
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Estimation of Subgraph Densities in Noisy
Networks

Jinyuan Chang, Eric D. Kolaczyk & Qiwei Yao

To cite this article: Jinyuan Chang, Eric D. Kolaczyk & Qiwei Yao (2022) Estimation of Subgraph
Densities in Noisy Networks, Journal of the American Statistical Association, 117:537, 361-374,
DOI: 10.1080/01621459.2020.1778482

To link to this article:  https://doi.org/10.1080/01621459.2020.1778482

View supplementary material 

Published online: 20 Jul 2020.

Submit your article to this journal 

Article views: 878

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2020.1778482
https://doi.org/10.1080/01621459.2020.1778482
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2020.1778482
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2020.1778482
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1778482
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1778482
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1778482&domain=pdf&date_stamp=2020-07-20
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1778482&domain=pdf&date_stamp=2020-07-20
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2020.1778482#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2020.1778482#tabModule


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2022, VOL. 117, NO. 537, 361–374: Theory and Methods
https://doi.org/10.1080/01621459.2020.1778482

Estimation of Subgraph Densities in Noisy Networks

Jinyuan Changa, Eric D. Kolaczykb, and Qiwei Yaoc

aSchool of Statistics, Southwestern University of Finance and Economics, Chengdu, China; bDepartment of Mathematics and Statistics, Boston University,
Boston, MA; cDepartment of Statistics, London School of Economics and Political Science, London, UK

ABSTRACT
While it is common practice in applied network analysis to report various standard network summary
statistics, these numbers are rarely accompanied by uncertainty quantification. Yet any error inherent in the
measurements underlying the construction of the network, or in the network construction procedure itself,
necessarily must propagate to any summary statistics reported. Here we study the problem of estimating
the density of an arbitrary subgraph, given a noisy version of some underlying network as data. Under a
simple model of network error, we show that consistent estimation of such densities is impossible when
the rates of error are unknown and only a single network is observed. Accordingly, we develop method-of-
moment estimators of network subgraph densities and error rates for the case where a minimal number of
network replicates are available. These estimators are shown to be asymptotically normal as the number of
vertices increases to infinity. We also provide confidence intervals for quantifying the uncertainty in these
estimates based on the asymptotic normality. To construct the confidence intervals, a new and nonstandard
bootstrap method is proposed to compute asymptotic variances, which is infeasible otherwise. We illustrate
the proposed methods in the context of gene coexpression networks. Supplementary materials for this
article are available online.
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1. Introduction

An applied analysis in network science typically includes the
following three steps: (i) gather basic measurements relevant
to the interactions among elements in a system of interest,
(ii) construct a network-based representation of that system,
with nodes serving as elements and links indicating interactions
between pairs of elements, and (iii) report various numerical
summaries of network structure (e.g., density, centralities, etc.).
Necessarily, uncertainty at the level of the basic measurements
in the first step will propagate to the network constructed in the
second step and thus to the summaries reported in the third step.

The potential for measurement error arises in nearly every
network analysis application. Here, by “measurement error” we
will specifically mean true edges being observed as nonedges,
and vice versa—there are, of course, other notions of error that
might be considered. Such edge noise occurs in online social
networks (e.g., Facebook), which are often based on the extrac-
tion and merging of lists of “friends” from millions of individual
accounts, where uniqueness of names is not assured. Similarly,
it can be found in biological networks (e.g., of gene regulatory
relationships), which are often based on notions of association
(e.g., correlation, partial correlation, etc.) among experimental
measurements of gene activity levels that are determined by
some form of statistical inference. Finally, maps of the logical
internet traditionally have been synthesized from the results
of surveys in which paths along which information flows are
learned experimentally through a large set of packet probes (e.g.,
via traceroute). See Chapter 3.5 of Kolaczyk (2009) for several
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detailed examples of applied network analyses associated with
such data.

That there is measurement error associated with these and
other common types of network constructions is typically well-
understood by practitioners. And in many settings the general
issue has received substantial attention, such as, for example, in
the context of protein-protein interaction networks (e.g., Hart,
Ramani, and Marcotte 2006) or social networks (e.g., Almquist
2012). But, to our best knowledge, there has been little attention
to date given toward formal development of statistical meth-
ods accounting for propagation of network error. Exceptions
include statistical methodology for predicting network topology
or attributes with models that explicitly include a component for
network noise (e.g., Jiang, Gold, and Kolaczyk 2011; Jiang and
Kolaczyk 2012), the “denoising” of noisy networks (e.g., Chatter-
jee 2015), and the adaptation of methods for vertex classification
using networks observed with errors (Priebe et al. 2015).

Motivating our own work is that of Balachandran, Kolaczyk,
and Viles (2017). Working with the analogue of a “signal
plus noise” model for networks, these authors characterize
the asymptotic distribution of the empirical edge density (i.e.,
formally, the density of observed edges) in noisy networks, in
the context of what they call low-rate measurement error. Gan
and Kolaczyk (2018) offered a refinement. The edge density is
an important prototype, as it is a fundamental characteristic
of networks. Its calculation generally is one of the first steps
in an applied network analysis, analogous to computing a
sample mean in analyzing traditional data. Additionally, the
edge density is understood to be a key driver of various other
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network characteristics—for example, placing limits on the
frequency of higher-order subgraphs (e.g., Turán 1941). We
note that the work in these two papers is entirely probabilistic
in nature, focused on approximation error using Stein’s method.
Here our focus is statistical in nature.

In particular, here we study the problem of estimating sub-
graph densities, with the edge density serving as a critical initial
case. We adopt a simple model for noisy networks that, condi-
tional on some true underlying network, assumes we observe a
version of that network corrupted by an independent random
noise that effectively flips the status of (non)edges. If it is known
the rates at which edges are instead observed as nonedges, and
nonedges as edges, then it is straightforward to construct a
moment-based estimator of the density of a given subgraph
of interest from a single noisy network. However, in the more
realistic setting in which one or both of these error rates are
unknown and must themselves be estimated, the problem of
identifiability arises. The problem in this case is analogous to
estimation under a two-component mixture model. We show
that consistent estimation of any subgraph density is in fact
impossible under this setting.

The primary contribution in this article is our development
of method-of-moments estimators for network subgraph den-
sities and the underlying rates of error when replicates of the
observed network are available. Beginning with the fundamen-
tal case of edge density, we provide estimators that are asymp-
totically normal (as the number of vertices increases to infinity)
when one or both of the error rates are unknown, using a min-
imum of two or three replicates, respectively. The asymptotic
normality in turn facilitates interval estimation for network edge
density. We then extend the method-of-moments estimator to
the context of an arbitrary higher-order subgraph density, and
illustrate with the cases of two-star and triangle densities, as
well as the clustering coefficient (or transitivity). To construct
their confidence intervals, a new and nonstandard bootstrap
method is proposed in order to compute asymptotic variances,
which is infeasible otherwise. Numerical simulation suggests
that high accuracy is possible for networks of even modest size.
We illustrate the practical use of our estimators in the context of
gene coexpression networks, where a small number of replicates
of the basic underlying measurements (e.g., microarray expres-
sion) are frequently available.

It is difficult to overstate how ubiquitous is the use of sub-
graph densities in empirical network analysis. As a result, our
work here is relevant to a broad and diverse cross-section of
literature in humanities, social, and natural sciences, as touched
by the applied network analysis literature. Certain subgraph
densities (i.e., the edge density and the two-star and triangle
densities, through the clustering coefficient) are reported as
commonly in network analysis as one reports, say, the mean,
median, and standard deviation in standard data analysis. In
fact, they feature in what at least one author has termed “the
network analysis ‘five-number summary”’ (Luke 2015). Prolific
use of subgraph densities is also found in the so-called “triad
census” that is standard in social network analysis (e.g., Wasser-
man and Faust 1994) and in the context of “motif analysis” (Milo
et al. 2002), the latter being fundamental to both computational
biology (e.g., Stone, Simberloff, and Artzy-Randrup 2019) and
computational neuroscience (e.g., Sporns and Betzel 2016).

To date researchers doing empirical network analysis have
necessarily had to report these and other types of subgraph
densities simply as descriptive summaries, lacking a statistically
principled framework for assessing and correcting for bias and
for quantifying uncertainty due to network noise. Our work here
not only provides such a framework but also demonstrates, in
the context of a typical exercise in computational biology, that
the nature and impact of network noise on the standard practice
of reporting subgraph densities is almost surely more nuanced
and pronounced than the general practitioner likely imagines.
In addition, of independent interest specifically to statisticians
within our work are (i) the impossibility theorem described
in Theorem 1, and (ii) the nonstandard bootstrap algorithm
following Theorem 4.

The rest of the article is organized as follows. Section 2
introduces the problem to be tackled. Section 3 deals with the
estimation of error rates and the inference of edge density. It also
reveals the innate difficulty associated with estimation when the
error rates are unknown. Section 4 addresses the inference of
subgraph densities in general. Numerical illustration is reported
in Section 5. Some further discussion of our work is stated in
Section 6. All technical proofs are relegated to supplementary
materials.

