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Summary. Comparing large covariance matrices has important applications in modern genomics, where scientists are often
interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary
between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance
matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the
new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with
respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is
asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm
which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using
an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across
different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides
new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented
in an R-package HDtest and are available on CRAN.
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Sparsity.

1. Introduction
The problem of comparing two large population covariance
matrices has important applications in modern genomics,
where growing attentions have been devoted to understand-
ing how the relationship (e.g., dependencies or co-regulations)
among genes vary between different biological states. Our
interest in this problem is motivated by a microarray study
on human asthma (Voraphani et al., 2014). This study con-
sists of 88 asthma patients and 20 controls. It is known that
genes tend to work collectively in groups to achieve certain
biological tasks. Our analysis focuses on such groups of genes
(gene sets) defined with the gene ontology (GO) framework,
which are referred to as GO terms. Identifying GO terms
with altered dependence structures between disease and con-
trol groups provides critical information on differential gene
pathways associated with asthma. Many of the GO terms con-
tain a large number of (in the asthma data, as many as 8070)
genes. The large dimension of microarray data and the com-
plex dependence structure among genes make the problem of
comparing two population matrices extremely challenging.

In conventional multivariate analysis where the dimension
p is fixed, testing the equality of two unknown covariance
matrices �1 and �2 based on the samples with sample sizes
n and m has been extensively studied, see, for example,
Anderson (2003) and the references therein. In the high-
dimensional setting where p > max(n, m), recently several
authors have developed new tests other than the traditional
likelihood ratio test. Considering multivariate normal data,
Schott (2007) and Srivastava and Yanagihara (2010) con-
structed tests using different distances based on traces of
the covariance matrices; Li and Chen (2012) proposed a U-
statistic-based test for a more general multivariate model.
These tests are effective for dense alternatives, but often suffer
from low power when �1 − �2 is sparse. We are more inter-
ested in this latter situation, as in genomics the difference
in the dependence structures between populations typically
involves only a small number of genes.

For sparse alternatives, Cai et al. (2013) investigated an
L∞-type test. They proved that the distribution of the test
statistic converges to a type I extreme value distribution
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under the null hypothesis and the test enjoys certain opti-
mality property. Motivated by this work, we propose in this
article a perturbed variation of the L∞-type test statistic.
We verify that the conditional distribution of the perturbed
L∞-statistic provides a high-quality approximation to the dis-
tribution of the original L∞-type test, which has important
implications in achieving accurate performance in finite sam-
ple size. In contrast, the convergence rate to the extreme-value
distribution of type I is of order O{log(log n)/ log n} (Liu et al.,
2008).

The asymptotic validity of our proposed new procedure
does not require any structural assumptions on the unknown
covariances. It is valid under weak moment conditions. On the
other hand, the aforementioned work all require certain para-
metric distributional assumptions or structural assumptions
on the population covariances in order to derive an asymp-
totically pivotal distribution. Assumptions of this kind are
not only difficult to be verified but also often violated in real
data. It is known that expression levels of the genes regulated
by the same pathway (Wolen and Miles, 2012) or associ-
ated with the same functionality (Katsani et al., 2014) are
often highly correlated. Also, in the microarray and sequenc-
ing experiments, most genes are expressed at very low levels
while few are expressed at high levels. This implies that the
distribution of gene expressions is most likely heavy-tailed
regardless of the normalization and transformations (Wang
et al., 2015).

For testing H0 : �1 = �2 in high dimensions, the new pro-
cedure is computationally fast and adaptive to the unknown
dependence structures. Section 2 introduces the new test-
ing procedure and investigates its theoretical properties. In
Section 3, we compare its finite sample performance with sev-
eral competitive procedures. A gene clustering algorithm is
derived in Section 4, which aims to group hundreds or thou-
sands of genes based on the expression patterns (Sharan et al.,
2002) without imposing restrictive structural assumptions.
We apply the proposed procedures to the human asthma
dataset in Section 5. Section 6 discusses our results and other
related work. Proofs of the theoretical results and additional
numerical results are provided in the Supplementary Material.
The proposed methods have been implemented in the R pack-
age HDtest and is currently available on CRAN (http://cran.
r-project.org).

2. The New Testing Procedure

2.1. The L∞-Statistic

Let X = (X1, . . . , Xp)
T and Y = (Y1, . . . , Yp)

T be two p-
dimensional random vectors with means μ1 = (μ11, . . . , μ1p)

T

and μ2 = (μ21, . . . , μ2p)
T, and covariance matrices

�1= (σ1,k�)1≤k,�≤p and �2= (σ2,k�)1≤k,�≤p, respectively. We are
interested in testing

H0 : �1 = �2 versus H1 : �1 �= �2, (1)

based on independent random samples Xn = {X1, . . . ,Xn}
and Ym = {Y1, . . . ,Ym} drawn from the distributions
of X and Y, respectively. For each i and j, we
write Xi = (Xi1, . . . , Xip)

T and Yj = (Yj1, . . . , Yjp)
T. Let

�̂1 = (σ̂1,k�)1≤k,�≤p = n−1
∑n

i=1
(Xi − X̄)(Xi − X̄)T and �̂2 =

(σ̂2,k�)1≤k,�≤p = m−1
∑m

j=1
(Yj − Ȳ)(Yj − Ȳ)T be the sample

analogues of �1 and �2, where X̄ = (X̄1, . . . , X̄p)
T =

n−1
∑n

i=1
Xi and Ȳ = (Ȳ1, . . . , Ȳp)

T = m−1
∑m

j=1
Yj.

