical sciences, geological studies and many more areas. Due to the complicated dependency
among different components and nonlinear dynamical behaviors in the series, there have been tremen-
dous challenges in developing principled statistical inference procedures for such data. Most existing
methods require certain parametric assumptions on the underlying data generation mechanism or struc-
tural assumptions on the dependency among different components in order to derive asymptotically
pivotal distributions of the involved statistics. Assumptions of this kind are not only difficult to be ver-
ified but also often violated in real data. How to derive statistically valid inference procedures that do
not rely on specific structural assumptions imposed on the dependency among different components of
high-dimensional dependent data has been an urgent demand.

In this paper, we focus on establishing quantitative high-dimensional Central Limit Theorems (CLTs)
and related parametric bootstrap approximations for dependent (and possibly non-stationary) data. Let
Xn = {X1, . . . ,Xn} be a sequence of p-dimensional dependent random vectors with mean zero, i.e.,
E(Xt ) = 0. Write Sn,x = n−1/2 ∑n

t=1 Xt . Denote the instantaneous covariance matrix of Xt at time point
t by Σt = Cov(Xt ) and the long-run covariance matrix of {Xt }nt=1 by Ξ = Cov(Sn,x). Our main goal is
to bound

ρn(A) := sup
A∈A

|P(Sn,x ∈ A) − P(G ∈ A)| , (1)
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where G ∼ N(0,Ξ) and A is a class of Borel subsets in Rp . Gaussian and parametric bootstrap approx-
imation results over a rich index class A for large p are fundamental tools in developing downstream
statistical inference procedures for a wide spectrum of problems in the high-dimensional setting, includ-
ing, for example, inference of mean vector, change point detection, structure checking of instantaneous
covariance matrix, and testing white noise hypothesis. We refer the readers to Section 4 for more details
of these applications.

When X1, . . . ,Xn are independent random vectors inRp , the problem of bounding ρn(A) for a variety
of choices A is a classical research topic in probability theory (Bhattacharya and Rao, 2010, Petrov,
1995). Bounds on ρn(A) under mild assumptions yield some useful statistics for a variety of high-
dimensional inference problems. For instance, Chen and Qin (2010) and Cai, Liu and Xia (2014) stud-
ied the �2-type statistic and �∞-type statistic for testing high-dimensional mean vectors, respectively.
Asymptotic validity of those test procedures relies on restrictive assumptions such as weak dependence
in covariance matrix or sparsity in precision matrix. In contrast, Gaussian approximation results derived
in this paper impose no explicit structural assumptions on the component-wise dependence structure,
thus allowing to derive associated parametric bootstrap procedures for arbitrary dependence among
different components of high-dimensional data. Recent years has witnessed a renewed interest in the
accuracy of Gaussian approximation with explicit dependence on the dimension p since such results
are particularly useful in modern large-scale statistical inference problems such as change point detec-
tion (Yu and Chen, 2021, 2022) and multiple testing for high-dimensional data (Chang et al., 2017a,b).
For isotropic distributions with bounded third moments, Bentkus (2003) derived a Berry-Esseen type
bound O(p7/4n−1/2) and O(p3/2n−1/2) over the class of convex subsets and Euclidean balls in Rp , re-
spectively. For independent (not necessarily identically distributed) sums, Chernozhukov, Chetverikov
and Kato (2013) considered the problem of approximating maxima of Sn,x by its Gaussian analogue
and established an error bound that allows the dimension p to grow sub-exponentially fast in the sample
size n.

Since the seminal work Chernozhukov, Chetverikov and Kato (2013), there have been substantial
progresses being made in several directions. For instances, generalization of the index set from the
max-rectangles to hyper-rectangles with improved rates of convergence can be found in Chernozhukov,
Chetverikov and Kato (2017), Chernozhuokov, Chetverikov and Koike (2023), Das and Lahiri (2021),
Deng (2020), Deng and Zhang (2020), Fang and Koike (2021), Koike (2021), Kuchibhotla and Ri-
naldo (2020), Lopes (2022), Lopes, Lin and Müller (2020) and Chernozhuokov et al. (2022a); ex-
tension from linear sums to U-statistics with nonlinear kernels can be found in Chen (2018), Chen
and Kato (2019), Song, Chen and Kato (2019), and Koike (2023); generalization to dependent ran-
dom vectors over max-rectangles can be found in Zhang and Cheng (2018), Zhang and Wu (2017), and
Chernozhukov, Chetverikov and Kato (2019).

In the literature, some popular assumptions imposed on the temporal dependence of the sequence
Xn include: (i) strong-mixing (or α-mixing) (Rosenblatt, 1956), (ii) m-dependent sequence (Hoeffding
and Robbins, 1948), and (iii) physical (or functional) dependence measure for casual time series (Wu,
2005). Various CLTs for univariate (or fixed dimensional) dependent data have been developed under
these dependence frameworks, see Bradley (2007), Doukhan, Massart and Rio (1994), Wu (2007), and
Berkes, Liu and Wu (2014). We remark that there are many other mixing coefficients measuring the
temporal dependence of the past and future, among which the α-mixing coefficient (see Definition 1
in Section 2.1.1) is the weakest one in the literature (Bradley, 2005). In particular, for p = 1, if the
time series has finite third moment, the Komolgorov distance between the normalized random variable
Ξ−1/2Sn and the standard univariate Gaussian distribution obeys a nearly optimal Berry-Esseen bound
O(n−1/2 log2 n) with geometrically decaying α-mixing coefficients (Sunklodas, 1984), or the sharp
Berry-Esseen bound O(n−1/2) for either m-dependent sequence with fixed m (Chen and Shao, 2004) or
weakly dependent sequence under the physical dependence framework (Hörmann, 2009, Jirak, 2016).
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Note that neither a dependence framework in (i)-(iii) implies the others. Thus there is a pressing call
for a unified collection for Gaussian approximation tools under these temporal dependence frameworks
for high dimensional dependent data.

Previous related works on high-dimensional CLTs for dependent data in the literature are com-
plementary results for different dependence frameworks on max-rectangles, a subclass of hyper-
rectangles. For examples, Zhang and Cheng (2018) studied the Gaussian approximation for m-
dependent sequences with extension to dependent random vectors satisfying a geometric moment con-
traction condition (Wu and Shao, 2004); Zhang and Wu (2017) derived the Gaussian approximation
result for causal stationary time series under a polynomial decay of the physical dependence measure;
Chernozhukov, Chetverikov and Kato (2019) studied the validity of a block multiplier bootstrap under
the β-mixing condition. All the aforementioned papers are only applicable to approximating the dis-
tributions of the �∞-type statistics and not applicable to approximating the distributions of some more
general and complicated statistics involved in high-dimensional statistical inference. See Section 4 for
details.

We conclude the introduction by summarizing our main contributions. Specifically, we develop a
comprehensive and off-the-shelf probability toolbox containing the explicit rates of convergence of
the high-dimensional CLTs for a combination of different index sets (including hyper-rectangles, sim-
ple convex sets, and sparsely convex sets) and different dependence frameworks (including α-mixing,
m-dependent, and physical dependence measure). Our error bounds are non-asymptotic in all key pa-
rameters, including the sample size n and the data dimension p. In particular, our results established
under the α-mixing framework are new in the literature, while results established under the physi-
cal dependence measure improve over existing results. In addition, we provide a parametric bootstrap
procedure to implement the proposed results with a kernel-type estimator for the long-run covariance
matrix. For both Gaussian and parametric bootstrap approximations, the data dimension p is allowed to
grow sub-exponentially fast in the sample size n. The rest of the paper is organized as follows. Section 2
presents the error bounds of ρn(A) defined as (1) with selecting A as hyper-rectangles, simple convex
sets, and sparsely convex sets, respectively. Section 3 proposes a data-driven parametric bootstrap to
approximate the probability P(Sn,x ∈ A) uniformly over A ∈ A. Section 4 discusses how to implement
the proposed results in several statistical inference problems of interest. Section 5 includes the proofs of
high-dimensional CLTs on hyper-rectangles presented in Section 2.1, which provide the backbone for
deriving high-dimensional CLTs on simple convex sets and sparsely convex sets stated, respectively,
in Sections 2.2 and 2.3. The technical proofs of high-dimensional CLTs on simple convex sets and
sparsely convex sets are given in the supplementary material Chang, Chen and Wu (2024).

2. High-dimensional central limit theorems

We define some notation first. For any positive integer m, we write [m] := {1, . . . ,m}. Denote by I(·)
the indicator function. For two sequences of positive numbers {an} and {bn}, we write an � bn or
bn � an if there exists a universal constant c > 0 such that lim supn→∞ an/bn ≤ c. For any two p-
dimensional vectors v = (v1, . . . ,vp)� and u = (u1, . . . ,up)�, v ≤ u means that vj ≤ u j for all j ∈ [p].
Given α > 0, we define the function ψα(x) := exp(xα) − 1 for any x > 0. For a real-valued random vari-
able ξ, we define ‖ξ‖ψα := inf[λ > 0 : E{ψα(|ξ |/λ)} ≤ 1] and write ξ ∈ Lq for some q > 0 if ‖ξ‖q :=
{E(|ξ |q)}1/q < ∞. For a thricely differentiable function f : Rp → R, we write ∂j f (x) = ∂ f (x)/∂xj ,
∂jk f (x) = ∂2 f (x)/∂xj∂xk and ∂jkl f (x) = ∂3 f (x)/∂xj∂xk∂xl for any j, k, l ∈ [p]. For a q1 × q2

matrix B = (bi, j)q1×q2 , let |B|∞ = maxi∈[q1], j∈[q2] |bi, j | be the super-norm, and ‖B‖2 = λ
1/2
max(BB�)

be the spectral norm. Specifically, if q2 = 1, we use |B|0 =
∑q1

i=1 I(bi,1 � 0), |B|1 =
∑q1

i=1 |bi,1 | and
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|B|2 = (
∑q1

i=1 b2
i,1)

1/2 to denote the �0-norm, �1-norm and �2-norm of the q1-dimensional vector B,
respectively.

Recall Sn,x = n−1/2 ∑n
t=1 Xt and Ξ = Cov(Sn,x). Let G ∼ N(0,Ξ) which is independent of Xn =

{X1, . . . ,Xn}. We will first consider in Section 2.1 the upper bounds for


n := sup
u∈Rp ,ν∈[0,1]

|P(
√
νSn,x +

√
1 − νG ≤ u) − P(G ≤ u)| (2)

when {Xt } is (i) an α-mixing sequence, (ii) an m-dependent sequence, and (iii) a physical dependence
sequence, respectively. Based on such derived upper bounds, we can easily translate them to the upper
bounds for ρn(A) when A is selected as the class of all hyper-rectangles in Rp . In Sections 2.2 and
2.3, we will consider the upper bounds for ρn(A) when A is selected as the class of simple convex
sets and s-sparsely convex sets, respectively. Write Xt = (Xt ,1, . . . ,Xt ,p)�. Throughout the rest of this
paper (unless otherwise explicitly stated), we shall focus on the high-dimensional scenario by assuming
that p ≥ nκ for some universal constant κ > 0. Here κ > 0 can be selected as some sufficiently small
constant. Assuming p ≥ nκ is a quite mild condition in the literature of high-dimensional data analysis
which is not necessary for our theoretical analysis and just used to simplify our presentation. In our
theoretical proofs, we need to compare log p and log n in lots of places. Without the restriction p ≥ nκ ,
some log p terms in the theoretical results should be replaced by log(pn).

2.1. High-dimensional CLT for hyper-rectangles

Let Are be the class of all hyper-rectangles in Rp; that is, Are consists of all sets A of the form
A = {(w1, . . . ,wp)� ∈ Rp : aj ≤ wj ≤ bj for all j ∈ [p]} with some −∞ ≤ aj ≤ bj ≤ ∞. Define Sn, x̌ =
n−1/2 ∑n

t=1 X̌t with X̌t = (X�
t ,−X�

t )� and let Ǧ ∼ N(0, Ξ̌) with Ξ̌ = Cov(n−1/2 ∑n
t=1 X̌t ). We then have

ρn(Are) ≤ sup
u∈R2p ,ν∈[0,1]

|P(
√
νSn, x̌ +

√
1 − νǦ ≤ u) − P(Ǧ ≤ u)| ,

where the term on the right-hand side is a (2p)-dimensional analogue of 
n defined as (2) over one-
sided hyper-rectangles. To derive the convergence rate of ρn(Are), it suffices to consider that for 
n.