2. Notation, Assumptions, and Problem Statement

2.1. Noisy Networks

Let G = (V , E) be a graph, with vertices V = {1, . . . , p} and
edges E ⊆ V2. We observe a noisy version of G, say, Gobs =
(V , Eobs), where we implicitly assume that the vertex set V is
known. Denote the p×p adjacency matrix of G by A = (Ai,j)p×p,
and that of Gobs by Y = (Yi,j)p×p. Hence Ai,j = 1 if there
is a true edge between the ith vertex and the jth vertex, and
0 otherwise, while Yi,j = 1 if an edge is observed between
the ith vertex and the jth vertex, and 0 otherwise. We assume
throughout that G and Gobs are simple, that is, that they possess
neither multi-edges nor self-loops. An implication of the latter
is that Ai,i = Yi,i ≡ 0. Note that for the sake of exposition, we
assume G to be undirected. Then Ai,j = Aj,i and Yi,j = Yj,i for
any i �= j. Extension to directed graphs is straightforward and
discussed briefly in Section 6.

Following Balachandran, Kolaczyk, and Viles (2017), we
specify the errors in the noisy network Gobs as follows:

P(Yi,j = 1 | Ai,j = 0) = α and P(Yi,j = 0 | Ai,j = 1) = β

(1)

for any 1 ≤ i < j ≤ p. Note that α and β may be inter-
preted, respectively, as Type I and II error rates. We assume
that both α and β remain constant over different edges. For
some applications, α is known as, for example, the nominal
significance level of statistical tests for the null hypothesis that
there is no edge between one vertex and another. If one applies
the same test method over different vertex pairs, and assumes
(approximately) equal strength of “signal” across the network,
then the power of the test 1−β , though unknown, also remains
(approximately) the same.

Inspired by the conventional treatment of regression analysis
in which inference is conditionally on regressors (i.e., treating
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them as constants) and with additive noise, we treat Ai,j as
constants and assume

Yi,j = Ai,jI(εi,j = 0) + I(εi,j = 1) (2)

for any 1 ≤ i < j ≤ p, where I(·) denotes the indicator function,
and {εi,j} are specified in Assumption 1.

Assumption 1. The εi,j, for all 1 ≤ i < j ≤ p, are independent
random variables withP(εi,j = 1) = α, P(εi,j = 0) = 1−α−β ,
and P(εi,j = −1) = β , where α, β ≥ 0 and α + β < 1.

Now (1) follows from (2) and Assumption 1 immediately.
The independence condition in Assumption 1 is not strictly
necessary. See Remark 1 in Section 3.2.1.

2.2. Subgraph Density

A standard quantity of general interest in practice is the den-
sity of certain subgraphs in G. Subgraphs of common inter-
est include (i) edges, (ii) two-stars (also called triples) and
other higher-order k-stars, (iii) triangles and other higher-order
cliques, (iv) chains, and (v) cycles. Subgraph density is simply
the total number of times a given subgraph, say H, is found in G
(where, note, overlap among copies of H is allowed), divided by
the maximum number of copies possible in a graph of the same
number of vertices as G. There are different ways to express this
notion formally. Intuitively, for example, the count fH(G) of the
number of distinct copies of a subgraph H in G is represented as

fH(G) = 1
|Iso(H)|

∑
H′⊆Kp,H′∼=H

I(H′ ⊆ G) , (3)

where Kp is the complete graph on p vertices and H ⊆ G
indicates that H is a subgraph of G (i.e., V(H) ⊆ V(G) and
E(H) ⊆ E(G)). The value |Iso(H)| is a normalization factor for
the number of isomorphisms of H. Normalizing fH(G), in turn,
by the total number of copies of H possible in the complete graph
Kp then yields the density of subgraph H in G.

For our purposes, it is more convenient to adopt an alterna-
tive expression for subgraph density—albeit one that is nota-
tionally more cumbersome. Consider an arbitrary subgraph
H = (VH , EH) of interest, of order |VH| ≥ 2. We characterize
such subgraphs in terms of an index setV = VH of the following
generic form

V = {(i1, i′1, . . . , ik, i′k) :
i� �= i′� for each � = 1, . . . , k, |{i�1 , i′�1} ∩ {i�2 , i′�2}| ≤ 1
for any �1 �= �2, and i1, i′1, . . . , ik, i′k also
satisfying other restrictions imposed by H} ,

(4)

and k prescribed values τ1, . . . , τk ∈ {0, 1}. We then represent
the subgraph density for any subgraph H in G as

CV (τ1, . . . , τk) = 1
|V|

∑
v=(i1,i′1,...,ik,i′k)∈V

Aτ1
i1,i′1

(1 − Ai1,i′1)
1−τ1 · · · Aτk

ik,i′k
(1 − Aik,i′k)

1−τk . (5)

Here, we adopt the convention 00 = 1.

The quantity CV (τ1, . . . , τk) defined in (5) is quite general.
For example, if we let k = 1 and τ1 = 1, it reduces to the
edge density defined in (6) below, which is arguably the most
important single-number summary for networks. If we select
τ1 = · · · = τk = 1 and V = {(i1, i′1, . . . , ik, i′k) : i′� =
i�+1 for each � = 1, . . . , k − 1, i1 �= i2 �= · · · �= ik �= i′k},
then

CV (τ1, . . . , τk) = 1
p · · · (p − k)

∑
i1 �=···�=ik+1

Ai1,i2 · · · Aik,ik+1 ,

which is the density of k connected edges in G passing through
k + 1 different nodes—that is, the density of paths of length k.
If in addition we impose the constraint that the path must start
and end with the same vertex, we select τ1 = · · · = τk = 1 and
V = {(i1, i′1, . . . , ik, i′k) : i′� = i�+1 for each � = 1, . . . , k−1, i′k =
i1, i1 �= i2 �= · · · �= ik}, yielding

CV (τ1, . . . , τk) = 1
p · · · (p − k + 1)

∑
i1 �=···�=ik

Ai1,i2 · · · Aik,i1 ,

which is the density of cycles of length k in G. An important
special case of the latter is when k = 3, which yields the density
of closed triples in G (generally interpreted as three times the
density of triangles). Similarly, if the summands Ai1,i2 Ai2,i3 Ai3,i1
associated with the triangle density are instead replaced by
Ai1,i2 Ai2,i3(1−Ai3,i1), we obtain the density of (open) connected
triples or two-stars. In turn, the ratio of the first of these two
quantities to its sum with the second defines the clustering coef-
ficient (also called the transitivity) of G—arguably the second
most important summary statistic in practice after the edge
density.

In practice, given a noisy network, researchers currently
report the empirical subgraph densities (i.e., CV applied to Gobs

with adjacency matrix Y) and assume that they are reflective
of the corresponding true subgraph densities (i.e., CV applied
to G with adjacency matrix A). The work of Balachandran,
Kolaczyk, and Viles (2017) shows that, under conditions similar
to those assumed here, there is in general no reason to expect
that these empirical (or “plug in”) estimates are even consistent.
Our goal in this article is to produce principled and accurate
estimates of subgraph densities. In what follows, we treat the
estimation of edge density as a special base case, which helps
inform the exposition of our results for general subgraph density
estimation.

3. Inference for Edge Density

In this section, we consider inference of the edge density with
unknown error rates α and β . The edge is the simplest subgraph.
The count of the number of edges or, upon normalization,
the so-called edge density (aka network density) is defined as
follows:

δ = 2
p(p − 1)

∑
i<j

Ai,j . (6)

It is both useful, from the perspective of our mathematical devel-
opment, and fundamental, from the perspective of network
theory and applications, to focus first on the edge density δ as
the estimand of interest. It reveals the innate difficulty associated
with estimation under unknown error rates. See Section 3.1. The
inference for general subgraphs will be presented in Section 4.
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Figure 1. Left panel: True network G, with p = 15 nodes and density δ = 0.181. Right panel: Noisy network Gobs, with α = 0.05, β = 0.15, and Ȳ = 0.229. The goal is to
estimate δ based on the noisy network.

3.1. Difficulty of Estimating Subgraph Densities

Consider estimation of the network edge density δ in (6).
Figure 1 presents a simple visual illustration of our task.
The network on the left with p = 15 nodes is defined by a
deterministic adjacency matrix A with 19 edges, and hence the
network density δ = 2 × 19/(15 × 14) = 0.181. The noisy
network on the right defined by the adjacency matrix Y was
observed with 24 edges, where Y = (Yi,j)15×15 is generated
from A by (2) with α = 5% and β = 15%. Our task is to
estimate δ based on Y.

A natural estimator for δ is given by

Ȳ = 2
p(p − 1)

∑
i<j

Yi,j .

In the illustration of Figure 1, this value is Ȳ = 0.229, in
comparison to the true value δ = 0.181. Let S = {(i, j) : Ai,j =
1, i < j} and Sc = {(i, j) : Ai,j = 0, i < j}. From (6), we know
Ȳ is a biased estimator for δ. More specifically, we have

E(Ȳ) = 2
p(p − 1)

∑
(i,j)∈S

E(Yi,j) + 2
p(p − 1)

∑
(i,j)∈Sc

E(Yi,j)

= δ(1 − β) + (1 − δ)α .
(7)

But if α and β are known, (7) suggests estimating δ instead by

Ỹ = Ȳ − α

1 − α − β
. (8)

Equation (8) defines a consistent estimator for δ.
In practice, however, values for α and β typically are not

readily obtainable, and one or both must be estimated. This
makes the problem of estimating δ decidedly more difficult. In
fact, it is essentially impossible to estimate any subgraph count
fH(G) from a single noisy observation Gobs.