For each (k, �), a straightforward extension of the two-
sample t-statistic for the marginal hypothesis H0,k� : σ1,k� =
σ2,k� versus H1,k� : σ1,k� �= σ2,k� is given by

t̂k� = σ̂1,k� − σ̂2,k�

(n−1ŝ1,k� + m−1ŝ2,k�)1/2
, (2)

where ŝ1,k� = n−1
∑n

i=1
{(Xik − X̄k)(Xi� − X̄�)− σ̂1,k�}2 and ŝ2,k�=

m−1
∑m

j=1
{(Yjk − Ȳk)(Yj� − Ȳ�) − σ̂2,k�}2 are estimators of s1,k�=

Var{(Xk − μ1k)(X� − μ1�)} and s2,k�=Var{(Yk − μ2k)(Y�−μ2�)},
respectively.

Since the null hypothesis in (1) is equivalent to H0 :
max1≤k≤�≤p |σ1,k� − σ2,k�| = 0, a natural test statistic that is
powerful against sparse alternatives in (1) is the L∞-statistic

T̂max = max
1≤k≤�≤p

|̂tk�|. (3)

2.2. A New Testing Procedure

One way to base a testing procedure on the L∞-statistic
is to reject the null hypothesis (1) when T̂ 2

max − 4 log p +
log(log p) > qα, where qα = − log(8π) − 2 log log(1 − α)−1 cor-
responds to the (1 − α)-quantile of the type I extreme value
distribution. Cai et al. (2013) proved that this leads to a
test that maintains level α asymptotically and enjoys certain
optimality.

In this section, we propose a new test that rejects (1)

when T̂max > cα, where cα is obtained using a fast-computing
data perturbation procedure. The new procedure resolves two
issues at once. First, it achieves better finite sample perfor-
mance by avoiding the slow convergence of T̂ 2

max − 4 log p +
log(log p) to the type I extreme value distribution. Second and
more importantly, our procedure relaxes the conditions on the
covariance matrices required in Cai et al. (2013) (particularly,
their Conditions (C1) and (C3)). Note that their Condition
(C1) essentially requires that the number of variables that
have non-degenerate correlations with others should grow no
faster than the rate of p. Although this condition is reasonable
in some applications, it is hard to be justified for data from
the microarray or transcriptome experiments, where the genes
can be divided into gene sets with varying sizes according
to functionalities, and usually genes from the same set have
relatively high (sometimes very high) intergene correlations
compared to those from different sets. This corresponds to an
approximate block structure. Many sets can contain several
thousand genes, a polynomial order of p. This kind of block
structure with growing block size may violate Condition (C1)
in Cai et al. (2013). The crux of the derivation of the asymp-
totic type I extreme value distribution in (Cai et al., 2013)
is that the t̂k�’s are weakly dependent under H0 under cer-
tain regularity conditions. In contrast, the new procedure we
present below automatically takes into account correlations
among the t̂k�’s.

http://cran.r-project.org


Testing Large Covariance Matrices 33

Specifically, we propose the following procedure to compute
cα with the dependence among t̂k�’s incorporated.

(I). Independent of Xn and Ym, we generate a sequence
of independent N(0, 1) random variables g1, . . . , gN ,
where N = n + m is the total sample size.

(II). Using the gi’s as multipliers, we calculate the per-
turbed version of the test statistic

T̂ †
max = max

1≤k≤�≤p
|̂t†k�|, (4)

where t̂
†
k� = (n−1ŝ1,k� + m−1ŝ2,k�)

−1/2(σ̂†
1,k� − σ̂

†
2,k�) with

σ̂
†
1,k� = n−1

∑n

i=1
gi{(Xik − X̄k)(Xi� − X̄�) − σ̂1,k�} and

σ̂
†
2,k� = m−1

∑m

j=1
gn+j{(Yjk − Ȳk)(Yj� − Ȳ�) − σ̂2,k�}.

(III). The critical value cα is defined as the upper α-

quantile of T̂ †
max conditional on {Xn,Ym}; that is,

cα = inf{t ∈ R : Pg(T̂
†
max > t) ≤ α}, where Pg denotes

the probability measure induced by the Gaussian
random variables {gi}N

i=1 with Xn and Ym being fixed.

This algorithm combines the ideas of multiplier boot-
strap and parametric bootstrap. The principle of parametric
bootstrap allows t̂

†
k�’s constructed in step (II) to retain the

covariance structure of t̂k�’s. The validity of multiplier boot-
strap is guaranteed by the multiplier central limit theorem,
see van der Vaart and Wellner (1996) for traditional fixed-
and low-dimensional settings and Chernozhukov et al. (2013)
for more recent development in high dimensions.

For implementation, it is natural to compute the critical
value cα via Monte Carlo simulation by cB,α = inf{t ∈ R : 1 −
F̂B(t) ≤ α}, where F̂B(t) = B−1

∑B

b=1
I(T̂ †

b ≤ t) and T̂
†
1, . . . , T̂

†
B

are B independent realizations of T̂ †
max in (4) by repeating

steps (I) and (II). For any prespecified α ∈ (0, 1), the null

hypothesis (1) is rejected whenever T̂max > cB,α.
The main computational cost of our procedure for com-

puting the critical value cB,α only involves generating NB

independent and identically distributed N(0, 1) variables. It
took only 0.0115 seconds to generate one million such realiza-
tions based on a computer equipped with Intel(R) Core(MT)
i7-4770 CPU @ 3.40GHz. Hence, even taking B to be in the
order of thousands, our procedure can be easily accomplished
efficiently when p is large.