2.1.1. α-mixing sequence

Definition 1 (α-mixing coefficient). Let {Xt } be a random sequence. Denote by F u
−∞ and F∞

u the σ-
fields generated respectively by {Xt }t≤u and {Xt }t≥u . The α-mixing coefficient at lag k of the sequence
{Xt } is defined as

αn(k) := sup
t

sup
A∈Ft

−∞ ,B∈F∞
t+k

|P(AB) − P(A)P(B)| .

We say the sequence {Xt } is α-mixing if αn(k) → 0 as k →∞.

The long-run variance of the j-th coordinate marginal sequence {Xt , j }nt=1 is defined as

Vn, j =Var
(

1
√

n

n∑
t=1

Xt , j

)
. (3)

To investigate the convergence rate of 
n defined as (2) for the α-mixing sequence {Xt }, we need the
following regularity conditions.
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Condition 1 (Sub-exponential moment). There exist a sequence of constants Bn ≥ 1 and a universal
constant γ1 ≥ 1 such that ‖Xt , j ‖ψγ1

≤ Bn for all t ∈ [n] and j ∈ [p].

Condition 2 (Decay of α-mixing coefficients). There exist some universal constants K1 > 1, K2 > 0
and γ2 > 0 such that αn(k) ≤ K1 exp(−K2kγ2 ) for any k ≥ 1.

Condition 3 (Non-degeneracy). There exists a universal constant K3 > 0 such that minj∈[p] Vn, j ≥ K3.

Since Condition 1 implies that E{exp(|Xt , j |γ1 B−γ1
n )} ≤ 2, it follows from Markov’s inequality that

P(|Xt , j | > u) ≤ 2 exp(−uγ1 B−γ1
n ) for all u > 0. If each Xt , j is sub-gaussian, we have γ1 = 2 and Bn =

O(1). On one hand, the sub-exponential moment condition is a widely used condition in the high-
dimensional statistics literature as this would generally entail vanishing rates of convergence of the
sample mean for mean-zero independent data when the dimension p scales sub-exponentially fast in
the sample size n (Wainwright, 2019). On the other hand, it can be relaxed to polynomial moment
condition (e.g., 3rd moment condition). The trade-off is that under such condition, we can only expect
the dimension p scales polynomially fast in the sample size n (i.e., p =O(nc) for some constant c > 0)
to obtain vanishing rates of the sample mean for independent data. We can certainly expect that similar
rates can be established for temporally dependent data. However, the proof techniques would be similar
to the sub-exponential moment case. Moreover, if we replace the sample mean by its self-normalized
version, then in the independent data case the studentized mean still has exponential decay tail under
3rd moment condition. It would be an interesting future work to investigate the self-normalization in
the high-dimensional time series setting for the Gaussian approximation.

The α-mixing assumption is mild in the literature. Causal ARMA processes with continuous innova-
tion distributions are α-mixing with exponential decay rates. So are stationary Markov chains satisfying
certain conditions. See Section 2.6.1 of Fan and Yao (2003) and references within. In fact stationary
GARCH models with finite second moments and continuous innovation distributions are also α-mixing
with exponential decay rates. Under certain conditions, VAR processes, multivariate ARCH processes,
and multivariate GARCH processes are all α-mixing with exponential decay rates; see Boussama,
Fuchs and Stelzer (2011), Hafner and Preminger (2009) and Wong, Li and Tewari (2020). The next two
examples also satisfy Condition 2.

• Let Xt = At ft + εt , where At is a nonrandom loading matrix, ft ∈ Rr is the latent factor with
some fixed integer r , and {εt } is an independent sequence that is also independent of { ft }. If { ft }
is selected as VAR processes, multivariate ARCH processes, or multivariate GARCH processes,
due to that r is fixed and {εt } is an independent sequence, we know such defined {Xt } satisfies
Condition 2 under certain conditions imposed on the model of { ft }.

• Let Xt = gt (Ut ), where {Ut } is a q-dimensional latent sequence, and gt (·) : Rq → Rp is a Borel
function. Here we do not impose any relationship between p and q, and allow q =∞. Write Ut =

(Ut ,1, . . . ,Ut ,q)�. Assume the sequence {Ut , j } is ρ-mixing with exponential decay rates for each
j ∈ [q]. If {Ut ,1}, . . . , {Ut ,q} are independent of each other, Theorem 5.1 of Bradley (2005) implies
{Ut } is ρ-mixing with exponential decay rates. Due to the relationship between ρ-mixing and α-
mixing, we know such defined {Xt } satisfies Condition 2.

Condition 3 assumes the partial sum n−1/2 ∑n
t=1 Xt , j is non-degenerated which is required when

we apply Nazarov’s inequality (Chernozhukov, Chetverikov and Kato, 2017, Lemma A.1) to bound
the probability of a Gaussian vector taking values in a small region. When {Xt , j }t≥1 is stationary,
we know Vn, j = Γj (0) + 2

∑n−1
k=1(1 − kn−1)Γj (k), where Γj(k) = Cov(X1, j,X1+k , j) is the autocovariance

of {Xt , j }t≥1 at lag k. If each component sequence {Xt , j } is stationary, Condition 3 holds if Γj(0) +
2
∑∞

k=1 Γj(k) ≥ C holds for any j ∈ [p], where C > 0 is a universal constant. Based on Conditions 1–3,
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Theorem 1 gives an upper bound for 
n when the underlying sequence {Xt } is α-mixing, whose proof
is given in Section 5.1.

Theorem 1 (Gaussian approximation for partial sums of the α-mixing sequence). Assume {Xt } is
an α-mixing sequence with p ≥ nκ for some universal constant κ > 0. Under Conditions 1–3, it holds
that


n �
B2/3
n (log p)(1+2γ2)/(3γ2)

n1/9
+

Bn(log p)7/6

n1/9

provided that (log p)3−γ2 = o(nγ2/3).

Remark 1 (Comparison with existing results under mixing dependence measure). Appendix B of
Chernozhukov, Chetverikov and Kato (2019) derived the validity of a block multiplier bootstrap (BMB)
under the β-mixing assumption. There are several differences between our Theorem 1 and Theorem B.1
in Chernozhukov, Chetverikov and Kato (2019). First, since the β-mixing assumption implies the α-
mixing assumption, our Theorem 1 is applicable for wider class of dependent data. Second, Theorem
B.1 in Chernozhukov, Chetverikov and Kato (2019) is proved and stated with the “large-and-small-
blocks” argument, where conditions of their Theorem B.1 involve the “tuning parameter” of the block
sizes. It is empirically known that the performance of BMB is sensitive to the block sizes. Although
the BMB procedure given in Chernozhukov, Chetverikov and Kato (2019) is theoretically valid with
suitable divergence rates imposed on the block sizes, how to propose a valid data-driven procedure to
select the two involved tuning parameters is unclear in the framework of Gaussian approximation. Thus,
it is an undesirable feature of Theorem B.1 in Chernozhukov, Chetverikov and Kato (2019) to rule out
bootstraps without a hard truncation block size to estimate the long-run covariance matrices. In Sec-
tion 3, we consider the kernel-type estimator of Andrews (1991) to estimate the long-run covariance
matrix of Sn,x , which is more appealing from a practical standview (e.g., with the optimal quadratic
spectral kernel and optimal data-driven bandwidth formula). Although the optimal data-driven band-
width is obtained in the fixed dimensional scenario, extensive numerical studies in Chang, Jiang and
Shao (2023) indicate that such formula still works well in high-dimensional setting and the associated
performance is quite robust when the bandwidth is selected in a large range. Third, result from Cher-
nozhukov, Chetverikov and Kato (2019) holds only for max-norm statistics, while our paper derives the
convergence rates of Gaussian and parametric bootstrap approximations under much broader classes of
index sets for high-dimensional dependent data (see Sections 2.2 and 2.3 below) that can be applied
to approximate the distributions of more general and complicated statistics used in high-dimensional
statistical inference.

Remark 2. Theorem 1 extends the Gaussian approximation result for independent data in Cher-
nozhukov, Chetverikov and Kato (2017) to dependent data. When the eigenvalues of Ξ are bounded
below from zero (i.e., strongly non-degenerate case), Chernozhuokov, Chetverikov and Koike (2023)
derived a nearly optimal rate of convergence for independent data. Our analysis can be adapted with the
sharper results from Chernozhuokov, Chetverikov and Koike (2023) to yield an improved error bound
in Theorem 1 under stronger conditions.

2.1.2. m-dependent sequence

Based on the temporal dependency among {Xt }nt=1, we can define an undirected graph Gn = (Vn,En),
where Vn = [n] is a set of nodes with node t denoting Xt , and En is a set of undirected edges connecting
the nodes such that Xt and Xs are independent whenever (t, s) � En. Here we adopt the convention
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(t, t) ∈ En for any t ∈ Vn. We call such defined Gn is the dependency graph of the sequence {Xt }nt=1.
The dependency graph is a flexible model to study CLTs with increasing dependence strength (Baldi
and Rinott, 1989) that covers the m-dependent sequence as a special case. For any t ∈ [n], let Nt = {s ∈
Vn : (t, s) ∈ En} be the neighbor nodes of node t in Gn. Define Dn =maxt∈[n]

∑n
s=1 I{(t, s) ∈ En} as the

maximum degree of the first-degree connections in Gn, and D∗
n = maxt∈[n]

∑n
s=1 I{s ∈ ∪�∈NtN�} as

the maximum degree of the second-degree connections in Gn. Theorem 2 gives an upper bound for 
n
defined as (2) based on the maximum degrees Dn and D∗

n of the dependency graph determined by the
underlying sequence {Xt }nt=1, whose proof is given in Section 5.2.

Theorem 2 (Gaussian approximation for partial sums of a sequence under dependency graph).
Assume p ≥ nκ for some universal constant κ > 0. Under Conditions 1 and 3, it holds that


n �
Bn(DnD∗

n)1/3(log p)7/6

n1/6
,

where Dn and D∗
n are the maximum degrees of the first-degree and second-degree of connections in the

dependency graph generated by the sequence {Xt }nt=1, respectively.

If {Xt }nt=1 is a centered m-dependent sequence, i.e., Xt and Xs are independent for all |t − s | > m,
then {Xt }nt=1 has a dependency graph with Dn = 2m + 1 and D∗

n = 4m + 1. The next corollary states a
result for m-dependent sequences.

Corollary 1 (Gaussian approximation for partial sums of an m-dependent sequence). Assume
{Xt }nt=1 is an m-dependent sequence with p ≥ nκ for some universal constant κ > 0. Under Conditions
1 and 3, it holds that


n �
Bn(m ∨ 1)2/3(log p)7/6

n1/6
.

Since the 0-dependent sequence reduces to the independent sequence, Corollary 1 for m = 0 reads
O(Bnn−1/6 log7/6 p), which has the same sample complexity in n and dimension dependence in p as
the independent data case O(B1/3

n n−1/6 log7/6 p) up to a moment factor B2/3
n (cf. Proposition 2.1 in

Chernozhukov, Chetverikov and Kato (2017)). The extra cost B2/3
n is due to the argument that we

need to decouple the distribution tail and dependence simultaneously. In particular, for the data with
Bn = O(1), the rate obtained from our m-dependent CLT achieves the CLT rate for independent data
derived in Chernozhukov, Chetverikov and Kato (2017).

Corollary 1 is a stepping stone to study the Gaussian approximation under the physical dependence
framework with better rate of convergence than the best known results in Zhang and Wu (2017) based
on the large-and-small-blocks technique in the weaker temporal dependence regime. See Theorem 3
and the discussions in Section 2.1.4 for more details.