Formally, let M = {(α, β , A) : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, Ai,j =
0 or 1, Ai,j = Aj,i} be the class of all models defined under (2) and
Assumption 1. For any model M = (α, β , A) ∈ M, we define its
dual model as M∗ = (1 − β , 1 − α, A∗), where A∗ = (A∗

i,j)p×p
satisfies A∗

i,j = 1 − Ai,j for any i �= j. Denote by FM and FM∗

the joint distributions of Y when Y follows models M and M∗,
respectively. Finally, for a given subgraph density f of interest,
define

df = sup
M∈M

|f (M) − f (M∗)| ,

where f (M) and f (M∗) are the associated subgraph densities
based on model M and its dual model M∗, respectively. We then
have the following result. Note that Theorem 1 holds for any
subgraph density f . When f is the edge density, df = 1.

Theorem 1. Write E for the class of all measurable functionals
of the data Y. Let Assumption 1 hold. If df > 0, then it holds
that

inf
f̂ ∈E

sup
M

P

(
|f̂ − f | ≥ df

2

)
≥ 1

2
.

Theorem 1 indicates that it is in general impossible to pro-
duce a consistent estimate of a subgraph density f based on only
one noisy version of the adjacency matrix A.

To build intuition for the difficulty of this problem, consider
again Equation (7), which indicates that Ȳ is an unbiased esti-
mate of

u1 ≡ (1 − δ)α + δ(1 − β) ,

rather than of δ. This observation suggests use of the (asymptot-
ically) unbiased estimating equation

û1 = (1 − δ)α + δ(1 − β) , (9)

where û1 = Ȳ . It is obvious that α, β , and δ cannot all be
uniquely identified from this single equation.

Fortunately, in certain key areas of application we may
observe more than one noisy version of the target network
G. For example, in computational biology, the common use
of replicates at the most basic level of measurement (e.g.,
microarray expression) often allows for the construction of
replicate networks (e.g., coexpression networks), as we demon-
strate in Section 5. Similarly, in the context of computational
neuroscience, it has become common now to obtain imaging
measurements (e.g., fMRI) on multiple individuals within a
given subpopulation (e.g., healthy females of a given age) and to
create networks (e.g., functional connectivity networks) for each
individual. In the remainder of this section, we demonstrate
how to estimate the edge density of the adjacency matrix
A consistently using just two or three replicates. We then
develop generalizations of these results for the case of arbitrary
subgraphs in Section 4.
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3.2. Estimation of Unknown Error Rates

3.2.1. One of α or β Known
In some settings, one of either α or β may be known. For exam-
ple, if the edges in Y are inferred through formal hypothesis
testing, then α would be the user-specified rate of Type I error. In
this case, there are only two unknown parameters that need to be
estimated, and we demonstrate how two replicates are sufficient
to do so.

Suppose that Y is defined as above, and that Y∗ = (Yi,j,∗)p×p
is an independent and identically distributed replicate of Y.
Both are then noisy versions of the same adjacency matrix A,
observed with the same error rates α and β . It follows from (2)
that for (i, j) with Ai,j = 1,

Yi,j,∗ − Yi,j =

⎧⎪⎨⎪⎩
−1 , with probability β(1 − β) ,

0 , with probability 1 − 2β(1 − β) ,
1 , with probability β(1 − β) ,

and for (i, j) with Ai,j = 0,

Yi,j,∗ − Yi,j =

⎧⎪⎨⎪⎩
−1 , with probability α(1 − α) ,

0 , with probability 1 − 2α(1 − α) ,
1 , with probability α(1 − α) .

Similar to (7), we have

E

{
2

p(p − 1)

∑
i<j

|Yi,j,∗ − Yi,j|
}

= 2{(1 − δ)α(1 − α) + δβ(1 − β)} .

Let

u2 ≡ (1 − δ)α(1 − α) + δβ(1 − β) , (10)

for which the method of moment estimate is

û2 = 1
p(p − 1)

∑
i<j

|Yi,j,∗ − Yi,j| .

Therefore, we have a second estimating equation:

û2 = (1 − δ)α(1 − α) + δβ(1 − β) . (11)

Combining (9) and (11), when α is known, the estimators for
β and δ are ⎧⎪⎪⎨⎪⎪⎩

β̂ = û2 − α + û1α

û1 − α
,

δ̂ = (û1 − α)2

û1 − û2 − 2û1α + α2 ,
(12)

and when β is known, the estimators for α and δ are⎧⎪⎪⎨⎪⎪⎩
α̂ = û1β − û2

û1 + β − 1
,

δ̂ = û2
1 − û1 + û2

û1 + û2 − 2û1β − (1 − β)2 .
(13)

The following proposition gives the convergence rates for the
proposed estimators.

Proposition 1. Let N = p(p − 1)/2. Under Assumption 1, if
N1 = p(p−1)δ → ∞ and N2 = p(p−1)(1−δ) → ∞, it holds
that (i) β̂ = β + Op(N−1/2) and δ̂ = δ + Op(N−1/2), provided
that α is known and δ(1−α−β)2 ≥ c for some positive constant
c, (ii) α̂ = α + Op(N−1/2) and δ̂ = δ + Op(N−1/2), provided
that β is known and (1 − δ)(1 − α − β)2 ≥ c for some positive
constant c.

Remark 1. Since our estimation of the unknown parameters is
based on moment estimation, the independent noise dictated
by Assumption 1 is not strictly necessary. As is shown in the
proof of Proposition 1, the convergence rate for the moment
estimation of the unknown parameters is determined by the
convergence rates of û1 − u1 and û2 − u2. For any i < j,
let ei,j = I(εi,j = 0, 1) − (1 − β) for (i, j) ∈ S and ei,j =
I(εi,j = 1) − α for (i, j) ∈ Sc. Recall P(εi,j = 1) = α,
P(εi,j = 0) = 1 − α − β and P(εi,j = −1) = β . Then
E(ei,j) = 0 for any i < j. If var(N−1/2∑

i<j ei,j) ≤ C for
some positive constant C, then û1 = u1 + Op(N−1/2) without
the independence assumption. When Assumption 1 is satisfied,
var(N−1/2∑

i<j ei,j) = δβ(1−β)+(1−δ)α(1−α). Analogously,
û2 = u2 +Op(N−1/2) still holds when some dependency among
εi,j (i < j) is present. Hence, the results of Proposition 1 still hold
when there is some dependency among εi,j (i < j).

Remark 2. It is not strictly necessary that Y∗ derive from the
same underlying adjacency matrix A as Y. More specifically,
let A∗ = (Ai,j,∗)p×p be the adjacency matrix underlying the
observation Y∗, and let B1 = {(i, j) : Ai,j = Ai,j,∗, i < j}. The
average of |Yi,j,∗ − Yi,j| over B1 provides an unbiased estimator
for the parameter u2 defined in (10), while the original estimator
û2 defined in (11) is no longer unbiased if |B1| < p(p − 1)/2.
As long as θ1 = 2|B1|/{p(p − 1)} is sufficiently close to 1, e.g.
|1 − θ1| = o(p−1), the bias term in û2 will be asymptotically
negligible, which means the estimators (12) and (13) will still be
consistent.

Theorem 2. Let N = p(p − 1)/2. Under Assumption 1, if N1 =
p(p − 1)δ → ∞ and N2 = p(p − 1)(1 − δ) → ∞, it holds
that (i)

√
N(β̂ − β , δ̂ − δ)T →d N (0, �1,α) with �1,α defined

as (A.2) in the Appendix, provided that α is known and δ(1 −
α − β)2 ≥ c for some positive constant c, (ii)

√
N(α̂ − α, δ̂ −

δ)T →d N (0, �1,β) with �1,β defined as (A.3) in the Appendix,
provided that β is known and (1 − δ)(1 −α −β)2 ≥ c for some
positive constant c.

We can construct approximate confidence intervals for δ

based on the asymptotic normality stated in Theorem 2. Let
σ 2 denote the asymptotic variance of

√
N(δ̂ − δ). Then σ

depends on unknown parameters δ and β or α. Replacing those
unknown parameters by their estimates, we obtain an estimated
asymptotic variance denoted by σ̂ 2. Then an approximate 95%
confidence interval for δ is(

δ̂ − 1.96σ̂N−1/2, δ̂ + 1.96σ̂N−1/2) . (14)

3.2.2. Both α and β Unknown
When both α and β are unknown, together with δ there are
three unknown parameters to be estimated. We show that three
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replicates are sufficient for asymptotically consistent estimation
in this setting.

Let Y, Y∗, and Y∗∗ be independent and identically distributed
replicates from (2). Hence, for (i, j) with Ai,j = 1,

Yi,j,∗∗−2Yi,j,∗+Yi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−2 , with probability β2(1 − β) ,
−1 , with probability 2β(1 − β)2 ,

0 , with probability β3 + (1 − β)3 ,
1 , with probability 2β2(1 − β) ,
2 , with probability β(1 − β)2 ,

and for (i, j) with Ai,j = 0,

Yi,j,∗∗−2Yi,j,∗+Yi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−2 , with probability α(1 − α)2 ,
−1 , with probability 2α2(1 − α) ,

0 , with probability α3 + (1 − α)3 ,
1 , with probability 2α(1 − α)2 ,
2 , with probability α2(1 − α) .