2.3. Theoretical Properties

The difference between cα and its Monte Carlo counterpart
cB,α is usually negligible for a large value of B. In this sec-
tion, we study the asymptotic properties of the proposed test
�α = I(T̂max > cα) under both the null hypothesis (1) and a
sequence of local alternatives.

For the asymptotic properties, we only require the following
relaxed regularity conditions. Let K > 0 be a finite constant
independent of n, m, and p.

(C1). {E(|Xk|2r)}1/r ≤ Kσ1,kk, {E(|Yk|2r)}1/r ≤ Kσ2,kk uni-
formly in k = 1, . . . , p, for some r ≥ 4.

(C2). max1≤k≤p E{exp(κX2
k /σ1,kk)} ≤ K and

max1≤k≤p E{exp(κY2
k /σ2,kk)} ≤ K for some κ > 0.

(C3). min1≤k≤�≤p s1,k�/(σ1,kkσ1,��) ≥ c and
min1≤k≤�≤p s2,k�/(σ2,kkσ2,��) ≥ c for some c > 0.

(C4). n and m are comparable, that is, n/m is uniformly
bounded away from zero and infinity.

Assumptions (C1) and (C2) specify the polynomial-type
and exponential-type tails conditions on the underlying dis-
tributions of X and Y, respectively. Assumption (C3) ensures
that the random variables {(Xk − μ1k)(X� − μ1�)}1≤k,�≤p and
{(Yk − μ2k)(Y� − μ2�)}1≤k,�≤p are non-degenerate. The moment
assumptions, (C1)–(C3), for the proposed procedure are sim-
ilar to Conditions (C2) and (C2∗) in Cai et al. (2013).
Assumption (C4) is a standard condition in two-sample
hypothesis testing problems. As discussed before, no struc-
tural assumptions on the unknown covariances are imposed
for the proposed procedure. Theorem 1 below shows that,
under these mild moment and regularity conditions, the pro-
posed test �α with cα defined in Section 2.2 has asymptotical
size α

Theorem 1. Suppose that Assumptions (C3) and (C4)
hold. If either Assumption (C1) holds with p = O(nr/2−1−δ) for
some constant δ > 0 or Assumption (C2) holds with log p =
o(n1/7), then as n, m → ∞, PH0(�α = 1) → α uniformly over
α ∈ (0, 1).

Remark 1. The asymptotic validity of the proposed test is
obtained without imposing structural assumptions on �1 and
�2, nor do we specify any a priori parametric shape con-
straints of the data distributions, such as Condition A3 in Li
and Chen (2012) or Conditions (C1) and (C3) in Cai et al.
(2013).

Next, we investigate the asymptotic power of �α. It is
known that the L∞-type test statistics are preferred to the
L2-type statistics, including those proposed by Schott (2007)
and Li and Chen (2012), when sparse alternatives are under
consideration. As discussed in Section 1, the scenario in which
the difference between �1 and �2 occurs only at a small num-
ber of locations is of great interest in a variety of scientific
studies. Therefore, we focus on the local sparse alternatives
characterized by the following class of matrices

M(γ) =
{

(�1, �2) : �1 and �2 are positive semi-definite

matrices satisfying Assumption (C3) and

max
1≤k≤�≤p

|σ1,k� − σ2,k�|
(n−1s1,k� + m−1s2,k�)1/2

≥ (log p)1/2γ

}
.

Theorem 2 below shows that, with probability tending to
1, the proposed test �α is able to distinguish H0 from the
alternative H1 whenever (�1, �2) ∈ M(γ) for some γ > 2.

Theorem 2. Suppose that Assumptions (C3) and (C4)
hold. If either Assumption 1 holds with p = O(nr/2−1−δ) for
some constant δ > 0 or Assumption 2 holds with log p =
o(n1/2), then as n, m → ∞, inf(�1,�2)∈M(γ) PH1(�α = 1) → 1
for any γ > 2.
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Theorem 2 of Cai et al. (2013) requires γ = 4 to guaran-
tee the consistency of their procedure. Moreover, they showed
that the rate (log p)1/2n−1/2 for the lower bound of the maxi-
mum magnitude of the entries of �1 − �2 is minimax optimal,
that is, for any α, β > 0 satisfying α + β < 1, there exists a con-
stant γ0 > 0 such that inf(�1,�2)∈M(γ0) supTα∈Tα

PH1(Tα = 1) ≤
1 − β for all sufficiently large n and p, where Tα is the set
of α-level tests over the collection of distributions satisfying
Assumptions (C1) and (C2). Hence, our proposed test also
enjoys the optimal rate and is powerful against sparse alter-
natives.

3. Simulation Studies

In this section, we compare the finite-sample performance of
the proposed new test with that of several alternative test-
ing procedures, including Schott (2007) (Sc hereafter), Li and
Chen (2012) (LC hereafter), and Cai et al. (2013) (CLX here-
after). We generated two independent random samples {Xi}n

i=1

and {Yj}m
j=1 such that Xi = �

1/2
1,∗ Z

(1)
i and Yj = �

1/2
2,∗ Z

(2)
j with

Z
(1)
i = (Z

(1)
i1 , . . . , Z

(1)
ip )T and Z

(2)
j = (Z

(2)
j1 , . . . , Z

(2)
jp )T, where

Z
(1)
i1 , . . . , Z

(1)
ip and Z

(2)
j1 , . . . , Z

(2)
jp are two sets of independent

and identically distributed (i.i.d.) random variables with vari-
ances σ2

Z,1 and σ2
Z,2, such that �1 = σ2

Z,1�1,∗ and �2 = σ2
Z,2�2,∗.