2.1.3. Sequence with physical dependence

Let {εi}i∈Z be a sequence of independent and identically distributed random elements. Consider the
(causal) time series model

Xt = ft (εt,εt−1, . . . ) , t ≥ 1 , (4)

where ft (·) is a jointly measurable function taking values in Rp and E(Xt ) = 0. Here {εi}i∈Z are innova-
tions that can be viewed as the input of the non-linear system (4). Since the data generation mechanism
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ft (·) may change over time, Xt is allowed to be non-stationary. Non-linear time series of the form (4)
are first introduced in Wu (2005) for p = 1 and ft (·) ≡ f (·) for some measurable function f (·) (i.e.,
stationary univariate time series), and their temporal dependence can be quantified by the functional
dependence measure based on the idea of coupling. In particular, let ε′i be an independent copy of εi
and

X ′
t , {m} = ft (εt, . . . ,εt−m+1,ε

′
t−m,εt−m−1, . . . )

be the coupled version of Xt at the time lag m with εt−m replaced by ε′t−m. By causality, X ′
t , {m} = Xt

for m < 0. Write X ′
t , {m} = (X

′
t ,1, {m}, . . . ,X

′
t ,p, {m})

�. The (uniform) functional dependence measure for
the j-th coordinate marginal sequence {Xt , j } is defined as

θm,q, j = sup
t≥1

‖Xt , j − X ′
t , j , {m} ‖q , q > 0 .

In essence, θm,q, j quantifies the uniform impact of coupling on the j-th coordinate marginal time series
at lag m. For any m ≥ 0, write Θm,q, j =

∑∞
i=m θi,q, j . For α ∈ (0,∞), define the dependence adjusted

norm introduced in Wu and Wu (2016) as

‖X., j ‖q,α = sup
m≥0

(m + 1)αΘm,q, j and ‖X., j ‖ψν ,α = sup
q≥2

q−ν ‖X., j ‖q,α ,

whenever the supremums are finite. Define further the aggregated norms as follows:

Ψq,α = max
j∈[p]

‖X., j ‖q,α and Φψν ,α = max
j∈[p]

‖X., j ‖ψν ,α . (5)

Theorem 3 (Gaussian approximation for maxima of partial sums of time series under functional
dependence). Assume {Xt } satisfies the model (4) with p ≥ nκ for some universal constant κ > 0. Let
Φψν ,α <∞ for some α,ν ∈ (0,∞).

(i) Under Condition 3, it holds that


n �
Φψν ,0(log p)7/6

nα/(3+9α) +
Ψ

1/3
2,αΨ

1/3
2,0 (log p)2/3

nα/(3+9α) +
Φψν ,α(log p)1+ν

nα/(1+3α)

provided that (log p)max{6ν−1,(5+6ν)/4} = o{nα/(1+3α)}.
(ii) Under Conditions 1 and 3, it holds that


n �
Bn(log p)7/6

nα/(12+6α) +
Ψ

1/3
2,αΨ

1/3
2,0 (log p)2/3

nα/(12+6α) +
Φψν ,α(log p)1+ν

nα/(4+2α) .

The proof of Theorem 3 is given in Section 5.3. We remark that the two rates of convergence given
in Theorems 3(i) and 3(ii) are based on the large-and-small-blocks and m-dependent approximation
techniques, respectively. The large-and-small-blocks technique is widely used in time series analysis to
approximate the sum of a time series sequence by the sum over its large blocks. It is interesting to note
that the large-and-small-blocks technique gives a faster (or slower) rate than the m-dependent argument
when 0 < α < 3 (or α > 3). In particular, when the temporal dependence is weak (for large values of
α), the improvement of Theorem 3(ii) than Theorem 3(i) is more significant. The intuition is that the
large-and-small-blocks technique used to establish Theorem 3(i) may lose sample size efficiency when
the temporal dependence is weak. In such regime, throwing away the data in small blocks may reduce
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the effective sample size, while the m-dependent approximation directly approximates the sequence Xn

without throwing away data. On the other hand, when the temporal dependence is strong (for small
values of α), we need to use much larger values of m for constructing an m-dependent sequence in
Section 2.1.2, so the m-dependent approximation becomes less effective than throwing a reasonable
amount of small blocks to reduce the dependence.

Now combining the two parts of Theorem 3, we obtain the overall rate of convergence under the
physical dependence measure.

Corollary 2 (Overall rate of convergence under physical dependence). Assume {Xt } satisfies the
model (4) with p ≥ nκ for some universal constant κ > 0, and Φψν ,α < ∞ for some α,ν ∈ (0,∞). Let
α′ = α/min{1 + 3α,4 + 2α}. Under Conditions 1 and 3, it holds that


n �
max{Φψν ,0,Bn}(log p)7/6

nα′/3
+
Ψ

1/3
2,αΨ

1/3
2,0 (log p)2/3

nα′/3
+
Φψν ,α(log p)1+ν

nα′

provided that (log p)max{6ν−1,(5+6ν)/4} = o{nα/(1+3α)}.

2.1.4. Comparison with existing result under physical dependence measure

Under the physical dependence and a sub-exponential moment condition, Zhang and Wu (2017) derived
a Gaussian approximation result for the �∞-norm of normalized sums of a class of stationary time
series:

ωn := sup
u≥0

|P(|D−1Sn,x |∞ ≥ u) − P(|D−1G |∞ ≥ u)| ,

where D = {diag(Ξ)}1/2 and G ∼ N(0,Ξ). Specifically, Theorem 7.4 in Zhang and Wu (2017) gives the
following error bound: for any λ ∈ (0,1) and η > 0,

ωn � f �(
√

nη) + η(log p)1/2 + h{λ,u�
m(λ)} + π{χ(m,M)} (6)

with

f �(y) = p exp(−Cβ yβmαβn−β/2Φ
−β
ψν ,α

) + p exp{−Cβ yβ(mw)−β/2Φ
−β
ψν ,0

} ,

h{λ,u�
m(λ)} = λ + w−1/8 max{Ψ3/4

3,0 ,Ψ
1/2
4,0 } log7/8(pwλ−1)

+ w−1/2 max{Φψν ,0 log1/β(pwλ−1), log1/2(pwλ−1)} log3/2(pwλ−1) ,

π(x) = x1/3 max{1, log2/3(px−1)} ,

χ(m,M) = Ψ2,αΨ2,0{m−α + v(M)} + wmn−1 ,

where β = 2/(1 + 2ν), v(M) = M−1I(α > 1) + (M−1 log M)I(α = 1) + M−α I(0 < α < 1), and (m,M,w)
are tuning parameters involved in the “large and small blocks” technique for deriving (6) with m and M
being, respectively, the sizes of small blocks and large blocks satisfying m = o(M), and w = �n/(M +
m)�. They first approximated Sn,x by the sum of an m-dependent sequence, and then applied the large-
and-small-blocks technique to approximate the sum of the m-dependent sequence by the sum over large
blocks.

To simplify the convergence rate of ωn specified in (6), we assume Φψν ,α = O(1) for some
α,ν ∈ (0,∞) and p ≥ nκ for some κ > 0. Choose λ = n−c1,η = n−c2 , w � nc3 and m � nc4 for some
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constants c1,c2,c3,c4 > 0. By optimizing (c1,c2,c3,c4) according to the right-hand side of (6), we have
the following proposition whose proof is given in Section S4 of the supplementary material.

Proposition 1 (Rate of convergence under physical dependence in Zhang and Wu (2017)). Assume
Φψν ,α = O(1) for some α,ν ∈ (0,∞) and p ≥ nκ for some κ > 0. Then the upper bound of ωn given in
(6) can be simplified as

ωn �
polylog(p)
nα/(3+11α) ,

where polylog(p) is a polynomial factor of log p.

Contrasting Proposition 1 with Corollary 2 specialized to max-rectangles, we see that, up to a
polylog(p) factor, our rate of convergence reads polylog(p) · n−α/[3 min{1+3α,4+2α}], which is uniformly
faster than that given in Proposition 1 for all α > 0. In other words, our rate has a better sample size de-
pendence than Zhang and Wu (2017). The reason can be seen that the optimal choice of Zhang and Wu
(2017) throws away w � n8α/(3+11α) small blocks of size m � n3/(3+11α), which leads a total reduction
of O{n(3+8α)/(3+11α)} data points in the sample size. In our result, we only throw away w � n2α/(1+3α)

small blocks of size m � n1/(1+3α), leading to a total reduction of O{n(1+2α)/(1+3α)} data points in the
sample size. Moreover, the improvement of our result over Zhang and Wu (2017) is more significant for
larger values of α > 3.

2.2. High-dimensional CLT for simple convex sets

In this section, we consider the class of simple convex sets introduced by Chernozhukov, Chetverikov
and Kato (2017). Formally, a simple convex set can be well approximated by a convex polytope with a
controlled number of facets. Simple convex sets serve an important intermediate step to derive similar
error bounds in Gaussian approximation on the class of s-sparsely convex sets considered in Sec-
tion 2.3. Geometrically, s-sparsely convex sets can be represented as an intersection of possibly many
convex sets whose indicator functions depend at most on s elements of their coordinates.

For a closed convex set A ⊂ Rp , we define its support function:

SA : Sp−1 �→ R∪ {∞} , v �→ SA(v) := sup{w�v : w ∈ A} ,

where Sp−1 is the unit sphere in Rp . Specially, if AK is K-generated (that is, AK is generated by the
intersection of K half-spaces), we could characterize AK by its support function for the set V(AK )
consisting K unit normal vectors outward to the facets of AK :

AK =
⋂

v∈V(AK )
{w ∈ Rp : w�v ≤ SAK (v)} .

Moreover, for ε > 0 and a K-generated convex set AK , we also define

AK ,ε =
⋂

v∈V(AK )
{w ∈ Rp : w�v ≤ SAK (v) + ε} .

Definition 2 (Simple convex set). We say A is a simple convex set, if there exist two constants a ≥ 0,
d > 0 and an K-generated AK satisfying K ≤ (pn)d such that

AK ⊂ A ⊂ AK ,ε (7)

with ε = a/n. In this case, AK provides an approximation to A with precision ε .
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Let Asi(a,d) be the class of all sets A satisfying (7) with K ≤ (pn)d and ε = a/n. For any v ∈ Rp ,
define

Vn(v) =Var
(

1
√

n

n∑
t=1

v�Xt

)
. (8)

In the sequel, we shall slightly abuse the notation by using AK (·) to also denote the operator defined on
Asi(a,d) such that AK (A) = AK with AK specified in (7) for any A ∈ Asi(a,d). To construct the upper
bounds for ρn(A) for some A ⊂ Asi(a,d), we need the following condition that imposes the moment
assumption on v�Xt for v ∈ V{AK (A)}.

Condition 4. There exist a sequence of constants Bn ≥ 1 and a universal constant γ1 ≥ 1 such that
‖v�Xt ‖ψγ1

≤ Bn for all t ∈ [n] and v ∈ V{AK (A)}.

2.2.1. α-mixing sequence

To obtain an upper bound for ρn(A) for some A ⊂ Asi(a,d), we need the next condition that requires
the long-run variance of the sequence {v�Xt }nt=1 is not degenerated for any v ∈ V{AK (A)}.

Condition 5. There exists a universal constant K4 > 0 such that Vn(v) ≥ K4 for any v ∈ V{AK (A)}.

Condition 5 holds automatically if the smallest eigenvalue of Ξ = Cov(n−1/2 ∑n
t=1 Xt ) is uniformly

bounded away from zero.

Theorem 4 (Gaussian approximation for partial sums of the α-mixing sequence for simple con-
vex sets). Assume {Xt } is an α-mixing sequence with p ≥ nκ for some universal constant κ > 0 and
Condition 2 being satisfied. Let A be a subclass of Asi(a,d) such that Conditions 4 and 5 are satisfied
for any A ∈ A. Then

ρn(A)� a(d log p)1/2

n
+

B2/3
n (d log p)(1+2γ2)/(3γ2)

n1/9
+

Bn(d log p)7/6

n1/9

provided that (d log p)3−γ2 = o(nγ2/3).

The proof of Theorem 4 is given in Section S5 of the supplementary material.

2.2.2. m-dependent sequence

Theorem 5 gives the high-dimensional CLT for simple convex sets based on the maximum degrees Dn

and D∗
n of the dependency graph determined by the underlying sequence {Xt }nt=1, whose proof is given

in Section S6 of the supplementary material. See the definitions of dependency graph and its associated
maximum degrees in Section 2.1.2.

Theorem 5 (Gaussian approximation for partial sums of a sequence under dependency graph
for simple convex sets). Assume p ≥ nκ for some universal constant κ > 0. Let A be a subclass of
Asi(a,d) such that Conditions 4 and 5 are satisfied for any A ∈ A. Then

ρn(A)� a(d log p)1/2

n
+

Bn(DnD∗
n)1/3(d log p)7/6

n1/6
,
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where Dn and D∗
n are the maximum degrees of the first-degree and second-degree of connections in the

dependency graph generated by the sequence {Xt }nt=1, respectively.