Arguing in a fashion analogous to that used in producing the
parameters u1 and u2, we emerge with the parameter

u3 ≡ (1 − δ)α(1 − α)2 + δβ2(1 − β) , (15)

with corresponding method of moment estimator

û3 = 2
3p(p − 1)

∑
i<j

I(Yi,j,∗∗ − 2Yi,j,∗ + Yi,j = 1 or − 2) ,

from which we obtain a third estimating equation:

û3 = (1 − δ)α(1 − α)2 + δβ2(1 − β) . (16)

Combining (9), (11), and (16), we have a nonlinear system
of three equations with three unknowns. This nonlinear system
can be solved by some simple numerical iterations. For example,
it follows from (15) that

α̂ = û3 − δβ2(1 − β)

(1 − δ)(1 − α)2 . (17)

Starting with an initial value α0, we compute the estimates for
β , δ, and α recursively using (12) and (17) until the absolute
difference between two successive values for α̂ is smaller than
a prescribed small number. Analogous to Proposition 1 and
Theorem 2, we have the following result.

Theorem 3. Let N = p(p − 1)/2. Under Assumption 1, if
N1 = p(p − 1)δ → ∞ and N2 = p(p − 1)(1 − δ) → ∞,
it holds that α̂ = α + Op(N−1/2), β̂ = β + Op(N−1/2), and
δ̂ = δ + Op(N−1/2), provided that δ(1 − δ)(1 − α − β)4 ≥ c
for some positive constant c. More specifically, we have

√
N(α̂−

α, β̂ − β , δ̂ − δ)T →d N (0, �2) with �2 defined as (A.4) in the
Appendix.

4. Inference for Higher-Order Subgraph Densities

Now we address the inference of higher-order subgraph densi-
ties CV (τ1, . . . , τk) defined in (5) with k ≥ 2. We continue to
use method of moments estimation, but with the error rates α

and/or β replaced by their estimators obtained in Section 3.2.
The resulting estimators admit a uniform representation; see
(25). However, interval estimation for CV (τ1, . . . , τk) requires
the evaluation of an asymptotic variance that is a function of
the individual (unknown) network edges Ai,j. Accordingly, we
propose a new and nonstandard bootstrap method to overcome
this obstacle. To highlight the key ideas, we first proceed in
Section 4.1 with both α and β assumed to be known. The devel-
opment with unknown α and β is then presented in Section 4.2.

4.1. Inference for Subgraph Densities With Known Error
Rates

In this subsection, we assume that both α and β are known. All
inference will be based on one observed network Y = (Yi,j)p×p
only. It follows from (2) and Assumption 1 that

Ai,j = E(Yi,j − α)

1 − α − β
and 1 − Ai,j = E(1 − β − Yi,j)

1 − α − β
.

Hence (5) admits a more compact representation

CV =: CV (τ1, . . . , τk)

= 1
(1 − α − β)k · 1

|V|
∑

v=(i1,i′1,...,ik,i′k)∈V

k∏
�=1

E
{
ϕ�

(
Yi�,i′�

)}
,

where

ϕ�(x) = (x − α)τ�(1 − β − x)1−τ� . (18)

Note that |{i�1 , i′�1
} ∩ {i�2 , i′�2

}| ≤ 1 for any �1 �= �2, Assump-
tion 1 implies that the {Yi�,i′�}k

�=1 are independent of each other.
Therefore, a natural method of moments estimator for CV can
be defined as

C̃V = T̃V
(1 − α − β)k , (19)

where

T̃V = 1
|V|

∑
v=(i1,i′1,...,ik,i′k)∈V

k∏
�=1

ϕ�

(
Yi�,i′�

)
.

To state the asymptotic properties of C̃V , we need to intro-
duce some notation. For any v = (i1, i′1, . . . , ik, i′k) ∈ V with V
given in (4) and 1 ≤ �1 < · · · < �s ≤ k with 1 ≤ s ≤ k − 1, we
define
G�1,...,�s(v) = {(θ1, θ ′

1, . . . , θs, θ ′
s) : (i1, i′1, . . . , i�1−1, i′�1−1, θ1, θ ′

1,
i�1+1, i′�1+1, . . . , i�2−1, i′�2−1, θ2, θ ′

2,
. . . , i�s−1, i′�s−1, θs, θ ′

s , i�s+1, i′�s+1, . . . , ik, i′k) ∈ V} .

In turn, we define the quantity

ℵV (s) = max
v∈V

max
1≤�1<···<�s≤k

|G�1,...,�s(v)| (20)

and

ℵV = max
1≤s≤k−1

ℵV (s) .
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Proposition 2. Under Assumption 1, if |1 −α −β| ≥ c for some
positive constant c, it holds that |̃CV − CV | = Op(

√ℵV/|V|) as
p → ∞.

Notice that ℵV (1) ≤ · · · ≤ ℵV (k − 1), so that ℵV = ℵV (k −
1). If we select V = {(i1, i′1, . . . , ik, i′k) : i′� = i�+1 for each � =
1, . . . , k − 1, i1 �= i2 �= · · · �= ik �= i′k}, which corresponds
to counting paths of length k ≥ 2, then |V| = p · · · (p − k)
and ℵV (s) = (p − k + s − 1) · · · (p − k) for any 1 ≤ s ≤
k − 1. Alternately, if we select V = {(i1, i′1, . . . , ik, i′k) : i′� =
i�+1 for each � = 1, . . . , k − 1, i′k = i1, i1 �= i2 �= · · · �= ik},
which corresponds to counting cycles of length k ≥ 3, then
|V| = p · · · (p − k + 1), ℵV (1) = 1 and ℵV (s) = (p − k + s −
1) · · · (p − k + 1) for any 2 ≤ s ≤ k − 1. As a result, in the case
of counting paths or cycles of length k, ℵV/|V| = {p(p − 1)}−1.
Letting N = p(p−1)/2, we then have |̃CV −CV | = Op(N−1/2).

To investigate the asymptotic distribution of C̃V − CV , we
require the following mild assumption.

Assumption 2. (i) ℵV (s)/ℵV → 0 for any 1 ≤ s ≤ k − 2, and
(ii)

max
v∈V

max
1≤�1<···<�k−1≤k

|G�1,...,�k−1(v)|
� min

v∈V min
1≤�1<···<�k−1≤k

|G�1,...,�k−1(v)| .

Let

SV =
√

N
(1 − α − β)k

k∑
j=1

(−1)1−τj

|V|
∑

v=(i1,i′1,...,ik,i′k)∈V

[
Y̊ij,i′j

∏
� �=j

E
{
ϕ�

(
Yi�,i′�

)}]
,

(21)

where Y̊ij,i′j = Yij,i′j − E(Yij,i′j) and ϕ�(·) is defined as (18).

Proposition 3. Let N = p(p − 1)/2, ℵV/|V| � N−1 and |1 −
α − β| ≥ c for some positive constant c. Under Assumptions 1
and 2, it holds that

√
N(C̃V − CV ) = SV + op(1) for SV defined

as (21).

Recall Yi,j = Yj,i for any i �= j, and

max
v∈V

max
1≤�1<···<�k−1≤k

|G�1,...,�k−1(v)|
� min

v∈V min
1≤�1<···<�k−1≤k

|G�1,...,�k−1(v)| .

Notice that ℵV/|V| � N−1. Then it holds that

SV = 1√
N

∑
i<j

Y̊i,jKi,j

for some constants Ki,j. Since {Yi,j}i<j are independent, it follows
from the central limit theorem that

√
N(C̃V − CV )

d−→ N (0, σ 2
V )

as p → ∞, where the asymptotic variance σ 2
V satisfies

σ 2
V = lim

p→∞
1
N
∑
i<j

K2
i,jvar(Yi,j) . (22)

It is easy to see from (2) that var(Yi,j) = Ai,j(1 − α − β)(β −
α)+α(1−α). As we do not know Ai,j, it is impossible to compute
σ 2
V based on (22) (except for some simple special cases such as

when K2
i,j does not vary with respect to i and j). To overcome

this difficulty, we propose a nonstandard bootstrap procedure
as follows: we draw bootstrap samples Y† according to

Y†
i,j ≡ Y†

j,i = Yi,jI(ηi,j = 0) + I(ηi,j = 1) for i < j , (23)

where {ηi,j} are independent random variables, P(ηi,j = 0) =
γ1, P(ηi,j = 1) = γ2 and P(ηi,j = −1) = 1 − γ1 − γ2, with
γ1 > 0, γ2 > 0 and γ1 + γ2 < 1 satisfying{

γ1(1 − γ1 − 2γ2) = β − α ,
γ2(1 − γ2) = α(1 − β) .

(24)

Now let

S†
V =

√
N

(1 − α − β)k

k∑
j=1

(−1)1−τj

|V|
∑

v=(i1,i′1,...,ik,i′k)∈V

{
Y̊†

ij,i′j

∏
� �=j

ϕ�

(
Yi�,i′�

)}

with Y̊†
ij,i′j

= Y†
ij,i′j

− Yij,i′jγ1 − γ2 and ϕ�(·) defined as in (18).

Theorem 4 shows that the distribution of
√

N(C̃V − CV ) can be
approximated by the conditional distribution of S†

V given Y =
(Yi,j)p×p.