We assess the performance of the aforementioned tests under
the null hypothesis (1). Let �1,∗ = �2,∗ = �∗ and consider the
following four different covariance structures for �∗.

� M1 (Block diagonals): Set �∗ = D1/2AD1/2, where D is
a diagonal matrix whose diagonals are i.i.d. random vari-
ables drawn from Unif(0.5, 2.5). Let A = (ak�)1≤k,�≤p, where
akk = 1, ak� = 0.55 for 10(q − 1) + 1 ≤ k �= � ≤ 10q for q =
1, . . . , 	p/10
, and ak� = 0 otherwise.

� M2 (Slow exponential decay): Set �∗ = (σk�,∗)1≤k,�≤p, where

σk�,∗ = 0.99|k−�|1/3
.

� M3 (Long-range dependence): Let �∗ = (σk�,∗)1≤k,�≤p with
i.i.d. σkk,∗∼Unif(1, 2), and σk�,∗ = ρα(|k − �|), where ρα(d) =
{(d + 1)2H + (d − 1)2H − 2d2H }/2 with H = 0.85.

� M4 (Non-sparsity): Define matrices F = (fk�)1≤k,�≤p with
fkk = 1, fk,k+1 = f�+1,� = 0.5, U∼U(Vp,k0), the uniform dis-
tribution on the Stiefel manifold (i.e., U ∈ Rp×k0 and
UTU = Ik0 , the k0-dimensional identity matrix), and diag-
onal matrix D with diagonal entries being i.i.d. Unif(1, 6)
random variables. We took k0 = 10 and �∗ = D1/2(F +
UUT)D1/2.

In practice, non-Gaussian measurements are particularly com-
mon for high-throughput data, such as data with heavy
tails in microarray experiments and data of count type with
zero-inflation in image processing. To mimic these practical
scenarios, we considered the following three models of inno-

vations Z
(1)
ik and Z

(2)
jk to generate data.

� (D1) Let Z
(1)
ik and Z

(2)
jk be Gamma random variables:

Z
(1)
ik , Z

(2)
jk ∼Gamma(4, 10).

� (D2) Let Z
(1)
ik and Z

(2)
jk be zero-inflated Poisson random

variables: Z
(1)
ik , Z

(2)
jk ∼Pois(1000) with probability 0.15 and

equals to zero with probability 0.85.

� (D3) Let Z
(1)
ik and Z

(2)
jk be Student’s t random variables:

Z
(1)
ik ∼t5 and Z

(2)
jk ∼t5(μ) with non-central parameter μ

drawn from Unif(−2, 2).

For the numerical experiments, (n, m) was taken to be
(45, 45) and (60, 80), and the dimension p took value in
{80, 280, 500, 1000}. To compute the critical value for the pro-
posed test �B,α, B was taken to be 1500.

Table 1 displays the empirical sizes of �B,α, the LC test, Sc
test, and CLX test. For both the Gamma and zero-inflated
Poisson data (models D1 and D2), the Sc test fails to main-
tain the nominal size while the other three tests maintain
the significance level reasonably well. For the t-distributed
data (model D3), both the Sc and LC tests had distorted
empirical sizes. In contrast, the proposed test �B,α has empir-
ical size closer to the nominal level for the t-distributed
data while the CLX test is more conservative. This con-
firms the early discussions that the limiting distribution-based
approach for L∞-type test procedure can sometimes be con-
servative. Compared to the existing methods, �B,α has a much
wider applicability as it requires no structural assumptions
on the unknown covariances and circumvents the issue of
slow convergence of L∞-type statistic to its limiting distribu-
tion. Overall, �B,α maintains the nominal size in finite sample
reasonably well and is robust against unknown covariance
structures as well as data generation mechanisms.

To evaluate the power performance against relatively sparse
alternatives, we define a perturbation matrix Q with 	0.05p

random non-zero entries. Half of the non-zero entries are ran-
domly allocated in the upper triangle part of Q and the others
are in its lower triangle part by symmetry. The magnitudes of
non-zero entries are randomly generated from Unif(τ/2, 3τ/2)
with τ = 8max{max1≤k≤p σkk,∗, (log p)1/2}, where σkk,∗’s are the
diagonal entries of �∗ specified before. We take �1,∗ = �∗ +
λ0Ip and �2,∗ = �∗ + Q + λ0Ip, where λ0 = |min{λmin(�∗ +
Q), λmin(�∗)}| + 0.05 with λmin(A) denoting the smallest
eigenvalue of matrix A. For the Gamma and zero-inflated
Poisson data (panels for D1 and D2 in Figure 1), only the
proposed test �B,α, the LC and CLX tests are considered since
the Sc test is no longer applicable due to inflated sizes; and
similarly, for the t-distributed data (panels for D3 in Figure 1),
only �B,α and the CLX test are considered.

Figure 1 displays empirical power comparisons. We see that
the proposed test �B,α and the CLX test are substantially
more powerful than the LC test against sparse alternatives
for the Gamma and zero-inflated Poisson data (data mod-
els D1 and D2) under different covariance structures. As the
number of non-zero entries of �1 − �2 grows in p, both the
proposed test �B,α and the CLX test gain powers while the
LC test does not gain much due to the sparsity of �1 − �2.
For the Gamma and zero-inflated Poisson data, the proposed
test is slightly more powerful than the CLX test when the
sample size is small and the two tests are closely compara-
ble as the sample size increasing. For t-distributed data (data
model D3), �B,α is more powerful than the CLX test and gains
more powers along increasing sample sizes and dimensions. In
summary, �B,α outperforms the other three for sparse alterna-
tives of interest. More simulation results are reported in the
Supplementary Material.
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Table 1
Empirical sizes of the proposed test �B,α along with those of the tests by Schott (2007) (Sc), Li and Chen (2012) (LC), and
Cai et al. (2013) (CLX) for data generated by data models D1–D3 with covariance structures M1–M4. Results are based on

1000 replications with α = 0.05, (n, m) = (45, 45) and (60, 80).