The next corollary states a result for m-dependent sequences.

Corollary 3. Assume {Xt }nt=1 is an m-dependent sequence with p ≥ nκ for some universal constant
κ > 0. Let A be a subclass of Asi(a,d) such that Conditions 4 and 5 are satisfied for any A ∈ A. Then

ρn(A)� a(d log p)1/2

n
+

Bn(m ∨ 1)2/3(d log p)7/6

n1/6
.

2.2.3. Sequence with physical dependence

For a K-generated convex set AK , write V(AK ) = {v1, . . . ,vK }. Given V(AK ) and {Xt }, we can define
a new K-dimensional sequence Xt (AK ) = (v�1 Xt, . . . ,v

�
K Xt )�. If {Xt }nt=1 satisfies model (4) with the

jointly measurable function ft (·), {Xt (AK )} also satisfies (4) with a jointly measurable function f̃t (·) =
{v�1 ft (·), . . . ,v�K ft (·)}�. We further defineΨq,α(AK ) andΦψν ,α(AK ) for any K-generated convex set AK

in the same manner as Ψq,α and Φψν ,α in (5) by replacing {Xt } with {Xt (AK )}. Given A ⊂ Asi(a,d),
let

Ψq,α,A = sup
A∈A
Ψq,α{AK (A)} and Φψν ,α,A = sup

A∈A
Φψν ,α{AK (A)} . (9)

Theorem 6 (Gaussian approximation for partial sums of time series under functional dependence
for simple convex sets). Assume the sequence {Xt } satisfies the model (4) with p ≥ nκ for some uni-
versal constant κ > 0. Let A be a subclass of Asi(a,d) such that Condition 5 is satisfied for any A ∈ A,
and Φψν ,α,A <∞ for some α,ν ∈ (0,∞).

(i) It holds that

ρn(A)� a(d log p)1/2

n
+
Φψν ,0,A(d log p)7/6

nα/(3+9α)

+
Ψ

1/3
2,α,AΨ

1/3
2,0,A(d log p)2/3

nα/(3+9α) +
Φψν ,α,A(d log p)1+ν

nα/(1+3α)

provided that (d log p)max{6ν−1,(5+6ν)/4} = o{nα/(1+3α)}.
(ii) If Condition 4 is satisfied for any A ∈ A, it holds that

ρn(A)� a(d log p)1/2

n
+

Bn(d log p)7/6

nα/(12+6α)

+
Ψ

1/3
2,α,AΨ

1/3
2,0,A(d log p)2/3

nα/(12+6α) +
Φψν ,α,A(d log p)1+ν

nα/(4+2α) .

The proof of Theorem 6 is given in Section S7 of the supplementary material.

2.3. High-dimensional CLT for sparsely convex sets

We consider sparsely convex sets here, as a generalization of hyper-rectangles, that can be represented
as intersections of convex sets whose indicator functions depend only on a small subset of their coor-
dinates.
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Definition 3 (s-sparsely convex set). For an integer s > 0, we say A ⊂ Rp is an s-sparsely convex
set if (i) A admits a sparse representation A = ∩K∗

q=1 Aq for some positive integer K∗ and convex sets
A1, . . . ,AK∗ ⊂ Rp , and (ii) the indicator function I(w ∈ Aq) depends on at most s components of the
vector w ∈ Rp (which we call the main components of Aq).

Denote by Asp(s) the class of all s-sparsely convex sets in Rp . In this section, we target on deriving
the upper bounds for ρn{Asp(s)} when the observed data {Xt } are (i) an α-mixing sequence, (ii) an
m-dependent sequence, and (iii) a physical dependence sequence.

2.3.1. α-mixing sequence

Condition 6. For Vn(v) defined in (8), there exists a universal constant K5 > 0 such that Vn(v) ≥ K5 for
any v ∈ Sp−1 with |v |0 ≤ s.

Condition 6 holds automatically if the smallest eigenvalue of Ξ = Cov(n−1/2 ∑n
t=1 Xt ) is uniformly

bounded away from zero.

Theorem 7 (Gaussian approximation for partial sums of the α-mixing sequence for s-sparsely
convex sets). Assume {Xt } is an α-mixing sequence with p ≥ nκ for some universal constant κ > 0.
Under Conditions 1, 2 and 6, it holds that

ρn{Asp(s)} � B2/3
n s(2+6γ2)/(3γ2)(log p)(1+2γ2)/(3γ2)

n1/9
+

Bns10/3(log p)7/6

n1/9

provided that (s2 log p)3−γ2 = o(nγ2/3).

The proof of Theorem 7 is given in Section S8 of the supplementary material.

2.3.2. m-dependent sequence

Theorem 8 (Gaussian approximation for partial sums of a sequence under dependency graph for
s-sparsely convex sets). Assume p ≥ nκ for some universal constant κ > 0. Under Conditions 1 and 6,
it holds that

ρn{Asp(s)} � s10/3Bn(DnD∗
n)1/3(log p)7/6

n1/6
,

where Dn and D∗
n are the maximum degrees of the first-degree and second-degree of connections in the

dependency graph generated by the sequence {Xt }nt=1, respectively.

The proof of Theorem 8 is given in Section S10 of the supplementary material. The next corollary
states a result for m-dependent sequences.

Corollary 4 (Gaussian approximation for partial sums of an m-dependent sequence for s-sparsely
convex sets). Assume {Xt }nt=1 is an m-dependent sequence with p ≥ nκ for some universal constant
κ > 0. Under Conditions 1 and 6, it holds that

ρn{Asp(s)} � s10/3(m ∨ 1)2/3Bn(log p)7/6

n1/6
.
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2.3.3. Sequence with physical dependence

For any c > 0, define

Ωs,c =

{
A ∈ Asi(1,cs2) : max

v∈V{AK (A)}
|v |0 ≤ s

}
.

Analogous to Ψq,α,A and Φψν ,α,A defined in (9), we also define

Ψq,α,Ωs ,c = sup
A∈Ωs ,c

Ψq,α{AK (A)} and Φψν ,α,Ωs ,c = sup
A∈Ωs ,c

Φψν ,α{AK (A)}

with Ψq,α(AK ) and Φψν ,α(AK ) defined in Section 2.2.3. It then holds that Ψq,α,Ωs ,c ≥ Ψq,α and
Φψν ,α,Ωs ,c ≥ Φψν ,α.

Theorem 9 (Gaussian approximation for partial sums of time series under functional dependence
for s-sparsely convex sets). Assume the sequence {Xt } satisfies the model (4) with p ≥ nκ for some
universal constant κ > 0. For some sufficiently large constant c > 0, let Φψν ,α,Ωs ,c < ∞ with some
α,ν ∈ (0,∞).

(i) Under Condition 6, it holds that

ρn{Asp(s)} �
Φψν ,0,Ωs ,c (s2 log p)7/6

nα/(3+9α) +
Ψ

1/3
2,α,Ωs ,c

Ψ
1/3
2,0,Ωs ,c

(s2 log p)2/3

nα/(3+9α)

+
Φψν ,α,Ωs ,c (s2 log p)1+ν

nα/(1+3α) +
Φ3
ψν ,0

s17/4

nα/(2+4α)

provided that (s2 log p)max{6ν−1,(5+6ν)/4} = o{nα/(1+3α)}.
(ii) Under Conditions 1 and 6, it holds that

ρn{Asp(s)} � s10/3Bn(log p)7/6

nα/(12+6α) +
Ψ

1/3
2,α,Ωs ,c

Ψ
1/3
2,0,Ωs ,c

(s2 log p)2/3

nα/(12+6α)

+
Φψν ,α,Ωs ,c (s2 log p)1+ν

nα/(4+2α) .

The proof of Theorem 9 is given in Section S11 of the supplementary material.

3. Parametric bootstrap

In Section 2, we have established the error bounds for ρn(A) defined as (1) when {Xt } is (i) an α-
mixing sequence, (ii) an m-dependent sequence, and (iii) a physical dependence sequence. Since P(G ∈
A) with G ∼ N(0,Ξ) depends on the unknown long-run covariance matrixΞ, to approximate P(Sn,x ∈ A)
in practice, we need to construct a data-dependent Gaussian analogue Ĝ of G. In this section, we
propose a parametric bootstrap procedure to construct Ĝ ∼ N(0, Ξ̂n) for some covariance matrix Ξ̂n
that is close to Ξ and establish its theoretical validity. Define

ρ̂n(A) := sup
A∈A

|P(Sn,x ∈ A) − P(Ĝ ∈ A | Xn)|
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with Xn = {X1, . . . ,Xn}. Let Δn,r = |Ξ̂n − Ξ|∞ and

Δn(A) = sup
A∈A

sup
v1 ,v2∈V{AK (A)}

|v�1 (Ξ̂n − Ξ)v2 |

for any A ⊂ Asi(a,d). Theorem 10 establishes primitive error bounds for ρ̂n(A) when A is selected
as the class of all hyper-rectangles, the class of simple convex sets and the class of s-sparsely convex
sets, respectively, whose proof is given in Section S13 of the supplementary material.

Theorem 10 (Rates of convergence for parametric bootstrap). Assume p ≥ nκ for some universal
constant κ > 0.

(i) Under Condition 3, it holds that

ρ̂n(Are)� ρn(Are) + Δ1/3
n,r (log p)2/3 .

(ii) Let A be a subclass of Asi(a,d) such that Condition 5 is satisfied for every A ∈ A. It holds that

ρ̂n(A)� ρn(A) + an−1(d log p)1/2 + Δ
1/3
n (A)(d log p)2/3 .

(iii) Under Conditions 1 and 6, it holds that

ρ̂n{Asp(s)} � ρn{Asp(s)} + s2Δ
1/3
n,r (log p)2/3 + {Bn + s(log p)1/2}n−1 .

Remark 3. (i) For the case of hyper-rectangles, Δn,r = op{(log p)−2} is necessary to guarantee
ρ̂n(Are) = op(1). (ii) For A ⊂ Asi(a,d), to make ρ̂n(A) = op(1), Ξ̂n should satisfy Δn(A) =
op{(d log p)−2}. Notice that Δn(A) ≤ Δn,r supA∈A supv∈V{AK (A)} |v |21. If the �1-norm of the unit nor-
mal vectors outward to the facets of AK (A) is uniformly bounded away from infinity over A ∈ A,
it suffices to require Δn,r = op{(d log p)−2}. (iii) For the case of s-sparsely convex sets, to make
ρ̂n{Asp(s)} = op(1), we need to require Δn,r = op{(s3 log p)−2}.

As we have discussed in Remark 3, the validity of our proposed parametric bootstrap only requires
the estimated long-run covariance matrix Ξ̂n satisfying |Ξ̂n −Ξ|∞ = op(δn) for some δn → 0 as n →∞,
where δn will be different for different selections of A. There are various estimation methods for long-
run covariance matrices, including the kernel-type estimators (Andrews, 1991) and utilizing moving
block bootstraps (Lahiri, 2003). See also den Haan and Levin (1997) and Kiefer, Vogelsang and Bunzel
(2000). Since the data sequence {Xt }nt=1 may be non-stationary, we suggest to adopt the kernel-type
estimator for its long-run covariance matrix, that is

Ξ̂n =

n−1∑
j=−n+1

K
(

j
bn

)
Ĥj , (10)

where Ĥj = n−1 ∑n
t=j+1(Xt − X̄)(Xt−j − X̄)� if j ≥ 0 and Ĥj = n−1 ∑n

t=−j+1(Xt+j − X̄)(Xt − X̄)� oth-
erwise, with X̄ = n−1 ∑n

t=1 Xt . Here K(·) is a symmetric kernel function that is continuous at 0 with
K(0) = 1, and bn is the bandwidth diverging with n. Among a variety of kernel functions that guaran-
tee the positive definiteness of the long-run covariance matrix estimators, Andrews (1991) derived an
optimal kernel, i.e., the quadratic spectral kernel

KQS(x) =
25

12π2x2

{
sin(6πx/5)

6πx/5
− cos(6πx/5)

}
, (11)
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by minimizing the asymptotic truncated mean square error of the estimator. To study the property of
Ξ̂n given in (10), we need the next condition imposed on the kernel K(·).