Note that (24) may admit more than one legitimate solution
for (γ1, γ2); any one of them can serve for our purpose. Fur-
thermore, the bootstrap sample (Y†

i,j)p×p does not necessarily
resemble the full behavior of the original sample (Yi,j)p×p. What
matters here is the fact that it has the correct (conditional
expected) variance:

E{var(Y†
i,j | Y)} = var(Yi,j) .

Note that var(Y†
i,j | Y) = Yi,j(β − α) + α(1 − β), which is

guaranteed by (24).

Theorem 4. Under the conditions of Proposition 3, it holds that

sup
z∈R

∣∣P{√N(C̃V − CV ) > z
}− P(S†

V > z
∣∣Y)
∣∣→ 0

as p → ∞.

Theorem 4 can be extended to multiple cases easily, which
is required for constructing the joint confidence regions for
several subgraph densities, or their functions such as the cluster-
ing coefficient. For given (V1, τ1,1, . . . , τ1,k1), . . . , (Vm, τm,1, . . . ,
τm,km), we approximate the joint distribution of

√
N(C̃V1 −

CV1 , . . . , C̃Vm − CVm)T by the following parametric bootstrap
procedure:

1: repeat
2: given data Y = (Yi,j)p×p draw bootstrap samples Y† =

(Y†
i,j)p×p as in (23)
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3: calculate bootstrap estimate ϑ† = (ϑ†
1 , . . . , ϑ†

m)T,
where

ϑ†
q =

√
N

(1 − α − β)kq

kq∑
j=1

(−1)1−τq,j

|Vq|∑
v=(i1,i′1,...,ikq ,i′kq )∈Vq

{
Y̊†

ij,i′j

∏
� �=j

ϕq,�
(
Yi�,i′�

)}

for each q = 1, . . . , m with Y̊†
ij,i′j

= Y†
ij,i′j

− Yij,i′jγ1 − γ2 and

ϕq,�(x) = (x − α)τq,� (1 − β − x)1−τq,� for any x ∈ {0, 1}
4: until B replicates obtained, for a large integer B
5: approximate the joint distribution by the empirical distri-

bution function of {ϑ†
1, . . . , ϑ†

B}
Remark 3. For estimating two-star density, we let k = 3, τ1 =
τ2 = 1, τ3 = 0 and V = {(i1, i′1, i2, i′2, i3, i′3) : i′1 = i2, i′2 =
i3, i′3 = i1, i1 �= i2 �= i3}. Then

SV = (1 − α − β)−1√N
p(p − 1)(p − 2)

∑
i1 �=i2 �=i3

{Y̊i1,i2 Ai2,i3 (1 − Ai3,i1 )

+ Y̊i2,i3 Ai1,i2 (1 − Ai3,i1 ) − Y̊i3,i1 Ai1,i2 Ai2,i3 }
and

S†
V = (1 − α − β)−3√N

p(p − 1)(p − 2)

∑
i1 �=i2 �=i3

{Y̊†
i1,i2 (Yi2,i3 − α)(1 − β − Yi3,i1 )

+ Y̊†
i2,i3 (Yi1,i2 − α)(1 − β − Yi3,i1 ) − Y̊†

i3,i1 (Yi1,i2 − α)(Yi2,i3 − α)}.

Remark 4. For estimating triangle density, we let k = 3, τ1 =
τ2 = τ3 = 1 and V = {(i1, i′1, i2, i′2, i3, i′3) : i′1 = i2, i′2 = i3, i′3 =
i1, i1 �= i2 �= i3}. Then

SV = (1 − α − β)−1√N
p(p − 1)(p − 2)

∑
i1 �=i2 �=i3

(Y̊i1,i2 Ai2,i3 Ai3,i1

+ Y̊i2,i3 Ai1,i2 Ai3,i1 + Y̊i3,i1 Ai1,i2 Ai2,i3)

and

S†
V = (1 − α − β)−3√N

p(p − 1)(p − 2)

∑
i1 �=i2 �=i3

{
Y̊†

i1,i2(Yi2,i3 − α)(Yi3,i1 − α)

+ Y̊†
i2,i3(Yi1,i2 − α)(Yi3,i1 − α)

+ Y̊†
i3,i1(Yi1,i2 − α)(Yi2,i3 − α)

}
.

4.2. Estimation of Subgraph Densities With Unknown
Error Rates

When the error rates α and β are unknown, we simply use the
estimator C̃V defined in (19) with α and β replaced by their
estimators derived in Section 3.2. Then its asymptotic proper-
ties are more complex, and, consequently, the construction of
confidence sets is more involved. Note that we need at most
three samples Y, Y∗, Y∗∗ for estimating α and β in Section 3.2.
Obviously an improvement to the approach outlined below can
be entertained by combining the three estimators obtained from
computing (19), using one of the three available samples each
time. For simplicity, we do not pursue this idea further here.

Given estimators (α̃, β̃) for (α, β), we define

ĈV = T̂V
(1 − α̃ − β̃)k

(25)

as an estimator for CV , where

T̂V = 1
|V|

∑
v=(i1,i′1,...,ik,i′k)∈V

k∏
�=1

(
Yi�,i′� − α̃

)τ�
(
1 − β̃ − Yi�,i′�

)1−τ� .

See also (19). Here we let (α̃, β̃) = (α, β̂) for β̂ defined in (12) if
α is known, (α̃, β̃) = (α̂, β) for α̂ defined in (13) if β is known,
and (α̃, β̃) = (α̂, β̂) for (α̂, β̂) defined in Section 3.2.2 if both α

and β are unknown. Let

�α,V = kCV
1 − α − β

− 1
(1 − α − β)k∑

j:τj=1

1
|V|

∑
v=(i1,i′1,...,ik,i′k)∈V

∏
� �=j

E
{
ϕ�

(
Yi�,i′�

)} (26)

and

�β ,V = kCV
1 − α − β

− 1
(1 − α − β)k∑

j:τj=0

1
|V|

∑
v=(i1,i′1,...,ik,i′k)∈V

∏
� �=j

E
{
ϕ�

(
Yi�,i′�

)} (27)

with ϕ�(·) defined as in (18).

Proposition 4. Let N = p(p − 1)/2, ℵV/|V| � N−1, max{|α̃ −
α|, |β̃ − β|} = Op(N−1/2) and |1 − α − β| ≥ c for some
positive constant c. Under Assumption 1, it holds that |̂CV −
CV | = Op(N−1/2). Furthermore, if Assumption 2 also holds,
then

√
N(ĈV − CV ) = SV +�α,V

√
N(α̃ −α)+�β ,V

√
N(β̃ −

β) + op(1), where SV is defined as (21).

In comparison to Proposition 3, the leading term of√
N(ĈV − CV ) with unknown α or/and β has an additional

part

�V := �α,V
√

N(α̃ − α) + �β ,V
√

N(β̃ − β) , (28)

which is a linear combination of
√

N(α̃ − α) and
√

N(β̃ −
β). Since SV and �V both converge to normal distributions,√

N(ĈV−CV ) is also asymptotically normal. Let κ1 = α(1−α),
κ2 = β(1 − β) and κ3 = 1 − α − β . Define

G =
(

gα,1 gα,2 gα,3
gβ ,1 gβ ,2 gβ ,3

)
, (29)

where (gα,1, gα,2, gα,3, gβ ,1, gβ ,2, gβ ,3) are specified as follows.

• If only α is known, gα,1 = gα,2 = gα,3 = 0, gβ ,1 = κ1−κ2
δκ2

3
,

gβ ,2 = 1
δκ3

, and gβ ,3 = 0.
• If only β is known, gα,1 = κ1−κ2

(1−δ)κ2
3

, gα,2 = 1
(1−δ)κ3

, gα,3 = 0,
and gβ ,1 = gβ ,2 = gβ ,3 = 0.
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• If both α and β are unknown, gα,1 = (1−2β)α+β2

(1−δ)κ2
3

, gα,2 =
α−2β

(1−δ)κ2
3

, gα,3 = 1
(1−δ)κ2

3
, gβ ,1 = − (1−2α)β+α2

δκ2
3

, gβ ,2 =
β−2α+1

δκ2
3

, and gβ ,3 = − 1
δκ2

3
.

Let κ4 = β − α. We define a three-dimensional vector hV such
that

hT
V = [

6κ4, 3(κ2
4 − κ1 − κ2), 2{κ4(−6αβ + 3κ2

3 − 4κ3)

+ (1 − α)(β − 2α)}]× 1
3

k∑
j=1

(−1)1−τj

CV (τ1, . . . , τj−1, 1, τj+1, . . . , τk)

+ {6κ1, 3κ1(1 − 2α), 2κ1(1 − α)(1 − 3α)
}

× 1
3κk

3

k∑
j=1

(−1)1−τj

|V|
∑

v=(i1,i′1,...,ik,i′k)∈V

∏
� �=j

E
{
ϕ�

(
Yi�,i′�

)}
.

(30)
Now we can state the following theorem.

Theorem 5. Let N = p(p−1)/2, ℵV/|V| � N−1, |1−α−β| ≥ c
for some positive constant c, N1 = p(p − 1)δ → ∞ and
N2 = p(p − 1)(1 − δ) → ∞. Under Assumptions 1 and
2, it holds that

√
N(ĈV − CV ) →d N (0, φ2

V ) with φ2
V =

σ 2
V+(�α,V , �β ,V )G�GT(�α,V , �β ,V )T+hT

VGT(�α,V , �β ,V )T,
where σ 2

V and � are defined as (22) and (A.1) in the Appendix,
respectively, provided that one of the following three conditions
holds: (i) δ(1 − α − β)2 ≥ c for some positive constant c when
only α is known, (ii) (1 − δ)(1 − α − β)2 ≥ c for some positive
constant c when only β is known, or (iii) δ(1−δ)(1−α−β)4 ≥ c
for some positive constant c when both of α and β are unknown.