D1 D2 D3

p 80 280 500 1000 80 280 500 1000 80 280 500 1000

Covariance structure M1 with (n, m) = (45, 45)

�B,α 0.053 0.053 0.053 0.059 0.072 0.072 0.094 0.077 0.032 0.028 0.029 0.032
LC 0.066 0.057 0.056 0.059 0.089 0.084 0.073 0.059 0.326 0.325 0.300 0.309
Sc 0.119 0.109 0.104 0.115 0.611 0.566 0.616 0.608 1.000 1.000 1.000 1.000
CLX 0.045 0.038 0.027 0.031 0.069 0.062 0.047 0.064 0.015 0.009 0.009 0.007

Covariance structure M1 with (n, m) = (60, 80)

�B,α 0.038 0.033 0.037 0.032 0.035 0.045 0.050 0.052 0.017 0.029 0.025 0.027
LC 0.060 0.065 0.057 0.055 0.042 0.069 0.055 0.059 0.345 0.369 0.361 0.371
Sc 0.104 0.087 0.111 0.101 0.622 0.641 0.613 0.651 1.000 1.000 1.000 1.000
CLX 0.036 0.027 0.024 0.026 0.031 0.034 0.046 0.028 0.010 0.013 0.003 0.004

Covariance structure M2 with (n, m) = (45, 45)

�B,α 0.053 0.057 0.052 0.068 0.051 0.064 0.090 0.090 0.035 0.027 0.032 0.038
LC 0.056 0.068 0.067 0.080 0.096 0.091 0.077 0.088 0.336 0.328 0.348 0.310
Sc 0.076 0.079 0.086 0.089 0.348 0.325 0.166 0.115 1.000 1.000 1.000 1.000
CLX 0.054 0.041 0.033 0.037 0.041 0.056 0.049 0.070 0.014 0.007 0.009 0.010

Covariance structure M2 with (n, m) = (60, 80)

�B,α 0.044 0.039 0.032 0.032 0.037 0.033 0.043 0.053 0.020 0.013 0.022 0.028
LC 0.076 0.090 0.093 0.086 0.086 0.079 0.059 0.091 0.325 0.344 0.338 0.374
Sc 0.118 0.080 0.091 0.078 0.454 0.137 0.342 0.142 1.000 1.000 1.000 1.000
CLX 0.040 0.042 0.026 0.027 0.032 0.023 0.034 0.042 0.012 0.005 0.008 0.004

Covariance structure M3 with (n, m) = (45, 45)

�B,α 0.052 0.062 0.041 0.056 0.065 0.072 0.075 0.081 0.029 0.028 0.033 0.037
LC 0.064 0.067 0.058 0.058 0.101 0.065 0.055 0.054 0.321 0.302 0.311 0.323
Sc 0.114 0.104 0.108 0.114 0.580 0.611 0.626 0.595 1.000 1.000 1.000 1.000
CLX 0.041 0.046 0.033 0.033 0.059 0.065 0.042 0.071 0.016 0.010 0.012 0.006

Covariance structure M3 with (n, m) = (60, 80)

�B,α 0.039 0.038 0.036 0.040 0.038 0.043 0.043 0.053 0.018 0.023 0.024 0.025
LC 0.066 0.063 0.074 0.040 0.086 0.053 0.072 0.068 0.337 0.335 0.343 0.342
Sc 0.108 0.104 0.134 0.098 0.651 0.674 0.644 0.662 1.000 1.000 1.000 1.000
CLX 0.034 0.032 0.029 0.031 0.028 0.035 0.035 0.025 0.006 0.011 0.006 0.005

Covariance structure M4 with (n, m) = (45, 45)

�B,α 0.054 0.056 0.056 0.078 0.052 0.079 0.086 0.086 0.021 0.031 0.031 0.027
LC 0.063 0.068 0.055 0.060 0.064 0.070 0.070 0.053 0.323 0.311 0.343 0.318
Sc 0.117 0.107 0.098 0.120 0.595 0.606 0.632 0.621 1.000 1.000 1.000 1.000
CLX 0.049 0.049 0.043 0.037 0.045 0.066 0.040 0.076 0.009 0.011 0.004 0.004

Covariance structure M4 with (n, m) = (60, 80)

�B,α 0.044 0.050 0.036 0.042 0.047 0.042 0.047 0.055 0.029 0.013 0.022 0.024
LC 0.053 0.058 0.054 0.055 0.104 0.049 0.070 0.051 0.340 0.334 0.335 0.341
Sc 0.110 0.100 0.117 0.111 0.618 0.650 0.641 0.682 1.000 1.000 1.000 1.000
CLX 0.038 0.036 0.036 0.032 0.036 0.037 0.039 0.025 0.016 0.004 0.006 0.004

4. Application of the Proposed Procedure in
Gene Clustering

The primary goal of gene clustering is to group genes with
similar expression patterns together, which usually provides
insights on their biological functions or regulatory pathways.
In genomic studies, gene clustering has been employed
for detecting co-expression gene sets (Sharan et al., 2002;

D’haeseleer, 2005), identifying functionally related genes
(Yi et al., 2007), and discovering large groups of genes
suggestive of co-regulation by common factors, among other
applications.