Condition 7 (Kernel regularity). The kernel function K(·) : R→ [−1,1] is continuously differen-
tiable with bounded derivatives on R and satisfies (i)K(0) = 1, (ii)K(x) =K(−x) for any x ∈ R, and
(iii) |K(x)| � |x |−ϑ as |x | →∞ for some constant ϑ > 1.

Theorem 11 (Bounds on Δn,r ). Assume p ≥ nκ for some universal constant κ > 0. Let Condition 7
hold and bn � nρ.

(i) For α-mixing sequence {Xt } with Conditions 1 and 2 being satisfied, if 0 < ρ < (ϑ − 1)/(3ϑ − 2),
there exist two constants c1 > 0 depending only on (ρ,ϑ) and c2 > 0 depending only on (γ1,γ2,ϑ) such
that

Δn,r =Op{B2
nn−c1(log p)c2 } +O(B2

nn−ρ) .

(ii) For m-dependent sequence {Xt } with Condition 1 being satisfied, if 0 < ρ < (ϑ − 1)/(3ϑ − 2),
there exist two constants c1 > 0 depending only on (ρ,ϑ) and c2 > 0 depending only on (γ1,ϑ) such that

Δn,r =Op{B2
nn−c1(log p)c2 } +O(B2

nm2n−ρ) .

(iii) For the sequence {Xt } satisfying the model (4), assume Condition 1 is satisfied and Φψν ,0 <∞
andΨ2,α <∞ for some α,ν ∈ (0,∞), if 0 < ρ < min{(2α+2ϑ−3)/(2ϑ−2),1/(2α)} with α > (3−2ϑ)/2,
there exist two constants c1 > 0 depending only on (ρ,ϑ,α) and c2 > 0 depending only on (α,ϑ,γ1, ν)
such that

Δn,r =Op{(BnΦψν,0 + B2
n +Φ

2
ψν,0

)n−c1(log p)c2 } +O(n−ρΨ2,0Ψ2,α�n)

with �n = (log n)I(α = 1) + n1−α I(α � 1).

The proof of Theorem 11 is given in Section S14 of the supplementary material.

Remark 4. Write Hj = n−1 ∑n
t=j+1 E(Xt X�

t−j) if j ≥ 0 and Hj = n−1 ∑n
t=−j+1 E(Xt+jX�

t ) if j < 0. Let

Ξ∗ =
∑n−1

j=−n+1 K( j/bn)Hj . The terms O(B2
nn−ρ), O(B2

nm2n−ρ) and O(n−ρΨ2,0Ψ2,α�n) in (i), (ii) and
(iii) of Theorem 11 are, respectively, bounds on the bias |Ξ∗ − Ξ|∞ in the three cases. Thus the bias
terms do not depend on p (at least directly). On the other hand, the terms Op{B2

nn−c1(log p)c2 },
Op{B2

nn−c1(log p)c2 } and Op{(BnΦψν,0 + B2
n + Φ

2
ψν,0

)n−c1(log p)c2 } are bounds on |Ξ̂n − Ξ∗ |∞ in the
three cases, respectively.

Now, combining Remark 3 and Theorem 11, we see that our proposed parametric bootstrap procedure
is asymptotically valid even if the dimension p grows sub-exponentially fast in the sample size n.
To implement the proposed parametric bootstrap, we need to solve two problems: (i) How to select
bandwidth bn in practice? and (ii) How to generate Ĝ ∼ N(0, Ξ̂n) efficiently when p is large? For
Problem (i), due to the positive definiteness of Ξ̂n defined as (10) with the quadratic spectral kernel
KQS(·) defined as (11), we can use this kernel in our parametric bootstrap procedure. For KQS(·),
Andrews (1991) suggested Algorithm 1 to select bn. For Problem (ii), to generate a random vector
Ĝ ∼ N(0, Ξ̂n), the standard approach consists of three steps: (a) perform the Cholesky decomposition for
the p× p matrix Ξ̂n = L�L; (b) generate independent standard normal random variables Z1, . . . ,Zp and
let Z = (Z1, . . . ,Zp)�; (c) perform the transformation Ĝ = L�Z . However, the computation complexity
of the standard approach is O(np2 + p3) and it also requires a large storage space for {Xt }nt=1 and the
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Algorithm 1 Data-driven procedure of bandwidth selection for KQS(·)
Step 1. For each j ∈ [p], fit an AR(1) model to the j-th coordinate marginal sequence {Xt , j }nt=1. De-

note by ρ̂j and σ̂2
j , respectively, the estimated autoregressive coefficient and innovation variance.

Step 2. Select bn = 1.3221(ân)1/5 with â = {
∑p

j=1 4ρ̂2
j σ̂

4
j (1 − ρ̂j)−8}/{

∑p
j=1 σ̂

4
j (1 − ρ̂j)−4}.

estimated matrix Ξ̂n. To circumvent the high computing cost with large p, we propose Algorithm 2
below which involves generating a random vector from an n-dimensional normal distribution instead.
It is easy to check that such obtained Ĝ ∼ N(0, Ξ̂n) conditionally on Xn. Algorithm 2 was initially
introduced in Chang, Yao and Zhou (2017).

4. Applications

In this section, we discuss several statistical applications of the Gaussian and parametric bootstrap
approximation results for high-dimensional dependent data developed in Sections 2 and 3.

4.1. Testing high-dimensional mean vector

Given data {Xt }n1
t=1 with E(Xt ) = θx ∈ Rp for any t ∈ [n1], it is of general interest in testing the hypoth-

esis

H0 : θx = 0 versus H1 : θx � 0 . (12)

If there is another group of data {Yt }n2
t=1 with E(Yt ) = θy ∈ Rp for any t ∈ [n2], we are also interested in

the hypothesis testing problem

H0 : θx = θy versus H1 : θx � θy . (13)

Hypotheses (12) and (13) are called, respectively, one-sample and two-sample mean testing problems
in the literature. Lots of statistical inference problems in practice can be formulated as (12) and (13).
Generally, the �2-type and �∞-type statistics are used to test the hypotheses (12) and (13) in the high-
dimensional settings. With independent data, we refer to Chen and Qin (2010) and Cai, Liu and Xia
(2014) for the uses of �2-type statistic and �∞-type statistic in these testing problems, respectively. It
has been well known that the �2-type statistics are powerful for detecting relatively dense signals while
the �∞-type statistics are preferable for detecting relatively sparse signals. In practice, we usually have
less knowledge on whether the signals are dense or sparse. Let Γ = {Cov(Xt )}−1 = (γi, j)p×p . When Γ
is known, to combine the advantages of the �2-type and �∞-type statistics, Zhang (2015) considered the
following test statistic for (12) with independent data {Xt }n1

t=1:

Tn(s) = max
1≤ j1< · · ·< js ≤p

s∑
k=1

n1 Z̄2
jk

γjk , jk
, (14)

Algorithm 2 Generating Ĝ ∼ N(0, Ξ̂n) for Ξ̂n given in (10) with KQS(·)
Step 1. Obtain the bandwidth bn by Algorithm 1. Define Θ = (θi, j)n×n with θi, j =KQS{(i − j)/bn}.
Step 2. Generate Z = (Z1, . . . ,Zn)� ∼ N(0,Θ) independent of {Xt }nt=1. Define Ĝ = n−1/2 ∑n

t=1 Zt Xt .
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where Z̄ = ΓX̄ := (Z̄1, . . . , Z̄p)� with X̄ = n−1
1

∑n1
t=1 Xt . When Γ is unknown, Zhang (2015) proposed a

feasible analogue for Tn(s) by replacing Γ by its estimator Γ̂. To simplify our presentation, we assume
Γ is known in the rest of this subsection.

For dependent data, testing for white noise or serial correlation is a fundamental problem in statistical
inference, as many testing problems in linear modelling can be transformed into a white noise test. Let
{εt } be a d-dimensional weakly stationary time series with mean zero. Denote by Σ(k) = Cov(εt+k,εt )
the autocovariance of εt at lag k. Given a prescribed integer K , the white noise hypothesis of {εt } can
be formulated as

H0 : Σ(1) = · · · = Σ(K) = 0 versus H1 : H0 is not true . (15)

Let n1 = n − K and Xt = {vec(εt+1ε
�
t ), . . . ,vec(εt+Kε�t )}�, where vec(A) denotes a row vector that

collecting all the elements in A. Then the white noise hypothesis (15) can be covered by the hypothesis
(12) with p = d2K . Chang, Yao and Zhou (2017) proposed a bootstrap test based on the �∞-type statistic
for the white noise hypothesis (15) under the β-mixing assumption of {εt }. To enhance the power
performance of Chang, Yao and Zhou (2017), we can use the test statistic Tn(s) given in (14).

Notice that the distribution function of Tn(s) can be written in terms of probability of the random
vector n1/2

1 Z̄ over a class of convex subsets of the form {w ∈ Rp :
∑

j∈Θs
γ−1
j , jw

2
j ≤ t} with Θs = {w ∈

R
p : |w |0 = s} which is a subset of the class of all s-sparsely convex sets in Rp . Let Ĝ = (Ĝ1, . . . ,Ĝp)� ∼

N(0, Ξ̂n) with Ξ̂n being the kernel-type estimator of the long-run covariance matrix Cov(n1/2
1 Z̄). Using

the results developed in Sections 2 and 3, the null-distribution of Tn(s) can be approximated by that of

T̂n = max
1≤ j1< · · ·< js ≤p

s∑
k=1

Ĝ2
jk

γjk , jk

under both the α-mixing assumption and physical dependency assumption, where s can diverge with
n at some polynomial rate. For any δ ∈ (0,1), let qδ be the upper δ-quantile of the distribution of T̂n.
Given the significant level δ, we reject the null hypothesis of the white noise hypothesis (15) if the test
statistic Tn(s) specified in (14) is larger than qδ . Our procedure allows arbitrary dependency among the
components of Xt .

4.2. Change point detection

Consider the problem of change point detection for high-dimensional distributions in a location family
Xt = θ · I(t > m)+ ξt , where θ ∈ Rp is the location-shift parameter and {ξt } is a sequence of stationary
time series noise with mean zero. If θ = 0 or m ≥ n, there is no change point in {Xt }nt=1. Yu and
Chen (2022) proposed a procedure to test whether there exists change point in the data based on the
U-statistic

Un = (Un,1, . . . ,Un,p)� =
(
n
2

) −1 ∑
1≤i< j≤n

h(Xi,Xj ) ,

where h : Rp ×Rp → Rp is an anti-symmetric kernel h(x, y) = −h(y, x). The anti-symmetry of the ker-
nel h plays a key role in testing for the change point in terms of noise cancellations so that after proper
normalization the distribution of Un can be approximated by that of a Gaussian analogue. Specifically,
under the null hypothesis that there is no change point and assuming independent and identically dis-
tributed noise {ξt } with distribution F, Yu and Chen (2022) showed that E(Un) = 0 and the probability
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of Un on max-rectangles can be well approximated by that of N(0,4Γ/3), where Γ = Cov{g(X1)} and
g(x) = E{h(x,X2)} is the L2(F) projection of h onto a linear subspace. On the other hand, under the al-
ternative hypothesis when the change point location m is known, Un is a two-sample Mann-Whitney test
statistic (see e.g., Chapter 12 in van der Vaart (1998)), and the signal distortion under certain nonlinear
kernels can be controlled such that the between-sample change point signal is magnitude preserving. To
practically calibrate the distribution of maxj∈[p] |n1/2Un, j |∞, Yu and Chen (2022) proposed a jackknife
multiple bootstrap, which is powerful against alternatives with strong signals.

