
Biometrika (2021), 108, 1, pp. 127–147 doi: 10.1093/biomet/asaa051
Printed in Great Britain Advance Access publication 22 October 2020

High-dimensional empirical likelihood inference

By JINYUAN CHANG

School of Statistics, Southwestern University of Finance and Economics,
Chengdu, Sichuan 611130, China

changjinyuan@swufe.edu.cn

SONG XI CHEN

Guanghua School of Management, Peking University, Beijing 100871, China
csx@gsm.pku.edu.cn

CHENG YONG TANG

Department of Statistical Science, Temple University, 1810 Liacouras Walk,
Philadelphia, Pennsylvania 19122, U.S.A.

yongtang@temple.edu

AND TONG TONG WU

Department of Biostatistics and Computational Biology, University of Rochester,
265 Crittenden Boulevard, Rochester, New York 14642, U.S.A.

Tongtong_Wu@urmc.rochester.edu

Summary

High-dimensional statistical inference with general estimating equations is challenging and
remains little explored. We study two problems in the area: confidence set estimation for multiple
components of the model parameters, and model specifications tests. First, we propose to construct
a new set of estimating equations such that the impact from estimating the high-dimensional
nuisance parameters becomes asymptotically negligible. The new construction enables us to
estimate a valid confidence region by empirical likelihood ratio. Second, we propose a test statistic
as the maximum of the marginal empirical likelihood ratios to quantify data evidence against the
model specification. Our theory establishes the validity of the proposed empirical likelihood
approaches, accommodating over-identification and exponentially growing data dimensionality.
Numerical studies demonstrate promising performance and potential practical benefits of the new
methods.

Some key words: Empirical likelihood; General estimating equation; High-dimensional statistical inference; Nuisance
parameter; Over-identification.

1. Introduction

General estimating equations are broadly applicable for solving statistical inference prob-
lems, and they commonly involve over-identification: a general situation where the number of
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128 J. Chang, S. X. Chen, C. Y. Tang AND T. T. Wu

restrictions is larger than that of the model parameters. Such a feature is advantageous. As a
well-known example, the generalized method of moments (Hansen, 1982) allows incorpora-
tion of a flexible number of moment conditions in model building and subsequent statistical
inferences; see also Hansen & Singleton (1982). Empirical likelihood (Owen, 2001), coupled
with general estimating equations, has been demonstrated to be powerful for statistical infer-
ence since the seminal work of Qin & Lawless (1994). Without requiring specification of
a full parametric probability distribution, empirical likelihood conveniently supports statisti-
cal inference with many desirable features including Wilks’ type theorems, data adaptive yet
shape-constraint-free confidence regions, and flexibility in combining multiple sources of data
information.

Recently, there has been a surge in research on high-dimensional statistical problems. A class
of approaches are facilitated by sparse model parameters whose many components are zeros.
Penalized likelihood approaches have been demonstrated to be effective for estimating sparse
model parameters; see the overview by Fan & Lv (2010), the monographs Bühlmann & van de
Geer (2011) and Hastie et al. (2015), and references therein. Nevertheless, most existing penalized
likelihood methods are constructed from conventional tools such as the least squares criterion
or loglikelihood functions. Hence, they do not accommodate problems with general estimating
equations, leaving this influential device less utilized.

High dimensionality is challenging for empirical likelihood; see Hjort et al. (2009) and
Chen et al. (2009). Facilitated by empirical likelihood, Leng & Tang (2012) and Chang et al.
(2015) consider penalized empirical likelihood with general estimating equations, and show
that sparse estimators and statistical inferential procedures with good properties are achiev-
able. However, those results only hold when the numbers of estimating equations and model
parameters diverge at some slow polynomial rate of the sample size. Recently, Chang et
al. (2018) introduced a new penalized empirical likelihood method that can accommodate
exponentially growing numbers of estimating equations and model parameters. Their method
effectively selects a subset of the estimating equations for estimating the nonzero components of
the sparse model parameters. The study in Chang et al. (2018) only focuses on estimations,
and does not cover broader concerns such as testing hypotheses or constructing confidence
regions.