Consider a random sample Xn = {X1, . . . ,Xn} of n indepen-
dent observations from X = (X1, . . . , Xp)

T with covariance
�1 = (σ1,k�)1≤k,�≤p and correlation R1 = (ρ1,k�)1≤k,�≤p, where
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Figure 1. Comparison of empirical powers for data generated by data models D1–D3 with different covariance structures.
In each panel, horizontal and vertical axes depict dimension p and empirical powers, respectively; and unbroken lines and
dashed lines represent the results for (n, m) = (45, 45) and (60, 80), respectively. The different symbols on the lines represent
different tests experimented in the study, where ◦, �, and + indicate the proposed test, tests by Li and Chen (2012) and Cai
et al. (2013), respectively. Results are based on 1000 replications with α = 0.05.
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Xi records the expression levels of p genes from subject
i. To cluster the genes based on their expression levels,
some dissimilarity or proximity measure for the p genes,
or equivalently, the p variables, is calculated based on Xn,
to which clustering algorithms are applied. Gene clustering
can therefore be achieved via clustering the variables. To
discover the clustering structure of variables, it is intuitive
that variables Xk and X� will be clustered in the same
group if |ρ1,k�| is large and separated otherwise (Wagaman
and Levina, 2009). Specifically, if there are some clustering
structures among variables, then there exists a partition
of {1, . . . , p} upon potential permutations, denoted by
{Bt}m

t=1 for some 1 ≤ m ≤ p, such that mink,�∈Bt
|ρ1,k�| > c1,

and for any 1 ≤ t �= t′ ≤ m, maxk∈Bt ,�∈Bt′ |ρ1,k�| < c2, where
c1, c2 > 0 are positive constants. The problem is then closely
related to testing one-sample hypotheses that for a given
� ⊆ Ip = {(1, 1), . . . , (1, p), (2, 1), . . . , (2, p), . . . , (p, p)},
H�

0 : ρ1,k� = 0 for any (k, �) ∈ � versus H�
1 : ρ1,k� �=

0 for some (k, �) ∈ �, which is equivalent to

H�
0 : σ1,k� = 0 for any (k, �) ∈ � versus

H�
1 : σ1,k� �= 0 for some (k, �) ∈ �. (5)

Testing the hypothesis (5) facilitates recovering the dissim-
ilarity patterns among variables; that is, failing to reject
H�

0 indicates the segregation between Xk and X� whenever
(k, �) ∈ �.

Motivated by the block-wise estimation method of Caragea
and Smith (2007), we define � in the following way. First,
we place the covariance matrix �1 on a p × p grid indexed
by Ip and partition it with blocks of moderate size. Due to
symmetry, we only focus on the upper triangle part. Second,
we construct blocks of size s0 × s0 along the diagonal and note
that the last block may be of a smaller size if s0 is not a divisor
of p. Next, we create new blocks of size s0 × s0 successively
toward the top right corner. Similarly as before, blocks to the
most right may be of smaller size. The grid, or equivalently,
the index set Ip, is partitioned into S = �p/s0�(�p/s0� + 1)/2
sub-regions and we denote by �1, . . . , �S the partition of the
upper triangle indices {(k, �) : 1 ≤ k < � ≤ p}.

On each of the sub-regions, we modify the proposed proce-
dure for testing local hypotheses H

�s
0 : σ1,k� = 0 for any (k, �) ∈

�s versus H
�s
1 : σ1,k� �= 0 for some (k, �) ∈ �s, s = 1, . . . , S. We

then apply the Benjamini–Hochberg (BH) procedure to con-
trol the false discovery rate (FDR) for simultaneously testing
S hypotheses. For each s, failing to reject the null H

�s
0 indi-

cates a segregation between Xk and X� for (k, �) ∈ �s and
zero will be assigned as the similarity between Xk and X�. We
summarize this procedure as follows.

(I) Compute the sample covariance matrix

�̂1 = (σ̂1,k�)1≤k,�≤p and T̃ = (̃tk�)1≤k,�≤p, where

t̃k� = n1/2ŝ
−1/2
1,k� σ̂1,k� for ŝ1,k� defined in Section 2.2.

(II) Independent of Xn, simulate a sample of size B, where
for each b = 1, . . . , B and 1≤ k ≤ �≤p, compute t̃

†
b,k�=

(n−1ŝ1,k�)
−1/2

∑n

i=1
gb,i{(Xik−X̄k)(Xi�−X̄�)−σ̂1,k�}, where

{gb,1, . . . , gb,n} is a sequence of i.i.d. standard normal
random variables.

(III) Partition the p × p grid as discussed before by
S blocks. For each block with entries indexed
by �s ⊂ Ip, compute the approximated p-value

as p̂s = 1 − F̂B(max(k,�)∈�s
t̃k�), where F̂B denotes

the empirical (conditional) distribution function of
max(k,�)∈�s

t̃k� given Xn using the simulated samples

{max(k,�)∈�s
t̃
†
b,k�}B

b=1.
(IV) Estimate the q-values for {p̂s}S

s=1 using the BH pro-
cedure, denoted by {q̂s}. For a prespecified cut-off π,
define the dissimilarity measure by

dk� = 1 − t̃k�I(q̂s < π)

max{max(k,�)∈�s
t̃k�, 1} for any (k, �) ∈ �s.