Recall that
√

N(ĈV − CV ) = SV + �V + op(1). The asymp-
totic variance φ2

V stated in Theorem 5 actually can be divided
into three parts. The first term σ 2

V is the asymptotic variance of
SV . The second term (�α,V , �β ,V )G�GT(�α,V , �β ,V )T is the
asymptotic variance of �V . The third term hT

VGT(�α,V , �β ,V )T

is two times the asymptotic covariance between SV and �V .

Remark 5. By way of comparison with Theorem 5 here, based
on Theorem 10 of Balachandran, Kolaczyk, and Viles (2017)
and the discussion immediately following that theorem, we can
conclude that in general the empirically observed subgraph
counts will not even be consistent estimates of CV .

4.3. Joint Inference of Subgraph Densities With Unknown
Error Rates

Theorem 5 can be extended to the case of multiple subgraph
densities, which is required for constructing the joint confidence
regions for several subgraph densities or a smooth function
thereof. Given (V1, τ1,1, . . . , τ1,k1), . . . , (Vm, τm,1, . . . , τm,km), it
holds that the random vector

√
N(ĈV1 −CV1 , . . . , ĈVm −CVm)T

converges to a multivariate normal distribution N (0, V). Let

ϑ = (SV1 , . . . , SVm)T and θ = (�V1 , . . . , �Vm)T,

where SVq = SVq(τq,1, . . . , τq,kq) and �Vq = �Vq(τq,1, . . . , τq,kq)

are defined in the same manner as (21) and (28), respectively, but

in which (V , τ1, . . . , τk) is replaced by (Vq, τq,1, . . . , τq,kq) now. It
follows from Proposition 4 that V = limp→∞ Vp with

Vp = var(ϑ)︸ ︷︷ ︸
V1,p

+ var(θ)︸ ︷︷ ︸
V2,p

+ cov(ϑ , θ) + cov(θ , ϑ)︸ ︷︷ ︸
V3,p

. (31)

The first term V1,p can be consistently estimated by the boot-
strap procedure presented in Section 4.1 with (α, β) replaced by
(α̃, β̃). To evaluate V2,p and V3,p, we put

� =
⎛⎜⎝ �α,V1 �β ,V1

...
...

�α,Vm �β ,Vm

⎞⎟⎠ and H =
⎛⎜⎝ hT

V1
...

hT
Vm

⎞⎟⎠ ,

where �α,Vq , �β ,Vq and hT
Vq

are defined in the same manner as
(26), (27), and (30), respectively, with (V , τ1, . . . , τk) replaced by
(Vq, τq,1, . . . , τq,kq) now. Then it holds that

V2,p = �G�GT�T + o(1) and

V3,p = 1
2
(
HGT�T + �GHT)+ o(1) , (32)

where G and � are defined as (29) and (A.1) in the Appendix,
respectively.

For given q = 1, . . . , m, τq,1, . . . , τq,kq ∈ {0, 1} and (α̃, β̃),
define ϕ̃q,�(x) = (x − α̃)τq,� (1 − β̃ − x)1−τq,� for x ∈ {0, 1}. Let
κ̃1 = α̃(1 − α̃), κ̃2 = β̃(1 − β̃) and κ̃3 = 1 − α̃ − β̃ . Since

1
|Vq|

∑
v=(i1,i′1,...,ikq ,i′kq )∈Vq

∏
� �=j

E
{
ϕq,�
(
Yi�,i′�

)}
can be consistently estimated by

1
|Vq|

∑
v=(i1,i′1,...,ikq ,i′kq )∈Vq

∏
� �=j

ϕ̃q,�
(
Yi�,i′�

)
,

then

�̂α,Vq = kq

κ̃3
ĈVq − 1

κ̃
kq
3∑

j:τq,j=1

1
|Vq|

∑
v=(i1,i′1,...,ikq ,i′kq )∈Vq

∏
� �=j

ϕ̃q,�
(
Yi�,i′�

)
and

�̂β ,Vq = kq

κ̃3
ĈVq − 1

κ̃
kq
3∑

j:τq,j=0

1
|Vq|

∑
v=(i1,i′1,...,ikq ,i′kq )∈Vq

∏
� �=j

ϕ̃q,�
(
Yi�,i′�

)
are consistent estimates for �α,Vq and �β ,Vq , respectively.
Replacing �α,Vq , �β ,Vq and (α, β) by �̂α,Vq , �̂β ,Vq and (α̃, β̃),
respectively, we can obtain consistent estimates of �, G, H, and
�, and, consequently, consistent estimates of V2,p and V3,p. For
i = 1, 2, 3, denote by V̂i,p the consistent estimate of Vi,p. Then
the joint distribution of

√
N(ĈV1 − CV1 , . . . , ĈVm − CVm)T can

be approximated by N (0, V̂p) with V̂p = V̂1,p + V̂2,p + V̂3,p.
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Remark 6. For estimating two-star density, we let k = 3,
τ1 = τ2 = 1, τ3 = 0 and V = {(i1, i′1, i2, i′2, i3, i′3) : i′1 =
i2, i′2 = i3, i′3 = i1, i1 �= i2 �= i3}. Then ĈV = κ̃−3

3 {p(p −
1)(p − 2)}−1∑

i1 �=i2 �=i3(Yi1,i2 − α̃)(Yi2,i3 − α̃)(1 − β̃ − Yi3,i1),
�̂α,V = 3κ̃−1

3 ĈV − 2κ̃−3
3 {p(p − 1)(p − 2)}−1∑

i1 �=i2 �=i3(Yi1,i2 −
α̃)(1 − β̃ − Yi3,i1), �̂β ,V = 3κ̃−1

3 ĈV − κ̃−3
3 {p(p − 1)(p −

2)}−1∑
i1 �=i2 �=i3(Yi1,i2 − α̃)(Yi2,i3 − α̃) and

ĥT
V = 1

3

⎧⎨⎩2C̃V − κ̃−3
3

p(p − 1)(p − 2)

∑
i1 �=i2 �=i3

(Yi1,i2 − α̃)(Yi2,i3 − α̃)

(Yi3,i1 − α̃)

}
×
[

6κ̃4, 3
(
κ̃2

4 − κ̃1 − κ̃2
)

, 2
{
κ̃4
(
−6α̃β̃ + 3κ̃2

3 − 4κ̃3
)

+ (1 − α̃)(β̃ − 2α̃)

}]
+ κ̃−3

3
3p(p − 1)(p − 2)∑

i1 �=i2 �=i3

{
2(Yi1,i2 − α̃)(1 − β̃ − Yi3,i1 ) − (Yi1,i2 − α̃)(Yi2,i3 − α̃)

}
× {6κ̃1, 3κ̃1(1 − 2α̃), 2κ̃1(1 − α̃)(1 − 3α̃)} .

Remark 7. For estimating triangle density, we let k = 3, τ1 =
τ2 = τ3 = 1 and V = {(i1, i′1, i2, i′2, i3, i′3) : i′1 = i2, i′2 =
i3, i′3 = i1, i1 �= i2 �= i3}. Then ĈV = κ̃−3

3 {p(p − 1)(p −
2)}−1∑

i1 �=i2 �=i3(Yi1,i2 − α̃)(Yi2,i3 − α̃)(Yi3,i1 − α̃), �̂α,V =
3κ̃−1

3 ĈV−3κ̃−3
3 {p(p−1)(p−2)}−1∑

i1 �=i2 �=i3(Yi1,i2 −α̃)(Yi2,i3 −
α̃), �̂β ,V = 3κ̃−1

3 ĈV and

ĥT
V = ĈV

[
6κ̃4, 3(κ̃2

4 − κ̃1 − κ̃2), 2{κ̃4(−6α̃β̃

+ 3κ̃2
3 − 4κ̃3) + (1 − α̃)(β̃ − 2α̃)}]

+ 1
κ̃3

3

{
6κ̃1, 3κ̃1(1 − 2α̃), 2κ̃1(1 − α̃)(1 − 3α̃)

}
× 1

p(p − 1)(p − 2)

∑
i1 �=i2 �=i3

(Yi1,i2 − α̃)(Yi2,i3 − α̃) .

5. Numerical Illustration

5.1. Simulations

We conduct some simulations to illustrate the finite sample
properties of the proposed estimation methods. For given δ ∈
(0, 1) and integers p, N2∗, and N�, we specify a p × p determin-
istic adjacency matrix A with �δp(p − 1)/2� edges randomly
allocated among vertex pairs subject to the condition that there
are exactly N2∗ two-stars (also called triplets), and N� triangles.
Hence the clustering coefficient of the corresponding network is

γ = 3N�/N2∗ . (33)

Generating such A is accomplished by an adaptation of the
rewiring ideas of Mahadevan et al. (2006), which, to our best
knowledge, is new. Note that δ is the edge density, 2N2∗/{p(p −
1)(p − 2)} and 6N�/{p(p − 1)(p − 2)} are, respectively, the
two-star density and the triangle density. We set α = 0.05,
β = 0.05 or 0.20, p = 30, 50, 100, and 200. We assume
that both α and β are unknown. Therefore, we need 3 noisy
observations Y, Y∗, Y∗∗ to facilitate the estimation, which are
generated according to (2).