In this paper we consider two inference problems with general estimating equations using
the empirical likelihood. To the best of our knowledge, this is the first attempt in the litera-
ture to accommodate over-identification in high-dimensional settings. In our presentation, we
call a case low dimensional when it deals with either fixed or slowly diverging numbers of
model parameters and estimating equations. The first problem is how to construct a confidence
region for low-dimensional multiple components of the high-dimensional model parameters.
Here, the estimation error associated with the other components of the model parameters, so-
called nuisance parameters, is cumbersome. To overcome this difficulty, we propose to construct
an empirical likelihood with a new set of low-dimensional estimating equations for those speci-
fied components. By projecting the original estimating equations with a linear transformation
matrix whose rows are asymptotically orthogonal to the column space of the gradient matrix
with respect to the nuisance parameters, the impact due to the estimation of the nuisance
parameters becomes asymptotically negligible. Under the new construction, a valid confidence
region can be constructed using the empirical likelihood ratio. The second problem is how
to test whether or not a set of over-identified moment conditions are correctly specified. Our
approach here is to calculate the marginal empirical likelihood ratios from a set of estimating
functions evaluated at some consistent estimates. If a moment condition is misspecified, the
corresponding marginal empirical likelihood ratio will diverge. Therefore, we propose a novel
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High-dimensional empirical likelihood inference 129

high-dimensional over-identification test by assessing the maximum of the marginal empirical
likelihood ratios.

Our investigation contributes to several areas. First, it expands the scope and deepens the
understanding of high-dimensional empirical likelihood methods. We show that, by appropriate
mapping, empirical likelihood still inherits the desirable merits for statistical inference with gen-
eral estimating equations as in Qin & Lawless (1994). The key is to handle the high-dimensional
nuisance parameters, a problem of foundational importance in the empirical likelihood literature;
see, among others, Lazar & Mykland (1999), Chen & Cui (2006, 2007), Hjort et al. (2009), and
the recent investigation of Bravo et al. (2020). Our treatment using a linear transformation is new,
and it provides a crucial device of its own interests when investigating empirical likelihood; see
§ 3.1 for details and discussion. Second, our empirical likelihood-based over-identification test
offers a new specification assessment tool to check the moment conditions. In conventional cases,
the validity of the moment conditions can be assessed by the Sargan–Hansen J -test (Sargan, 1958;
Hansen, 1982) and the empirical likelihood ratio test (Qin & Lawless, 1994). Unfortunately, those
testing procedures cannot be applied to high-dimensional problems, because the test statistics
are not even well defined when the number of estimating equations is larger than the sample
size. To fill this gap, our method provides a suitable and viable solution in high-dimensional set-
tings. Moreover, our approach is the first that can simultaneously handle multiple components of
the model parameters and over-identification inference problems. To the best of our knowledge,
existing high-dimensional methods of confidence set estimation focus on univariate analyses with
no over-identification; see Zhang & Zhang (2013), van de Geer et al. (2014), Lee et al. (2016),
Tibshirani et al. (2016) and Ning & Liu (2017). In the context of estimating equations, a recent
study in Neykov et al. (2018) estimates the univariate confidence interval in high-dimensional
just-identified settings, i.e., the same number of model parameters and estimating equations. Our
approach can be applied more broadly. Our real data analysis with a longitudinal dataset from the
Trial of Activity for Adolescent Girls demonstrates that the empirical likelihood methods with
over-identification can provide an opportunity for potentially more accurate statistical inference
in practice.

2. Preliminaries

2.1. Notation

Let X1, . . . , Xn be d-dimensional independently and identically distributed observations, and
θ = (θ1, . . . , θp)

T ∈ � be a p-dimensional model parameter. With an r-dimensional estimating
function g(X ; θ) = {g1(X ; θ), . . . , gr(X ; θ)}T, a data model involving θ is specified by

E{g(Xi; θ0)} = 0, (1)

where θ0 = (θ0,1, . . . , θ0, p)
T ∈ � is the unknown truth. Here, one can view {g(Xi; θ)}n

i=1 as a
triangular array, where r, d, p, Xi, θ and g(· ; ·) may all depend on the sample size n.

For simplicity, in the following, when no confusion arises, we use hi(θ) as equivalent to h(Xi; θ)
for a generic q-dimensional function h(· ; ·) = {h1(· ; ·), . . . , hq(· ; ·)}T and denote by hi,k(θ) the
kth component of hi(θ). Let h̄(θ) = n−1 ∑n

i=1 hi(θ) and h̄k(θ) = n−1 ∑n
i=1 hi,k(θ). For a given

index set L ⊂ {1, . . . , q}, we denote by hL(· ; ·) the subvector of h(· ; ·) collecting the components
indexed by L. Analogously, let hi,L(θ) = hL(Xi; θ) and h̄L(θ) = n−1 ∑n

i=1 hi,L(θ). For a matrix
B = (bi, j)s1×s2 , let B⊗2 = BBT, |B|∞ = max1�i�s1,1�j�s2 |bi,j|, and ‖B‖s denote the matrix
Ls-operator norm of B. When s2 = 1, |B|s denotes the vector Ls-norm of the s1-dimensional
vector B.
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130 J. Chang, S. X. Chen, C. Y. Tang AND T. T. Wu