However, validity of the jackknife multiple bootstrap with a general nonlinear kernel heavily relies
on the independent and identically distributed assumption of the noise sequence {ξt }nt=1 (Chen and
Kato, 2020). For time series data, with the linear kernel h(x, y) = x − y we may write

Wn = (Wn,1, . . . ,Wn,p)� = 2n−1/2(n − 1)−1
n∑
t=1

(n − 2t + 1)Xt ,

which can be viewed as one-pass CUSUM test statistic (Yu and Chen, 2021). Thus we can enhance the
power performance of the change point test of Yu and Chen (2022) in the setting of linear kernel by
using the test statistic

Tn(s) = max
1≤ j1< · · ·< js ≤p

s∑
k=1

W2
n, jk

,

which allows s to diverge with n at some polynomial rate. Let Ĝ = (Ĝ1, . . . ,Ĝp)� ∼ N(0, Ξ̂n) with Ξ̂n
being the kernel-type estimator of the long-run covariance matrix Cov(Wn) of the weighted sequence
{2(n− 1)−1(n− 2t + 1)Xt }nt=1. Based on the results developed in Sections 2 and 3, the null-distribution
of Tn(s) can be calibrated by that of

T̂n = max
1≤ j1< · · ·< js ≤p

s∑
k=1

Ĝ2
jk
,

under both the α-mixing assumption and physical dependence assumption. For any δ ∈ (0,1), let qδ be
the upper δ-quantile of the distribution of T̂n. Given the significant level δ, we reject the null hypothesis
that there is no change point if the test statistic Tn(s) = max1≤ j1< · · ·< js ≤p

∑s
k=1 W2

n, jk
> qδ . Our pro-

cedure does not need to impose any specific structure assumption on the dependency among different
components of Xt .

4.3. Confidence regions for the instantaneous covariance matrix and its inverse

Given d-dimensional dependent (and possibly non-stationary) data {Yt }nt=1 with mean zero and in-
stantaneous covariance Σ, i.e., E(Yt ) = 0 and Cov(Yt ) = Σ for any t ∈ [n], the instantaneous covariance
matrix Σ and the precision matrix Ω = Σ−1 = (ωi, j)d×d quantify the dependence among the d compo-
nents of Yt . Confidence regions for Σ and Ω can quantify the uncertainty in their estimates. For a given
index set S ⊂ [d]2, denote by ΣS and ΩS the vectors consisting, respectively, the entries of Σ and Ω
with their indices in S. We are interested in constructing a class of confidence regions {CS,δ}0<δ<1 for
ΣS such that

sup
0<δ<1

|P(ΣS ∈ CS,δ) − δ | → 0 as n,d →∞ . (16)



CLTs for high dimensional dependent data 731

We can also consider the confidence regions {CS,δ}0<δ<1 for ΩS such that

sup
0<δ<1

|P(ΩS ∈ CS,δ) − δ | → 0 as n,d →∞ .

Given observations {Yt }nt=1, we can estimate Σ as Σ̂ = n−1 ∑n
t=1 YtY�

t and estimate Ω by fitting the
node-wise regressions Yj ,t =

∑
k�j βj ,kYk ,t + εj ,t for each j ∈ [d]. For high-dimensional scenario, we

need to use the regularization method to estimate the parameters in the node-wise regressions. More
specifically, write βj = (βj ,1, . . . , βj , j−1,−1, βj , j+1, . . . , βj ,d)� which can be estimated as

β̂j ≡ (β̂j ,1, . . . , β̂j , j−1,−1, β̂j , j+1, β̂j ,d)� = arg min
γ∈Θ j

{
1
n

n∑
t=1

(γ�Yt )2 + 2λj |γ |1
}
,

where Θj = {γ = (γ1, . . . ,γd)� ∈ Rd : γj = −1} and λj > 0 is the tuning parameter. Let V = Cov(εt ) :=
(vi, j)d×d with εt = (ε1,t, . . . , εd,t )�, which can be estimated as V̂ = (v̂i, j)d×d with

v̂i, j =

{
− 1

n

n∑
t=1

(ε̂i,t ε̂j ,t + β̂i, j ε̂2
j ,t + β̂j ,i ε̂

2
i,t )

}
I(i � j) +

(
1
n

n∑
t=1

ε̂i,t ε̂j ,t

)
I(i = j)

and ε̂j ,t = −β̂�jYt for j ∈ [d] and t ∈ [n]. Then Ω̂ = (ω̂i, j )d×d with ω̂i, j = v̂i, j/(v̂i,i v̂j , j) provides an
estimate of Ω. Proposition 1 of Chang et al. (2018) shows that

ω̂i, j −ωi, j = −
1
n

n∑
t=1

v−1
i,i v

−1
j , j(εi,tεj ,t − vi, j) + op{(n log d)−1/2} ,

where the remainder term op{(n log d)−1/2} holds uniformly over (i, j) ∈ [d]2. Let p = |S|. We can see
the leading terms of Σ̂S − ΣS and Ω̂S −ΩS can both be formulated as a general form n−1 ∑n

t=1 Xt for
some p-dimensional dependent sequence {Xt }nt=1. Write Ξ = Cov(n−1/2 ∑n

t=1 Xt ) and denote by Ξ̂n the

estimate of Ξ given in Section 3. Let Ĝ(S) = {Ĝ(S)
1 , . . . ,Ĝ(S)

p }� ∼ N(0, Ξ̂n) and define

fs{Ĝ(S)} = max
1≤ j1< · · ·< js ≤p

s∑
k=1

ak {Ĝ(S)
jk

}2 ,

where a1, . . . ,as > 0 denote the prescribed weights. For any δ ∈ (0,1), let qS,δ be the upper δ-quantile
of the distribution of fs{Ĝ(S)}, which can be determined by Monte Carlo simulation. Write Σ̂S =
{σ̂(S)

1 , . . . , σ̂
(S)
p }�. We can select the confidence region CS,δ for ΣS as follows:

CS,δ =

{
ξ = (ξ1, . . . , ξp)� : max

1≤ j1< · · ·< js ≤p

s∑
k=1

ak {σ̂(S)
jk

− ξjk }
2 ≤ qS,δ

}
. (17)

Based on the results developed in Sections 2 and 3, we know such defined CS,δ satisfies (16). Analo-
gously, we can also obtain the confidence region CS,δ for ΩS in the same manner. Chang et al. (2018)
used this idea to construct the confidence region for ΩS with selecting s = 1 in (17), and established
its validity under the β-mixing assumption. Using the results in Sections 2 and 3, we can show the
validity of the confidence region defined as (17) in more general α-mixing setting and physical depen-
dence setting with diverging s. Such defined CS,δ can be applied for testing the structures and doing
support recovering of Σ and Ω, respectively. See Chang et al. (2018) for the usefulness of these confi-
dence regions. As we have discussed in Section 4.1, involving a larger s in (17) can enhance the power
performance in finite-samples in comparison to the �∞-type statistic that with s = 1.
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5. Proof of main results in Section 2.1

In this section, we provide proofs of the high-dimensional CLTs on hyper-rectangles in Section 2.1
under α-mixing (Theorem 1), dependency graph (Theorem 2), and physical dependence (Theorem 3)
frameworks. Such quantitative CLTs on hyper-rectangles are the backbone for deriving CLTs on simple
convex sets (Section 2.2) and sparsely convex sets (Section 2.3).

5.1. Proof of Theorem 1

To prove Theorem 1, we need the following lemma which is proved in Lemma C.5 by Chen and Kato
(2019). The proof is also implicit in the proof of Lemma C.1 in Chen (2018), where a conditional
version is given.

Lemma 1. Let Y and W be centered Gaussian random vectors in Rp with covariance matrices
Σy = (σy

j ,k
)j ,k∈[p] and Σw = (σw

j ,k
)j ,k∈[p], respectively. If minj∈[p]σ

y
j , j ∨ minj∈[p]σ

w
j , j ≥ c for some

universal constant c > 0, it then holds that supu∈Rp |P(Y ≤ u) − P(W ≤ u)| ≤ C |Σy − Σw |1/3
∞ (log p)2/3

for some constant C > 0 only depending on c.

Without loss of generality, we let log p = o(n2/21), log p = o{nγ2/(3+6γ2)} and B2
n(log p)1/γ2 = o(n1/3),

since otherwise we can make the assertions trivial. Let Q = o(n) be a positive integer that will diverge
with n. We first decompose the sequence [n] to L+1 blocks with L = �n/Q�: G� = {(�−1)Q+1, . . . ,�Q}
for � ∈ [L] and GL+1 = {LQ + 1, . . . ,n}. Additionally, let b and h be two nonnegative integers such that
Q = b+h and h = o(b). We decompose each G� for � ∈ [L] to a “large” block with length b and a “small”
block with length h. Specifically, I� = {(�−1)Q+1, . . . ,(�−1)Q+b} and J� = {(�−1)Q+b+1, . . . ,�Q}
for � ∈ [L], and JL+1 = GL+1. Define X̃� = b−1/2 ∑

t∈I� Xt and X̌� = h−1/2 ∑
t∈J�

Xt for � ∈ [L], and
X̌L+1 = (n−LQ)−1/2 ∑

t∈JL+1
Xt . Let {Yt }nt=1 be a sequence of independent normal random vectors with

mean zero, where the covariance of Yt (t ∈ I�) is E(X̃� X̃�
� ) for each � ∈ [L]. Define Ỹ� = b−1/2 ∑

t∈I� Yt
for � ∈ [L]. Let S(1)n,x = L−1/2 ∑L

�=1 X̃� and S(1)n,y = L−1/2 ∑L
�=1 Ỹ� . Write Ξ̃ = Cov{S(1)n,y}. It holds that

Ξ̃ = L−1 ∑L
�=1 E(Ỹ�Ỹ

�
� ) = L−1 ∑L

�=1 E(X̃� X̃�
� ). Define



(1)
n := sup

u∈Rp ,ν∈[0,1]
|P{

√
νS(1)n,x +

√
1 − νS(1)n,y ≤ u} − P{S(1)n,y ≤ u}| , (18)



(2)
n := sup

u∈Rp ,ν∈[0,1]
|P{

√
νSn,x +

√
1 − νS(1)n,y ≤ u} − P{S(1)n,y ≤ u}| . (19)

Write X̃� = (X̃�,1, . . . , X̃�,p)�. We first present the following lemmas. The proof of Lemma 2 is almost
identical to the proof of Lemma L1 in Chang, Jiang and Shao (2023) with m = 1 but using the condition
E(|Xt , j |4) � B4

n in the steps based on Davydov’s inequality (Davydov, 1968, Corollary 2). We omit
details here. The proofs of Lemmas 3 and 4 are given in Sections S1.3 and S1.4 of the supplementary
material, respectively.

Lemma 2. Assume Conditions 1–2 hold. Then |Ξ̃ − Ξ|∞ � B2
n(hb−1 + bn−1).

Lemma 3. Assume Conditions 1–3 hold. Let γ = γ2/(2γ2 + 1) and h = C{log(pn)}1/γ2 for some suf-
ficiently large C > 0. If B2

nh � b � nB−2
n , then 


(1)
n � BnL−1/6(log p)7/6 provided that (log p)3+γ =

o(b3γ/2Lγ) and log p = o(L2/5).
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Lemma 4. Let p ≥ nκ for some universal constant κ > 0. Assume Conditions 1–3 hold. Let γ =
γ2/(2γ2 + 1) and h = C(log p)1/γ2 for some sufficiently large C > 0. If b satisfies min{nB−2

n ,n1/2} �
b � max{n1/4(log p)(3−γ2)/(4γ2),B2

nh}, then 
(2)n � BnL−1/6(log p)7/6 provided that log p = o(L2/5) and
(log p)3+γ = o(b3γ/2Lγ).

Now we begin to prove Theorem 1. Let G ∼ N(0,Ξ) be independent of Xn = {X1, . . . ,Xn}, where
Ξ = Cov(n−1/2 ∑n

t=1 Xt ). Recall 
n = supu∈Rp ,ν∈[0,1] |P(
√
νSn,x +

√
1 − νG ≤ u) − P(G ≤ u)| and note

Sn,x is independent of G and S(1)n,y . For any u ∈ Rp , we have

|P(
√
νSn,x +

√
1 − νG ≤ u) − P{

√
νSn,x +

√
1 − νS(1)n,y ≤ u}|

=

				
∫
P(
√

1 − νG ≤ u −
√
νv)dFSn ,x (v) −

∫
P{

√
1 − νS(1)n,y ≤ u −

√
νv} dFSn ,x (v)

				
≤
∫

|P(
√

1 − νG ≤ u −
√
νv) − P{

√
1 − νS(1)n,y ≤ u −

√
νv}| dFSn ,x (v)

≤ sup
u∈Rp

|P(G ≤ u) − P{S(1)n,y ≤ u}| ,

where FSn ,x (·) denotes the distribution function of Sn,x . By triangle inequality, it holds that


n ≤ sup
u∈Rp

|P(
√
νSn,x +

√
1 − νG ≤ u) − P{

√
νSn,x +

√
1 − νS(1)n,y ≤ u}|

+ sup
u∈Rp

|P{
√
νSn,x +

√
1 − νS(1)n,y ≤ u} − P{S(1)n,y ≤ u}| (20)

+ sup
u∈Rp

|P{S(1)n,y ≤ u} − P(G ≤ u)|

≤ 

(2)
n + 2 sup

u∈Rp
|P(G ≤ u) − P{S(1)n,y ≤ u}| .