(6)

Based on the measure in (6), we can apply clustering
algorithms such as the hierarchical clustering for clustering
variables and obtain gene clustering. To specify the blocks,
we propose the following data-driven selection of s0. The S

local hypotheses to be tested simultaneously admit unknown
complex dependencies so that the FDR, controlled by the
BH procedure, satisfies the general upper bound FDR ≤
(πS0 log S)/S where S0 denotes the number of true null local
hypotheses (Benjamini and Yekutieli, 2001). To control the
FDR at the nominal level π, we need S ≥ S0 log S which is
automatically satisfied when S = 1 or s0 is large. Therefore,
we define a data-driven s0 by s0 = max{�log p�,min(s : Ŝ0 ≤
S(s)[log{S(s)}]−1)}, where S(s) = �p/s�(�p/s� + 1)/2 and Ŝ0 is
an estimate for the number of true null local hypotheses. In
practice, we may also reorder the variables first using meth-
ods such as the Isoband algorithm by Wagaman and Levina
(2009). A demonstration of the proposed clustering algorithm,
as well as comparisons of dk� with traditional dissimilarity
measures based on the human asthma data, is displayed in
the Supplementary Materials.

5. Application to Analysis of Human Asthma
Data

5.1. Background

As a common chronic inflammatory disease of the airways,
asthma is caused by a combination of complex genetic and
environmental interactions and affects more than 200 mil-
lion people worldwide as of 2013 as shown in 2013 World
Health Organization Fact Sheet No. 307. The mechanism and
regulatory pathways remain unclear. We illustrate the pro-
posed new procedures using the human asthma data from the
microarray experiment reported by Voraphani et al. (2014),
which was aimed to understand the regulatory pathway and
mechanism for high nitrative stress, a major characteristic
of human severe asthma. Voraphani et al. (2014) identified
several novel pathways, including discovering that the Th1
cytokine, IFN-γ, along or with Th2 regulations, are critical
immune agents for the disease development by amplifying
epithelial NAD/NADPH thyroid oxidase expression and aid-
ing the production of nitrite.

The original microarray gene expression data are avail-
able at the NCBI’s Gene Expression Omnibus database
with the Gene Expression Omnibus Series accession number
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GSE43696. The data consist of n = 20 health samples and
m = 88 patients suffering from moderate or severe asthmatics.
We focused on identifying disease-associated GO terms. After
preliminary filtering steps using the approach in Gentleman
et al. (2005) and removing genes without appropriate anno-
tations, there remained 24, 520 genes. We excluded GO terms
with missing information or less than 10 genes. There retained
3290 GO terms from the original dataset whose sizes vary
from 11 to 8070 genes. For g = 1, . . . , G with G = 3290, denote
by μh,g and μa,g the mean gene expression levels, and �h,g and
�a,g the covariance matrices for the gth GO term in the control
and disease groups, respectively.

5.2. Differential Expression Analysis

A commonly used method in differential analysis is the mean-
based test that selects interesting GO terms by testing the null
hypothesis that overall gene expressions within a GO term are
similar across populations (Chen and Qin, 2010; Chang et al.,
2014; Wang et al., 2015). Though the mean-based procedure
has been successful in detecting differential expressed genes
based on the changes in the expression level, recent devel-
opments in genomic analysis have revealed the importance
to detect genes with changing relationships with other genes
in different biological states, and particularly GO terms that
change the dependence structures across populations (de la
Fuente, 2010). The discovery of those GO terms with altered
dependence structures provides information on critical gene
regulation pathways. Consider all the GO terms, we applied
the proposed method �B,α to test the global hypotheses

Hc
0g : �h,g = �a,g versus Hc

1g : �h,g �= �a,g. (7)

For a comparison, we also applied the LC and CLX tests.
Here, B = 5000 Monte Carlo replications were employed to

compute the p-values for �B,α. By controlling the FDR at
2.5% (Benjamini and Yekutieli, 2001), the proposed test �B,α

declared 969 GO terms significant while the LC and CLX tests
declared 290 and 524 GO terms significant, respectively. The
proposed test �B,α has found more significant GO terms and
is less conservative than the others, which is also reflected by
the histograms of p-values for the three tests displayed in the
Supplementary Material. Table 2 displays the top 15 most sig-
nificant GO terms declared by �B,α and also highlights those
GO terms that were not detected by the LC and CLX tests.
For example, GO:0005887 (integral to plasma membrane) is
functionally relevant to the dual oxidases (DUOX2)-thyroid
peroxidase interaction and is important to the mechanism
of asthma development (Voraphani et al., 2014). It is worth
noticing that �B,α is able to discover this biologically impor-
tant GO term that is missed by the others. This further
highlights the good performance of our proposed test.

In addition, we compared the study on changing inter-
gene relationships across biological states with the traditional
differential analysis based on mean expression levels. The
proposed test on intergene relationships discovered 268 signifi-
cant GO terms that were missed by the traditional differential
analysis. This reflects the lately growing demands on ana-
lyzing gene dependence structures. More details on this
comparison are retained in the supplement.

Table 2
Top 15 most significant GO terms detected by �B,α with

FDR controlled at 2.5%, � and † refer to the GO terms not
being declared significant by the CLX test and the LC test,

respectively.

GO ID GO term name

GO:0006886 Intracellular protein transport †

GO:0008565 Protein transporter activity †

GO:0030117 Membrane coat †

GO:0005515 Protein binding�,†

GO:0016032 Viral reproduction�,†

GO:0005829 Cytosol†

GO:0000278 Mitotic cell cycle†

GO:0006334 Nucleosome assembly†

GO:0034080 CenH3-containing nucleosome assembly at
centromere

GO:0006974 Response to DNA damage stimulus†

GO:0016874 Ligase activity†

GO:0032007 Negative regulation of TOR signaling
cascade†

GO:0005887 Integral to plasma membrane�,†

GO:0006997 Nucleus organization†

GO:0030154 Cell differentiation†

5.3. Gene Clustering Study on GO Terms of Interest

Voraphani et al. (2014) revealed a novel pathway involving
epithelial iNOS, dual oxidases, TPO, and the cytokine INF-
γ to understand the mechanism of human asthma. Multiple
transcripts, together with their variants, are related, while
their co-regulation mechanisms are less clear. The proposed
gene clustering algorithm provides a way to study gene inter-
actions.