We evaluate the point estimates for δ, α, and β iteratively
using (12) and (17). More precisely we set an initial value α0 =
0.2, and obtain β̂ and δ̂ from (12). Plugging (α, β̂ , δ̂) into the
right-hand side of (17), we obtain α̂. We repeat this exercise by
setting α = α̂, and terminate the recursion when the absolute
difference of two successive values of α is smaller than 10−4.
We also calculate the approximate confidence intervals for δ

based on the asymptotic normality stated in Theorem 3. More
precisely, the confidence interval is in the same form as (14) with
the asymptotic variance determined by (A.4) in the Appendix in
which α, β , δ are replaced by their respective estimates.

Having obtained estimates α̂ and β̂ , the point estimates for
the densities of two-star edges and triangles are ĈV defined in
(25); see also Remarks 6 and 7. Then a plug-in estimate for
clustering coefficient is obtained based on (33). To compute
their confidence intervals is more involved, and is based on the
procedure described in Section 4.3. More precisely, we calculate
the joint asymptotic distribution of the normalized estimators
for two-star edge density and triangle density, which is a two-
dimensional normal distribution with zero mean and variance-
covariance matrix Vp = V1,p + V2,p + V3,p, as given in the
form (31). Note that V2,p, and V3,p can be calculated directly;
see (32) and also Remarks 6 and 7. To calculate V1,p, we have
to apply the bootstrap algorithm presented in Section 4.1 with
α = α̂ and β = β̂ ; see also Remarks 3 and 4. We replicate
bootstrap sampling 500 times. Then a 95% confidence interval
is ĈV ± 1.96s, where s is the square-root of, respectively, the
(1,1)-element or the (2,2)-element of 2Vp/{p(p−1)} for two-star
density or triangle density. Consequently, a confidence interval
for clustering coefficient is deduced based on (33).

To assess the performance of the estimation procedure, we
replicate the simulation 500 times for each setting. The results
are reported in Tables 1 and 2. As the densities for two-stars and
triangles are very small (i.e., smaller than 10−2), we report the
estimates for the counts N2∗ and N� instead. The mean absolute
errors (MAE) for the point estimates for the error rates α, β ,
the edge density δ, the two-star count N2∗, the triangle count
N�, and the clustering coefficient γ are reported in Table 1.
For example, MAE(δ̂) = 1

500
∑500

i=1 |δi − δ|, where δ1, . . . , δ500
denote the estimated values in the 500 replications of simulation,
and δ denotes the true value. When p increases, the estimation
errors for α, β , δ and γ decrease. Furthermore the errors with
β = 0.2 are always greater than those with β = 0.05. This
is due to greater (Type II) errors occurring in the observations
Yi,j. The estimation for the edge density δ is very accurate, and
is more accurate than that for the clustering coefficient γ which
is a higher-order quantity, though γ can be estimated accurately
too especially when p ≥ 100. Also noticeable are greater errors
in estimating β than those in estimating α. For sparser networks
(such as δ = 0.1 or 0.2), there are a comparatively smaller num-
ber of Ai,j taking value 1, and, hence, the information on β is less.
Note that the estimation for β improves when δ increases from
0.1 to 0.2. The MAE for the two-star count and the triangle count
depend on the magnitudes of the counts themselves. Note that
the relative MAE (i.e., MAE(N̂2∗)/N2∗ or MAE(N̂�)/N�) are
small or very small. Indeed they decrease too when p increases.

The estimated 95% confidence intervals for δ, N2∗, N�, and
γ are reported in Table 2. The estimated coverage probabilities
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Table 1. Mean absolute errors (MAE) of the point estimates for error rates α, β , edge density δ, two-star count N2∗ , triangle count N� , and clustering coefficient γ in the
simulation with 500 replications for noisy network with p nodes, and α = 0.05.

p β δ N2∗ N� γ MAE(α̂) MAE(β̂) MAE(δ̂) MAE(̂N2∗) MAE(̂N�) MAE(γ̂ )

30 0.05 0.1 100 15 0.4500 0.0057 0.0369 0.0103 24.61 3.450 0.1079
0.20 0.0064 0.0622 0.0150 34.66 5.781 0.1897

30 0.05 0.2 430 40 0.2791 0.0058 0.0228 0.0103 48.54 6.248 0.0279
0.20 0.0072 0.0385 0.0162 74.44 11.25 0.0538

50 0.05 0.1 1260 50 0.1190 0.0034 0.0243 0.0058 105.0 11.45 0.0204
0.20 0.0037 0.0397 0.0086 170.3 17.57 0.0334

50 0.05 0.2 2300 140 0.1826 0.0037 0.0138 0.0061 145.5 16.54 0.0132
0.20 0.0048 0.0275 0.0111 255.4 27.98 0.0230

100 0.05 0.1 5000 150 0.0900 0.0017 0.0125 0.0030 299.1 22.84 0.0107
0.20 0.0020 0.0237 0.0048 481.3 35.45 0.0170

100 0.05 0.2 22,000 1800 0.2455 0.0019 0.0071 0.0031 630.7 82.42 0.0054
0.20 0.0024 0.0157 0.0058 1199 154.2 0.0096

200 0.05 0.1 40,000 1500 0.1125 0.0008 0.0065 0.0016 1235 82.09 0.0039
0.20 0.0010 0.0126 0.0027 2179 137.1 0.0063

200 0.05 0.2 155,000 10,000 0.1935 0.0008 0.0036 0.0016 2444 258.1 0.0023
0.20 0.0012 0.0078 0.0027 4249 431.4 0.0036

Table 2. The 95% confidence intervals for edge density δ, two-star count N2∗, triangle count N� , and clustering coefficient γ in the simulation with 500 replications for
noisy networks with p nodes, and α = 0.05.

True value δ N2∗ N� γ

p β δ N2∗ N� γ RF Length RF Length RF Length RF Length

30 0.05 0.1 100 15 0.4500 0.950 0.0520 0.950 130.5 0.978 20.92 0.982 0.6316
0.20 0.938 0.0602 0.899 146.0 0.939 26.10 0.986 0.9709

30 0.05 0.2 430 40 0.2791 0.954 0.0496 0.950 239.1 0.960 33.60 0.982 0.1633
0.20 0.929 0.0747 0.920 349.9 0.941 52.57 0.990 0.2582

50 0.05 0.1 1260 50 0.1190 0.952 0.0301 0.956 544.1 0.964 62.04 0.966 0.1144
0.20 0.950 0.0396 0.946 765.7 0.947 82.04 0.990 0.1519

50 0.05 0.2 2300 140 0.1826 0.942 0.0295 0.946 705.8 0.966 88.06 0.976 0.0770
0.20 0.950 0.0530 0.940 1256 0.955 152.5 0.991 0.1313

100 0.05 0.1 5000 150 0.0900 0.960 0.0150 0.966 1521 0.970 129.1 0.972 0.0637
0.20 0.954 0.0253 0.954 2571 0.990 216.2 0.999 0.1070

100 0.05 0.2 22,000 1800 0.2455 0.954 0.0145 0.954 3011 0.956 404.1 0.968 0.0281
0.20 0.948 0.0288 0.950 6081 0.956 808.0 0.978 0.0541

200 0.05 0.1 40,000 1500 0.1125 0.948 0.0074 0.948 6014 0.958 435.1 0.968 0.0228
0.20 0.944 0.0131 0.940 10,559 0.960 768.7 0.986 0.0399

200 0.05 0.2 155,000 10,000 0.1935 0.942 0.0072 0.940 11,399 0.938 1197 0.964 0.0111
0.20 0.970 0.0142 0.972 22,323 0.966 2329 0.970 0.0211

NOTE: Reported in the table are the relative frequencies (RF) of the event that a confidence interval covers the corresponding true value, and also the average length of the
intervals.

are indeed around 95%. The interval estimation for the edge
density δ is accurate as the average interval lengths are small,
varying from 0.0602 when p = 30 to 0.0072 when p = 200.
Note that the true value of δ is either 0.1 or 0.2. The confidence
intervals for the clustering coefficient γ tend to be conservative
with the coverage probabilities ranging from 96.4% to 99.9%.
Nevertheless, the average interval lengths are also small, espe-
cially for large p. For example, when p = 200 and γ = 0.1935,
the average interval length is 0.0111 when β = 0.05, or 0.0211
when β = 0.2.

5.2. Application: Gene Expression Networks

It is a standard exercise in computational biology to construct
and analyze networks from gene expression data. For the pur-
pose of illustration, we consider the data and network construc-
tion described in Section 7.3.1 of Kolaczyk and Csárdi (2014).
These data, originally published by Faith et al. (2007), contain
(log) gene expression levels in the bacteria Escherichia coli (E.
coli), measured for 153 genes under each of 40 different exper-
imental conditions, with three replicates of each condition. For
each set of replicates, we constructed a network among the 153

genes by applying a threshold to the Fisher transformation of
the Pearson correlation coefficients calculated for the expression
levels between all pairs of genes. A Bonferonni correction was
used to adjust for multiple testing, with the family-wise error
rate controlled at the 0.05 level. While there are numerous other
approaches to construction of gene coexpression networks, this
simple method is both immediately amenable to our illustration
and not uncommon in practice.