2.2. Current development of high-dimensional empirical likelihood

Since model estimation is the foundation of subsequent inference problems, let us start with
an overview of the penalized empirical likelihood estimation approach in Chang et al. (2018):

θ̂PEL = arg min
θ∈� max

λ∈�̂n(θ)

[ n∑
i=1

log{1 + λTgi(θ)} + n
p∑

k=1

P1,π(|θk |)− n
r∑

j=1

P2,ν(|λj|)
]

, (2)

where λ = (λ1, . . . , λr)
T, �̂n(θ) = {λ ∈ R

r : λTgi(θ) ∈ U for any i = 1, . . . , n} with an
open interval U containing zero, and P1,π(·) and P2,ν(·) are two penalty functions with tuning
parameters π and ν, respectively. For any penalty function Pτ (·) with tuning parameter τ , let
ρ(t; τ) = τ−1Pτ (t) for any t ∈ [0, ∞) and τ ∈ (0, ∞). We restrict ourselves to the set of suitably
behaved penalty functions.

Definition 1. Let P = {Pτ (·) : ρ(t; τ) be increasing in t ∈ [0, ∞) and have continuous deri-
vative ρ′(t; τ) for any t ∈ (0, ∞) with ρ′(0+; τ) ∈ (0, ∞), where ρ′(0+; τ) is independent of τ }.

Such a class is broad and general, including the L1 penalty, the smoothly clipped absolute
deviation penalty (Fan & Li, 2001), the minimax concave penalty (Zhang, 2010), amongst others.
Let S = {1 � k � p : θ0, k =| 0} with |S| = s � n, i.e., the truth θ0 is sparse. From Chang et al.
(2018), θ̂PEL is consistent under some regularity conditions, stated in the following proposition.

Proposition 1. Let P1,π(·), P2,ν(·) ∈ P and P2,ν(·) be convex with bounded second-order
derivative around 0. If Conditions A1–A6 and the restrictions (A3) in the Appendix hold, there
is a local minimizer θ̂PEL ∈ � in (2) such that: (i) |θ̂PEL,S − θ0,S |∞ = Op(αn) for some αn → 0
as n → ∞, and (ii) pr(θ̂PEL,Sc = 0) → 1 as n → ∞.

From (A3) in the Appendix, Proposition 1 holds even if r and p grow exponentially with n.
On the one hand, using a convex penalty P2,ν(·) makes the loss function concave with respect
to λ, which leads to a unique maximizer λ(θ) in the inner optimization of (2) for each given
θ . On the other hand, due to the convexity of P2,ν(·), there exists an asymptotic bias of order
slower than n−1/2 in θ̂PEL,S . We observe that regularizing λ in (2) leads to a sparse solution λ̂
corresponding to θ̂PEL, which effectively selects components in g(· ; ·). Write λ̂ = (λ̂1, . . . , λ̂r)

T

and Rn = supp(λ̂). Similarly, denote ρ2(t; ν) = ν−1P2,ν(t) for any t > 0 and η̂ = (η̂1, . . . , η̂r)
T

with η̂j = νρ′
2(|λ̂j|; ν)sgn(λ̂j) for λ̂j =| 0 and η̂j ∈ [−νρ′

2(0
+), νρ′

2(0
+)] for λ̂j = 0. Define

V̂Rn(θ̂PEL) = n−1 ∑n
i=1 gi,Rn(θ̂PEL)

⊗2 and ĴRn = [{∇θS ḡRn(θ̂PEL)}TV̂ −1/2
Rn

(θ̂PEL)]⊗2. To achieve
the best performance, the bias-corrected estimator is defined by

θ̂PELbc = θ̂PEL − ψ̂∗, (3)

where the p-dimensional vector ψ̂∗ satisfies ψ̂∗,Sc = 0 and ψ̂∗,S = ψ̂ with s-dimensional
vector ψ̂ = Ĵ −1

Rn
{∇θS ḡRn(θ̂PEL)}TV̂ −1

Rn
(θ̂PEL)η̂Rn . Let VRn(θ0) = ERn{gi,Rn(θ0)

⊗2} and JRn =
{[ERn{∇θS gi,Rn(θ0)}]TV −1/2

Rn
(θ0)}⊗2. Due to the randomness of the index set Rn, we only take

the expectation with respect to Xi and treat Rn as given when we define ERn{gi,Rn(θ0)
⊗2} and

ERn{∇θS gi,Rn(θ0)}. Properties of θ̂PELbc are summarized in the following proposition.