Notice that S(1)n,y ∼ N(0, Ξ̃) and G ∼ N(0,Ξ). By Lemmas 1 and 2 with b = o(n1/2),

sup
u∈Rp

|P{S(1)n,y ≤ u} − P(G ≤ u)| � B2/3
n h1/3b−1/3(log p)2/3 .

Notice that log p = o(n2/21), log p = o{nγ2/(3+6γ2)} and B2
n(log p)1/γ2 = o(n1/3). Letting h � (log p)1/γ2

and b � n1/3, if (log p)3−γ2 = o(nγ2/3), together with Lemma 4, then 
n � B2/3
n n−1/9(log p)(1+2γ2)/(3γ2)+

Bnn−1/9(log p)7/6. We construct Theorem 1.

5.2. Proof of Theorem 2

Without loss of generality, we assume (DnD∗
n)2(log p)7 = o(n), since otherwise we can make the as-

sertions hold trivially. Let {Yt }nt=1, independent of Xn = {X1, . . . ,Xn}, be a centered Gaussian sequence
such that Cov(Yt,Ys) = Cov(Xt,Xs) for all t, s ∈ [n]. Define Sn,y = n−1/2 ∑n

t=1 Yt . Then Sn,y =d G ∼
N(0,Ξ). Let Wn = {W1, . . . ,Wn} be an independent copy of Yn = {Y1, . . . ,Yn} which is also independent
of Xn. Analogously, we can define Sn,w based on Wn. Write Xt = (Xt ,1, . . . ,Xt ,p)�, Yt = (Yt ,1, . . . ,Yt ,p)�



734 J. Chang, X. Chen and M. Wu

and Wt = (Wt ,1, . . . ,Wt ,p)�. Recall Nt = {s ∈ Vn : (t, s) ∈ En} for any t ∈ [n]. For φ ≥ 1, define

Mn,x(φ) = max
t∈[n]
E

{
max

j∈[p],s∈∪�∈Nt N�

|Xs, j |3

× I
(

max
j∈[p],s∈∪�∈Nt N�

|Xs, j | >
√

n
8(D4

nD∗
n)1/3φ log p

) }
, (21)

M̃n,x(φ) = max
t∈[n]

max
s∈(∪�∈Nt N� )\Nt

E

{
max

j∈[p],s′ ∈∪�∈{s}∪Nt N�

|Xs′, j |3

× I
(

max
j∈[p],s′ ∈∪�∈{s}∪Nt N�

|Xs′, j | >
√

n
8(D4

nD∗
n)1/3φ log p

) }
.

Similarly, we define Mn,y(φ) and M̃n,y(φ) in the same manner with Xs replaced by Ys . Set Mn(φ) =
Mn,x(φ) +Mn,y(φ) and M̃n(φ) = M̃n,x(φ) + M̃n,y(φ).

Let β = φ log p. For a given u = (u1, . . . ,up)� ∈ Rp , define Fβ(v) = β−1 log[
∑p

j=1 exp{β(vj − u j)}] for
any v = (v1, . . . ,vp)� ∈ Rp . Such defined function Fβ(v) satisfies the property 0 ≤ Fβ(v)−maxj∈[p](vj −
u j ) ≤ β−1 log p = φ−1 for any v ∈ Rp . Select a thrice continuously differentiable function g0 : R→ [0,1]
whose derivatives up to the third order are all bounded such that g0(t) = 1 for t ≤ 0 and g0(t) = 0 for
t ≥ 1. Define g(t) := g0(φt) for any t ∈ R, and q(v) := g{Fβ(v)} for any v ∈ Rp . Define

Tn := q(
√
νSn,x +

√
1 − νSn,y) − q(Sn,w) .

Using the same arguments stated in Section S1.3 of the supplementary material, we have


n � φ−1(log p)1/2 + sup
u∈Rp ,ν∈[0,1]

|E(Tn)| .

To specify the convergence rate of 
n, we only need to bound supu∈Rp ,ν∈[0,1] |E(Tn)|. Define Z(ω) =∑n
t=1 Zt (ω) for any ω ∈ [0,1], where

Zt (ω) = n−1/2{
√
ω(

√
νXt +

√
1 − νYt ) +

√
1 −ωWt } .

Then Z(1) =
√
νSn,x +

√
1 − νSn,y and Z(0) = Sn,w . For notational simplicity, we omit the dependence

of Z(ω) and Zt (ω) on ω in the rest of this proof. Let δt =
∑

s∈Nt
Zs = (δt ,1, . . . , δt ,p)�, Z (−t) = Z − δt ,

and

�Zt = n−1/2{ω−1/2(
√
νXt +

√
1 − νYt ) − (1 −ω)−1/2Wt } = ( �Zt ,1, . . . , �Zt ,p)� .

By Taylor expansion, we have 2E(Tn) = I + II + III, where

I =
p∑
j=1

n∑
t=1

∫ 1

0
E[∂jq{Z (−t)} �Zt , j]dω, II =

p∑
j ,k=1

n∑
t=1

∫ 1

0
E[∂jkq{Z (−t)}δt ,k �Zt , j]dω,

III =
p∑

j ,k ,l=1

n∑
t=1

∫ 1

0

∫ 1

0
(1 − τ)E[∂jklq{Z (−t) + τδt }δt ,kδt ,l �Zt , j]dτdω .

Since Z (−t) and �Zt , j are independent, we have I = 0. The following two lemmas give the upper bounds
for II and III, respectively, whose proofs are given in Sections S2.1 and S2.2 of the supplementary
material, respectively.
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Lemma 5. |III| � D2
nφ

3n−1/2(log p)2{Mn(φ) + B3
nφ

−1(log p)1/2 + B3
n
n}.

Lemma 6. |II| � DnD∗
nφ

3n−1/2(log p)2{M̃n(φ) + B3
nφ

−1(log p)1/2 + B3
n
n}.

Hence, by Lemmas 5 and 6, we have


n � φ−1(log p)1/2+Dnφ
3n−1/2(log p)2{DnMn(φ) + D∗

nM̃n(φ)

+ B3
nD∗

nφ
−1(log p)1/2 + B3

nD∗
n
n} .

Taking φ =C′n1/6B−1
n (DnD∗

n)−1/3(log p)−2/3 for some sufficiently small C ′ > 0, then


n � B−3
n Mn{C ′n1/6B−1

n (DnD∗
n)−1/3(log p)−2/3}

+ B−3
n M̃n{C ′n1/6B−1

n (DnD∗
n)−1/3(log p)−2/3} + n−1/6Bn(DnD∗

n)1/3(log p)7/6 .

Write

X (t) = max
j∈[p],s∈∪�∈Nt N�

|Xs, j | and X (t),s = max
j∈[p],s′ ∈∪�∈{s}∪Nt N�

|Xs′, j | .

By Condition 1, P{X (t) > u} ≤ 2pD∗
n exp(−uγ1 B−γ1

n ) and P{X (t),s > u} ≤ 4pD∗
n exp(−uγ1 B−γ1

n ) for any
u > 0. Notice that Dn ≤ D∗

n ≤ D2
n and E{|ξ |3I(|ξ | > v)} = v3

P(|ξ | > v) + 3
∫ ∞
v

u2
P(|ξ | > u)du. Due to

D3
n(log p)1+3/γ1 = o(n) and p ≥ nκ for some κ > 0, we have

E[{X (t)}3I{X (t) > Bnn1/3(8C ′)−1 · D−1
n (log p)−1/3}]

� B3
n exp{−Cnγ1/3D−γ1

n (log p)−γ1/3} � B3
nD1/2

n n−1/6(log p)7/6 ,

which implies

Mn,x{C ′n1/6B−1
n (DnD∗

n)−1/3(log p)−2/3}� n−1/6B3
nD1/2

n (log p)7/6 .

Recall Yt is a normal random vector. Since maxt∈[n], j∈[p] E(|Xt , j |2)� B2
n and Cov(Yt,Ys) = Cov(Xt,Xs)

for all t, s ∈ [n], then maxt∈[n], j∈[p] P(|Yt , j | > u) ≤ 2 exp(−Cu2B−2
n ) for any u > 0. Analogously,

Mn,y{C ′n1/6B−1
n (DnD∗

n)−1/3(log p)−2/3} � B3
nD1/2

n n−1/6(log p)7/6

provided that D3
n(log p)5/2 = o(n). Notice that (DnD∗

n)2(log p)7 = o(n) and γ1 ≥ 1. Thus,

Mn{C ′n1/6B−1
n (DnD∗

n)−1/3(log p)−2/3} � B3
nD1/2

n n−1/6(log p)7/6 .

By the same arguments, we can also show

E[{X t ,(s)}3I{X t ,(s) > (8C ′)−1Bnn1/3D−1
n (log p)−1/3}]� B3

nD1/2
n n−1/6(log p)7/6 ,

which implies

M̃n{C ′n1/6B−1
n (DnD∗

n)−1/3(log p)−2/3} � B3
nD1/2

n n−1/6(log p)7/6 .

Hence, 
n � n−1/6Bn(DnD∗
n)1/3(log p)7/6. We complete the proof of Theorem 2.
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5.3. Proof of Theorem 3

Let X (m)
t = E(Xt | εt, . . . ,εt−m) for any m ≥ 1. Then {X (m)

t }n
t=1 is an m-dependent sequence with mean

zero. Let Ξ(m) = Cov{S(m)
n,x } with S(m)

n,x = n−1/2 ∑n
t=1 X (m)

t . Recall Sn,x = n−1/2 ∑n
t=1 Xt . Write Sn,x =

(Sn,x,1, . . . ,Sn,x,p)� and S(m)
n,x = {S(m)

n,x,1, . . . ,S
(m)
n,x,p}�.

Lemma 7. Let {Xt } be a sequence of centered random vectors generated from the model (4) such that
Φψν ,α < ∞ for some α,ν ∈ (0,∞). Then there exists a universal constant C > 0 depending only on ν

such that maxj∈[p] P{|S(m)
n,x, j − Sn,x, j | > u} ≤ C exp{−(4e)−1(1+2ν)(umαΦ−1

ψν ,α
)2/(1+2ν)} for any u > 0.

Lemma 8. Let q ≥ 2. For each j ∈ [p], it holds that ‖Sn,x, j ‖q ≤ (q − 1)1/2Θ0,q, j , ‖S(m)
n,x, j ‖q ≤ (q −

1)1/2Θ0,q, j and ‖Sn,x, j − S(m)
n,x, j ‖q ≤ (q − 1)1/2Θm+1,q, j .

The proof of Lemma 7 essentially follows from the arguments in proving Lemma C.3 of Zhang and
Wu (2017) with the necessary modification using the uniform functional dependence measure to non-
stationarity of the sequence {Xt }. Details are omitted. The proof of Lemma 8 is given in Section S3.1
of the supplementary material.

5.3.1. Proof of Part (i) of Theorem 3

Recall Ξ = Cov(Sn,x). We will apply the large-and-small-blocks technique stated in Appendix 5.1
to derive the upper bound of 
n. Without loss of generality, we assume Φψν ,0 = o{nα/(3+9α)} and
Ψ2,αΨ2,0 = o{nα/(1+3α)}, since otherwise the assertions hold trivially. Let Q = o(n) be a positive integer
that will diverge with n. We first decompose the sequence {X (m)

t }n
t=1 to L + 1 blocks with L = �n/Q�:

G� = {(�−1)Q+1, . . . ,�Q} for � ∈ [L] and GL+1 = {LQ+1, . . . ,n}. Let b � m be a nonnegative integer
such that Q = b+m. We decompose each G� for � ∈ [L] to a “large” block with length b and a “small”
block with length m. Specifically,I� = {(�−1)Q+1, . . . ,(�−1)Q+b} and J� = {(�−1)Q+b+1, . . . ,�Q}
for � ∈ [L], and JL+1 = GL+1. Define X̃ (m)

�
= b−1/2 ∑

t∈I� X (m)
t and X̌ (m)

�
= m−1/2 ∑

t∈J�
X (m)
t for

� ∈ [L], and X̌ (m)
L+1 = (n − LQ)−1/2 ∑

t∈JL+1
X (m)
t . Since {X (m)

t }n
t=1 is an m-dependent sequence, we

know {X̃ (m)
�

}L
�=1 is an independent sequence. Let {Y (m)

t }n
t=1 be a sequence of independent normal ran-

dom vectors with mean zero, where the covariance of Y (m)
t (t ∈ I�) is E[X̃ (m)

�
{X̃ (m)

�
}�] for each � ∈ [L].