The empirical edge density in each of the three resulting
networks is quite stable, that is, approximately 0.073, 0.075, and
0.074, respectively. With 153×152/2 = 11,628 hypothesis tests,
the nominal value of α in this analysis is at most 4.3 × 10−6.
Taking this value as known, and calculating the estimates in (12)
for two of the networks, we obtain β̂ = 0.456 and δ̂ = 0.135.
The corresponding approximate 95% confidence interval for δ is
(0.131, 0.139). Similar results are obtained for the other possible
pairings of the three networks. These numbers suggest that the
true edge density δ differs substantially from those observed
empirically. However, it is well known that the nominal Type I
error rates in this setting can be quite inaccurate (e.g., Cosgrove,
Gardner, and Kolaczyk 2010). If we instead treat α as unknown,
the estimators defined by (9), (11), and (16) yield estimates
α̂ = 0.024, β̂ = 0.232, and δ̂ = 0.067. These numbers suggest
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that the Type I error rate is orders of magnitude higher than
nominally expected, and furthermore that the Type II error rate
is nearly one in four. On the other hand, the resulting method-
of-moments estimate of the edge density δ suggests that the
empirical edge densities observed in our networks over-estimate
only slightly.

However, consider now estimation of higher-order
quantities—specifically, of the number of two-stars N2∗, the
number of triangles N�, and the clustering coefficient γ . For
the three networks, the empirical values of these numbers are,
respectively, 19,112, 3373, and 0.53 for the first network, 22,952,
4814, and 0.63 for the second network, and 21,820, 4349, and
0.60 for the third network. Thus, we see substantially more
variability in these numbers across networks than we did for
the empirical edge density. Applying our proposed method-
of-moments estimators to these data, we obtain estimates of
approximately N̂2∗ = 25,248, N̂� = 7243, and γ̂ = 0.86. These
are all substantially higher than their empirical counterparts,
indicating a nontrivial upward adjustment for network noise,
presumably driven in large part by the high estimated rate of
Type II error.

Finally, applying our bootstrap-based methodology for
construction of asymptotic confidence intervals, we obtain an
approximate 95% confidence interval for δ of (0.06, 0.074),
which further reinforces the evidence that the true network
edge density is less than that observed empirically. At the same
time, the corresponding confidence interval for the clustering
coefficient γ is (0.81, 0.91), suggesting that the true network
clustering coefficient is roughly 1/3 larger than observed
empirically. Furthermore, the confidence intervals for N2∗ and
N� are (21,580, 28,915) and (5879, 8607), respectively, by which
we see that the triangle count appears to be more adversely
affected by noise than the two-star count.

Ultimately, we see that the ability to account for network
noise appropriately in reporting these basic summary statistics
can lead to distinctly different numbers and conclusions. From
a biological perspective, the fact that the empirically observed
edge density is inferred to be fairly accurate, while the clustering
coefficient is inferred to be noticeably larger than observed
empirically, is suggestive. Specifically, increasing clustering coef-
ficient has been found to trend with increasing modularity in a
variety of biological networks (Ravasz et al. 2002; Pavlopoulos
et al. 2011). Modules (i.e., groups of highly connected nodes) in
gene co-expression networks are understood to be reflective of
groups of genes that cooperate in common biological functions.
Our results suggest that the presence of modularity in gene
co-expression—and, hence, the level of functional cooperation
among genes—may well be even more pronounced than cur-
rently believed.

6. Discussion

Here we have developed a general framework for estimation
and uncertainty quantification of arbitrary subgraph densities in
contexts wherein one has observations of noisy networks. Our
approach requires as few as two or three replicates of network
observations, and employs method-of-moments techniques to
derive estimators and establish their asymptotic consistency and

normality. Simulations demonstrate that substantial inferential
accuracy is possible in networks of even modest size when
nontrivial noise is present. And our application to coexpression
networks in the context of computational biology shows that
the gains offered by our approach over presenting traditional
empirical network summaries can be substantial.

The approach we develop here is relevant and broadly appli-
cable to numerous contexts wherein it is possible to obtain
some notion of a handful of network replicates. For example,
multiple observations of networks are encountered in genetics
(e.g., Bartlett, Olhede, and Zaikin 2014), computational neu-
roscience (e.g., Biswal, Menness, and Zuo 2010), online social
media (e.g., Mukherjee, Sarkar, and Lin 2017), and in the study
of psychiatric disorders (e.g., Nelson et al. 2017). Similarly,
we note that most papers on dynamic networks assume that
the networks observed over different times are (conditionally)
independent of each other as the connection probabilities evolve
over time. As a result, for connection probabilities that do not
evolve too quickly, our results are directly applicable within
small windows of time (i.e., in light of Remark 2, following
Theorem 1). See Pensky (2019) and Zhao, Chen, and Lin (2019),
and the references therein, for a variety of examples of relevant
dynamic networks.

Our development here is general and supported by formal
theoretical arguments. In practice, other approaches have been
utilized to date for uncertainty quantification in certain specific
contexts, albeit—to our best knowledge—without the formal
justification developed here. For example, in the context of gene
expression measurements (as in the application described in
Section 5.2), investigators will sometimes use bootstrapping of
the original experiments to resample many pseudo-data sets and
construct many networks, from which in turn they generate
bootstrap distributions of network summaries of interest (e.g.,
Xulvi-Brunet and Li 2009).

We have pursued a frequentist approach to the problem of
uncertainty quantification for network summary statistics. If
the replicates necessary for our approach are unavailable in a
given setting, a Bayesian approach is a natural alternative. For
example, posterior-predictive checks for goodness of fit based
on examination of a handful of network summary measures
is common practice (e.g., Bloem-Reddy and Orbanz 2018, sec
5.3). Note, however, that the Bayesian approach requires careful
modeling of the generative process underlying G and typically
does not distinguish between signal and noise components.
Our analysis is conditional on G, and hence does not require
that G be modeled. It is effectively a “signal plus noise” model,
with the signal taken to be fixed but unknown. Related and
more formal work has been done in the context of graphon
modeling, with the goal of estimating network motif frequencies
(e.g., Latouche and Robin 2016). However, again, one typically
does not distinguish between signal and noise components in
this setting. Additionally, we note that the problem of practical
graphon estimation itself is still a developing area of research.

Our work here sets the stage for extensions of various levels of
difficulty. For example, while we have focused here on the case of
undirected graphs, the extension to directed graphs is straight-
forward. For directed graphs, Ai,j �= Aj,i and Yi,j �= Yj,i. The
representation (2) relies on independent εi,j for 1 ≤ i �= j ≤ p.
The statistics used for estimation should be changed accordingly
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too. For example in (6) the sum should be taken for all i �= j
instead of i < j, and the sum should be divided by p(p − 1)

instead of p(p−1)/2. Then the current technical proofs for undi-
rected graphs are applicable identically to directed graphs. On
the other hand, whereas we have focused on estimation solely
in the case of subgraph densities, which rests on the behavior
of counting statistics, we anticipate that the estimation of non-
counting network summaries (e.g., summaries based on shortest
path lengths) from noisy network data is likely nontrivial, due to
the fact that the latter are based on extremes rather than counts.

Appendix

Here, we derive expressions for the covariance matrices in Theorem 2.
Let κ1 = α(1 − α), κ2 = β(1 − β) and κ3 = 1 − α − β . Let

Wα =
⎛⎝ κ2−κ1

δκ2
3

− 1
δκ3

2β−1
κ2

3
− 1

κ2
3

⎞⎠ , Wβ =
⎛⎝ κ2−κ1

(1−δ)κ2
3

− 1
(1−δ)κ3

2α−1
κ2

3

1
κ2

3

⎞⎠
and

W =

⎛⎜⎜⎜⎝
(1−2β)α+β2

(1−δ)κ2
3

α−2β

(1−δ)κ2
3

1
(1−δ)κ2

3

− (1−2α)β+α2

δκ2
3

β−2α+1
δκ2

3
− 1

δκ2
33κ3+6αβ−2

κ3
3

3κ3+6β−2
κ3

3
− 2

κ3
3

⎞⎟⎟⎟⎠ .

Define a matrix

� = (σij)3×3 (A.1)

with σ11 = δκ2 + (1 − δ)κ1, σ22 = δκ2(1/2 − κ2) + (1 − δ)κ1(1/2 −
κ1), σ33 = δβκ2(1/3 − βκ2) + (1 − δ)κ1(1 − α){1/3 − κ1(1 − α)},
σ12 = σ21 = δκ2(β − 1/2) + (1 − δ)κ1(1/2 − α), σ13 = σ31 =
δκ2(β2/3−2κ2/3)+(1−δ)κ1{(1 − α)2/3−2κ1/3}, and σ23 = σ32 =
δβκ2(1/3−κ2)+(1−δ)(1−α)κ1(1/3−κ1). Denote by �1 = (σij)2×2
the 2 × 2 submatrix of �. Based on such defined � and �1, let

�1,α = Wα�1WT
α , (A.2)

�1,β = Wβ�1WT
β , (A.3)

and

�2 = W�WT . (A.4)

Supplementary Materials

The on-line supplementary material contains all the technical proofs for the
theoretical results in this paper.
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