Proposition 2. Let P1,π(·), P2,ν(·) ∈ P and P2,ν(·) be convex with bounded second-order
derivative around 0. If Conditions A1–A8 and the restrictions (A4) in the Appendix hold, θ̂PELbc
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High-dimensional empirical likelihood inference 131

in (3) satisfies: (i) θ̂PELbc,S − θ0,S = −J −1
Rn

[ERn{∇θS gi,Rn(θ0)}]TV −1
Rn
(θ0)ḡRn(θ0) + n with

|n|2 = Op(φn) for some φn = o(n−1/2); and (ii) pr(θ̂PELbc,Sc = 0) → 1 as n → ∞.

To compute the bias-corrected estimator θ̂PELbc, the support S of θ0 is needed. In practice, we
may use the support of θ̂PEL. Since |θ̂PEL − θ0|∞ = Op(αn) for some αn → 0 as n → ∞, if the
signal strength of the nonzero components satisfies the condition αn = o(mink∈S |θ0,k |), such a
support estimation is valid in the sense that pr{supp(θ̂PEL) = S} → 1 as n → ∞.

2.3. Two inference problems of interest

We study the following two problems:

(a) Inference for multiple components of model parameters.Without loss of generality, we write
θ = (θT

M, θT
Mc)

T, where θM ∈ R
m contains the low-dimensional components of interest,

and θMc ∈ R
p−m contains the nuisance parameters. The construction of confidence regions

for θM will be shown in § 3.1.
(b) Over-identification test. When r > p, a specification test is proposed in § 3.2 to check the

validity of model (1) by testing the hypothesis H0 : E{gi(θ0)} = 0 for some θ0 ∈ � versus
H1 : E{gi(θ)} =| 0 for any θ ∈ �.

In Problem (a) when m = 1, our method reduces to the special case of constructing a confidence
interval for an individual component of θ . More generally when m > 1, we are estimating the
confidence region for multiple components as specified by θM. Although θ̂PEL and θ̂PELbc in
(2) and (3) provide consistent estimates for θ0, we cannot use their limiting distributions to
solve Problem (a), mainly due to two reasons: (i) S is generally unknown, and (ii) the limiting
distributions of θ̂PEL,Sc and θ̂PELbc,Sc are also unknown. Problem (b) is known as the over-
identification test. The Sargan–Hansen J -test (Sargan, 1958; Hansen, 1982) and the empirical
likelihood ratio test (Qin & Lawless, 1994) can be used for such a purpose when r and p are
fixed. When both r and p are less than n or diverge with n at some polynomial rate, by appropriate
normalization, the Sargan–Hansen test and the empirical likelihood ratio test may still apply
(Chang et al., 2015). However, when p and/or r is greater than n, neither applies because they
both rely explicitly or implicitly on inverting a large sample covariance matrix that is not of full
rank.

3. Methodology

3.1. Inference for low-dimensional components of model parameters

When r and p are fixed, the profile empirical likelihood approach of Qin & Lawless (1994)
can be applied to solve Problem (a). Specifically, we consider the empirical likelihood function

L(θ) = sup
{ n∏

i=1

πi : πi > 0 ,
n∑

i=1

πi = 1 ,
n∑

i=1

πigi(θ) = 0
}

(4)

for any θ ∈ �, and define the empirical likelihood estimator for θ0 as θ̌n = arg maxθ∈� L(θ).
The profile empirical likelihood ratio is defined as �̃(θM) = �(θM, θ̄Mc) − �(θ̌n), where
�(θ) = −2 log{nnL(θ)}, and θ̄Mc minimizes �(θM, θMc)with respect to θMc for a given θM. It is
well known that �̃(θ0,M) → χ2

m in distribution as n → ∞. Then, {θM ∈ R
m : �̃(θM) � χ2

m,1−α}

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/108/1/127/5934910 by N
ational Science & Technology Library R

oot Adm
in user on 13 July 2021



132 J. Chang, S. X. Chen, C. Y. Tang AND T. T. Wu

provides a 100(1 − α)% confidence region for θM, where χ2
m,1−α denotes the (1 − α)-quantile

of the chi-square distribution with m degrees of freedom.
The confidence regions constructed by empirical likelihood ratio have several advantages (Hall

& La Scala, 1990). First, empirical-likelihood-based confidence regions are data driven, being
free from shape constraints; see the plots of the estimated confidence regions from our simulation
in the Supplementary Material. Second, though being nonparametric, empirical-likelihood-based
confidence regions are Bartlett correctable, so the order of the coverage error can be reduced from
n−1 to n−2, with a simple correction for the mean of the empirical likelihood ratio statistics (Chen
& Cui, 2006, 2007). Third, empirical likelihood methods require no further estimation such as the
scale and the skewness, which is an appealing feature when solving high-dimensional problems.
Fourth, the empirical likelihood method can be adapted to construct confidence regions for general
smooth functions of the model parameter (Qin & Lawless, 1995).