Define Ỹ (m)
�
= b−1/2 ∑

t∈I� Y (m)
t for � ∈ [L]. Let S̃(m)

n,x = L−1/2 ∑L
�=1 X̃ (m)

�
and S̃(m)

n,y = L−1/2 ∑L
�=1 Ỹ (m)

�
.

Write Ξ̃ = Cov{S̃(m)
n,y }. Then Ξ̃ = L−1 ∑L

�=1 E[Ỹ
(m)
�

{Ỹ (m)
�

}�] = L−1 ∑L
�=1 E[X̃

(m)
�

{X̃ (m)
�

}�] = Cov{S̃(m)
n,x }.

Define



(m)
n,1 := sup

u∈Rp ,ν∈[0,1]
|P{

√
νS̃(m)

n,x +
√

1 − νS̃(m)
n,y ≤ u} − P{S̃(m)

n,y ≤ u}| ,



(m)
n,2 := sup

u∈Rp ,ν∈[0,1]
|P{

√
νS(m)

n,x +
√

1 − νS̃(m)
n,y ≤ u} − P{S̃(m)

n,y ≤ u}| .

Write X̃ (m)
�
= {X̃ (m)

�,1 , . . . , X̃
(m)
�,p

}�. We first present the following lemmas whose proofs are given in Sec-
tions S3.2–S3.6 of the supplementary material, respectively.

Lemma 9. IfΦψν ,0 <∞ for some ν ∈ (0,∞), then max�∈[L] maxj∈[p] P{| X̃ (m)
�, j

| > u}� exp{−(4e)−1(1+
2ν)(uΦ−1

ψν ,0
)2/(1+2ν)} for any u > 0.
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Lemma 10. If Φψν ,0 <∞ for some ν ∈ (0,∞), we have max�∈[L] maxj∈[p] E{| X̃ (m)
�, j

|q} �Φq
ψν,0

for any
positive integer q ≥ 1.

Lemma 11. If Φψν ,0,Ψ2,α <∞ for some ν,α ∈ (0,∞), it holds that |Ξ̃ − Ξ|∞ � Φ2
ψν ,0

(mb−1 + bn−1) +
m−αΨ2,αΨ2,0.

Lemma 12. Let p ≥ nκ for some universal constant κ > 0. Assume Φψν ,0,Ψ2,α < ∞ for some
ν,α ∈ (0,∞), and minj∈[p] Vn, j ≥ C for some universal constant C > 0, where Vn, j is defined in
(3). If Φ2

ψν ,0
m � b � Φ−2

ψν ,0
n and mα � Ψ2,αΨ2,0, then 


(m)
n,1 � L−1/6Φψν,0(log p)7/6 provided that

(log p)5+6ν = o(L2).

Lemma 13. Let p ≥ nκ for some universal constant κ > 0. Assume Φψν ,0,Ψ2,α < ∞ for some
ν,α ∈ (0,∞), and minj∈[p] Vn, j ≥ C for some universal constant C > 0, where Vn, j is defined in
(3). If max{mΦ2

ψν ,0
,n1/4m3/4(log p)(6ν−1)/4} � b � min{nΦ−2

ψν ,0
,(mn)1/2} and mα � Ψ2,αΨ2,0, then



(m)
n,2 � L−1/6Φψν,0(log p)7/6 provided that (log p)5+6ν = o(L2).

Recall G ∼ N(0,Ξ) and S̃(m)
n,y ∼ N(0, Ξ̃). By Lemma 1,

sup
u∈Rp

|P(G ≤ u) − P{S̃(m)
n,y ≤ u}| � |Ξ̃ − Ξ|1/3

∞ (log p)2/3 .

Let Dn = Cm−αΦψν ,α(log p)(1+2ν)/2 for some sufficiently large constant C > 0. Then Dn(log p)1/2 �
m−αΦψν ,α(log p)1+ν . Define the event E = {|Sn,x − S(m)

n,x |∞ ≤ Dn}.
If mα � Ψ2,αΨ2,0 and max{mΦ2

ψν ,0
,n1/4m3/4(log p)(6ν−1)/4} � b � min{nΦ−2

ψν ,0
,(mn)1/2}, then


n ≤ sup
u∈Rp ,ν∈[0,1]

|P{
√
νSn,x +

√
1 − νS̃(m)

n,y ≤ u} − P{S̃(m)
n,y ≤ u}|

+ 2 sup
u∈Rp

|P(G ≤ u) − P{S̃(m)
n,y ≤ u}|

� 

(m)
n,2 + P(E

c) + sup
u∈Rp ,ν∈[0,1]

|P{S̃(m)
n,y ≤ u −

√
νDn} − P{S̃(m)

n,y ≤ u}| (22)

+ sup
u∈Rp ,ν∈[0,1]

|P{S̃(m)
n,y ≤ u +

√
νDn} − P{S̃(m)

n,y ≤ u}| + |Ξ̃ − Ξ|1/3
∞ (log p)2/3

� L−1/6Φψν ,0(log p)7/6 + Dn(log p)1/2 + P(Ec) + |Ξ̃ − Ξ|1/3
∞ (log p)2/3 ,

provided that (log p)5+6ν = o(L2), where the first step is identical to (20), and the last step is based on
Lemma 13 and Nazarov’s inequality. Lemma 7 implies

P(Ec)� p exp{−C(DnmαΦ−1
ψν ,α

)2/(1+2ν)}� L−1/6Φψν ,0(log p)7/6 .

Due to b � (mn)1/2, by Lemma 11, |Ξ̃ − Ξ|∞ � Φ2
ψν ,0

mb−1 + m−αΨ2,αΨ2,0. By (22) and recalling

L � nb−1, we have


n � b1/6n−1/6Φψν ,0(log p)7/6 +m−αΦψν ,α(log p)1+ν

+Φ
2/3
ψν ,0

m1/3b−1/3(log p)2/3 +Ψ
1/3
2,αΨ

1/3
2,0 m−α/3(log p)2/3 .
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With selecting b � m2/3n1/3, if Ψ1/α
2,αΨ

1/α
2,0 � m � min{nΦ−6

ψν ,0
,n(log p)3(1−6ν),n(log p)−3(5+6ν)/4}, then


n � m1/9n−1/9Φψν ,0(log p)7/6 +m−αΦψν ,α(log p)1+ν +Ψ1/3
2,αΨ

1/3
2,0 m−α/3(log p)2/3 .

Recall Φψν ,0 = o{nα/(3+9α)} and Ψ2,αΨ2,0 = o{nα/(1+3α)}. Letting m � n1/(1+3α), we have


n � n−α/(3+9α)(log p)2/3{Φψν ,0(log p)1/2 +Ψ
1/3
2,αΨ

1/3
2,0 } + n−α/(1+3α)Φψν ,α(log p)1+ν

provided that (log p)6ν−1 = o{nα/(1+3α)} and (log p)(5+6ν)/4 = o{nα/(1+3α)}. We have Part (i) of Theo-
rem 3.

5.3.2. Proof of Part (ii) of Theorem 3

Without loss of generality, we assume Φ4+2α
ψν ,α

= o(nα), since otherwise the assertions hold trivially.

Let {Y (m)
t }n

t=1 be a sequence of centered Gaussian random vectors in Rp such that Cov{Y (m)
t ,Y (m)

s } =
Cov{X (m)

t ,X (m)
s } for all t, s ∈ [n]. Set S(m)

n,y = n−1/2 ∑n
t=1 Y (m)

t . Recall Sn,x = n−1/2 ∑n
t=1 Xt . Lemma 7

implies maxj∈[p] E{|Sn,x, j − S(m)
n,x, j |

2} � Φ2
ψν ,α

m−2α. Since Var{S(m)
n,x, j} ≥ Var(Sn,x, j) + E{|Sn,x, j −

S(m)
n,x, j |

2} − 2{Var(Sn,x, j)}1/2[E{|Sn,x, j − S(m)
n,x, j |

2}]1/2, if we select m ≥ CΦ1/α
ψν ,α

for some sufficiently

large C > 0, we know that Var{S(m)
n,x, j} is uniformly bounded away from zero. By Hölder’s inequality,

Jensen’s inequality and Condition 1, ‖X (m)
t , j ‖ψγ1

≤ ‖Xt , j ‖ψγ1
≤ Bn for any t ∈ [n] and j ∈ [p]. Thus

Corollary 1 yields that


n{S(m)
n,x ,S

(m)
n,y } := sup

u∈Rp ,ν∈[0,1]
|P{

√
νS(m)

n,x +
√

1 − νS(m)
n,y ≤ u} − P{S(m)

n,y ≤ u}|

� n−1/6Bnm2/3(log p)7/6 .

Recall G ∼ N(0,Ξ) with Ξ = Cov(Sn,x). Let D̃n = Cm−αΦψν ,α(log p)(1+2ν)/2 for some sufficiently
large constant C > 0. Then D̃n(log p)1/2 � m−αΦψν ,α(log p)1+ν . Consider the event E = {|Sn,x −
S(m)
n,x |∞ ≤ D̃n}. Write Ξ(m) = Cov{S(m)

n,x }. By Lemma 1, supu∈Rp |P(G ≤ u) − P{S(m)
n,y ≤ u}| � |Ξ(m) −

Ξ|1/3
∞ (log p)2/3. Then


n ≤ sup
u∈Rp ,ν∈[0,1]

|P{
√
νSn,x +

√
1 − νS(m)

n,y ≤ u} − P{S(m)
n,y ≤ u}|

+ 2 sup
u∈Rp

|P(G ≤ u) − P{S(m)
n,y ≤ u}|

≤ 
n{S(m)
n,x ,S

(m)
n,y } + P(Ec) + sup

u∈Rp ,ν∈[0,1]
|P{S(m)

n,y ≤ u −
√
νD̃n} − P{S(m)

n,y ≤ u}|

+ sup
u∈Rp ,ν∈[0,1]

|P{S(m)
n,y ≤ u +

√
νD̃n} − P{S(m)

n,y ≤ u}| + |Ξ(m) − Ξ|1/3
∞ (log p)2/3

� n−1/6Bnm2/3(log p)7/6 + D̃n(log p)1/2 + P(Ec) + |Ξ(m) − Ξ|1/3
∞ (log p)2/3 ,

where the first step is identical to (20), and the last step is based on Nazarov’s inequality. By Lemma 7,
P(Ec) � p exp{−C(D̃nmαΦ−1

ψν ,α
)2/(1+2ν)} � n−1/6Bnm2/3(log p)7/6. It follows from Cauchy-Schwarz
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inequality and Lemma 8 that

|E(Sn,x, jSn,x,k) − E{S(m)
n,x, jS

(m)
n,x,k

}|

≤ |E[Sn,x, j{Sn,x,k − S(m)
n,x,k

}]| + |E{S(m)
n,x,k

{Sn,x, j − S(m)
n,x, j}]|

≤ ‖Sn,x, j ‖2‖Sn,x,k − S(m)
n,x,k

‖2 + ‖S(m)
n,x,k

‖2‖Sn,x, j − S(m)
n,x, j ‖2

≤ Θ0,2, jΘm+1,2,k +Θ0,2,kΘm+1,2, j .

Then |Ξ(m) − Ξ|∞ ≤ 2(maxj∈[p]Θ0,2, j)(maxj∈[p]Θm+1,2, j )� m−αΨ2,αΨ2,0. Thus,


n � n−1/6Bnm2/3(log p)7/6 +m−αΦψν ,α(log p)1+ν +m−α/3Ψ
1/3
2,αΨ

1/3
2,0 · (log p)2/3 .

Letting m � n1/(4+2α), we have


n � n−α/(12+6α){Bn(log p)7/6 + (log p)2/3Ψ
1/3
2,αΨ

1/3
2,0 } + n−α/(4+2α)Φψν ,α(log p)1+ν .

We have Part (ii) of Theorem 3.
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