For illustration, we focus on the GO terms that were
declared significant via testing (7) and are related to IFN-
γ or TPO, and apply our clustering procedure to the sample
from the health and disease groups separately to study how
the gene clustering alters across two populations. For IFN-
γ, we consider the GO terms 0032689 (negative regulation
of IFN-γ production), 0060333 (IFN-γ-mediated signaling
pathway), and 0071346 (cellular response to IFN-γ). For
TPO, the GO terms have been considered include 0004601
(peroxidase activity), 0042446 (hormone biosynthetic pro-
cess), 0035162 (embryonic hemopoiesis), 0006979 (response
to oxidative stress), and 0009986 (cell surface). Their sizes
vary from 17 to 439.

We take B = 5000, α = 0.05 and use hierarchical clustering
algorithm with average linkage. The Ŝ0 is estimated using the
censored Beta-Uniform mixture model by Markitsis and Lai
(2010) for selecting block size s0. Figures 2–3 display compar-
isons of gene clustering between the health and disease groups
(more comparisons are included in the Supplementary Mate-
rial). Each vertex in the figures represents a gene or its variant
and is labeled by the corresponding ID. Vertexes connected
by edges in gray are clustered into one group, and vertexes in
red and yellow belong, respectively, to the maximum clique in
the health and disease groups. Vertexes in both colors belong
to the maximum cliques for both groups.
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Figure 2. Comparison of clustering structures of GO:0071346, cellular response to INF-γ and GO:0060333, INF-γ-mediated
signaling pathway, between health and disease groups using the proposed gene clustering procedure. This figure appears in
color in the electronic version of this article.

From Figure 2, we see that for GO:0071346, regarding the
cellular response to INF-γ, genes tend to function more in
clusters in the asthma group than those in the health group.
Gene TLR3 actively appears in the largest gene clusters for
both the health and asthma groups, while gene IL18 is isolated
in the asthma group. Gene NOS2 is involved in asthma by co-
regulating with ARG2. These suggest that these four genes
are important signatures for understanding the effect of INF-
γ on the asthma progression. Regarding the INF-γ-mediated
signaling pathway, Figure 2 also shows that compared to the
health group, genes seem to preferentially function separately
in the asthma group. The original dominating gene clusters
are broken into small groups in the presence of the disease.
The different configurations in primary gene clusters between

the health and asthma groups for GO:0060333 provide further
information on how INF-γ influences the iNOS pathway. For
the critical enzyme TPO, Figure 3 shows that genes also tend
to function in clusters in the disease group. In the presence
of asthma, the gene cluster HBB-HBA2.1-HBA2 is preserved
and the gene IPCEF1 is isolated from the original largest gene
cluster for GO:0004601. It is interesting to notice that the
DUOX2 genes are isolated in the health group but do inter-
act with many genes, particularly with TPO, in the presence
of asthma as documented in Voraphani et al. (2014). The
identified DUOX2 gene cluster provides a candidate pathway
to understand how TPO catalyzes the iNOS-DUOX2-thyroid
peroxidase pathway discovered by Voraphani et al. (2014).
Last but not least, it can be seen from Figure 3 that the over-
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Figure 3. Comparison of clustering structures of GO:0004601, peroxidase activity and GO:0035162, embryonic hemopoiesis,
between health and disease groups using the proposed gene clustering procedure. This figure appears in color in the electronic
version of this article.

all co-regulation patterns remain similar across populations,
while those of TPO alters in the presence of asthma.

In summary, based on the proposed procedure, not only
can we test the difference in gene dependence, we can also
discover the disparity in gene clustering, which reflects the
difference in gene clustering patterns between the health and
disease groups.

6. Conclusion and Discussion

In this article, we proposed a computationally fast and effec-
tive procedure for testing the equality of two large covariance

matrices. The proposed procedure is powerful against sparse
alternatives corresponding to the situation where the two
covariance matrices differ only in a small fraction of entries.
Compared to existing tests, the proposed procedure requires
no structural assumptions on the unknown covariance matri-
ces and remains valid under mild conditions. These appealing
features grant the proposed test a vast applicability, particu-
larly for real problems arising in genomics. As an important
application, we introduced a gene clustering algorithm that
enjoys the same nice feature of avoiding imposing structural
assumptions on the unknown covariance matrices.
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Another interesting and related problem is testing the
equality of two precision matrices, which was recently studied
by Xia et al. (2015). In the literature of graphical models, it is
common to impose the Gaussian assumption on data so that
the conditional dependency can be inferred based on the pre-
cision matrix. When the discrepancy between two precision
matrices is believed to be sparse, the data-dependent proce-
dure considered in this article can be extended to comparing
them by utilizing the similar L∞-type statistic discussed in
Xia et al. (2015). It is interesting to investigate whether our
method can be applied to testing precision matrices in the
presence of heavy-tailed data, which is often modeled by the
elliptical distribution family. We leave this to future work.

7. Supplementary Materials

Web Appendices, which include proofs of the main theorems
and additional numerical results referenced in Sections 2, 3
and 5, along with the source R codes for implementing the
proposed methods, are available with this article on the Bio-
metrics website on Wiley Online Library.
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