Clearly, when both r and p are allowed to diverge with n, the profile empirical likelihood
approach encounters substantial difficulty. First, calculating �̃(θM) is challenging due to the fact
that it is generally a high-dimensional, nonconvex optimization problem. Second, the existing
asymptotic analysis on the profile empirical likelihood ratio �̃(θM) cannot be generalized to
the high-dimensional case. To illustrate this, let us first pretend that the truth of the nuisance
parameters θMc , denoted by θ0,Mc , is known. Then the empirical likelihood for θM ∈ R

m

follows the conventional framework. When r is fixed, the empirical likelihood ratio �(θ0) =
−2 log{nnL(θ0)} → χ2

r in distribution as n → ∞, so {θM ∈ R
m : �(θM, θ0,Mc) � χ2

r,1−α}
is a valid confidence region for θM. If θ0,Mc is replaced by a

√
n-consistent estimate θ̃Mc , still

keeping r fixed, �(θ0,M, θ̃Mc) generally converges to some weighted sum of chi-square distri-
butions (Hjort et al., 2009). However, if the estimate θ̃Mc converges to θ0,Mc slower than n−1/2,
�(θ0,M, θ̃Mc) generally diverges with probability approaching one (Chang et al., 2013, 2016).
When θ is high dimensional, the convergence rate of such estimators is generally slower than
n−1/2. Hence, a naive plugging in of θ̃Mc into (4) will not work.A key reason leading to the failure
of empirical likelihood with high-dimensional problems is the errors from estimating the nuisance
parameters.

Therefore, it is crucial to investigate the impact on empirical likelihood from the estimation
of nuisance parameters. In conventional settings with a fixed number of model parameters, the
first- and second-order properties of empirical likelihood ratio statistics are documented in Qin
& Lawless (1994), Lazar & Mykland (1999) and Chen & Cui (2006, 2007). Hjort et al. (2009)
consider nuisance parameters that can be functional valued and estimated by some nonparamet-
ric methods. The work of Bravo et al. (2020) demonstrates that by using estimated influence
functions, the chi-squared-distributed empirical likelihood ratio statistics can be justified. Never-
theless, little exists in the literature on how to handle high-dimensional nuisance parameters when
penalized estimation approaches are used. Though sparse and consistent parameter estimates are
achievable with penalized empirical likelihood (Chang et al., 2018), the zero components in the
estimates are essentially degenerated and, even worse, their influence functions do not exist, ren-
dering the existing methods inapplicable. Hence, our challenge here is fundamentally different
from, for example, functional-valued nuisance parameters, where smoothness around the truth
leads to uniformly consistent and regular estimations.

To cope with nuisance parameters, we observe that for a consistent estimator θ∗
Mc of θ0,Mc ,

Qn = ḡ(θ0,M, θ∗
Mc)− ḡ(θ0) = {∇θMc ḡ(θ0,M, θ∗

Mc)}(θ∗
Mc − θ0,Mc)+ R1, (5)

where R1 is asymptotically negligible. A strategy here is to find a linear transformation matrix
An = (an

1, . . . , an
m)

T ∈ R
m×r satisfying |AnQn|2 = op(n−1/2), where each an

k is an r-dimensional
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High-dimensional empirical likelihood inference 133

vector. Then, by utilizing f An(· ; ·) = Ang(· ; ·) as the new m-dimensional estimating functions,
the empirical likelihood constructed with f An(· ; ·) instead of g(· ; ·) can be used for statistical
inference for θM. Specifically, let �∗An

(θM) = −2 log{nnL∗
An
(θM; θ∗

Mc)}, with

L∗
An
(θM; θ∗

Mc) = sup
{ n∏

i=1

πi : πi > 0 ,
n∑

i=1

πi = 1 ,
n∑

i=1

πif
An

i (θM, θ∗
Mc) = 0

}
. (6)

From (5), an ideal choice of An should be such that An∇θMc ḡ(θ0,M, θ∗
Mc) being small in the

sense that each row vector (an
k)

T of An satisfies that |(an
k)

T{∇θMc ḡ(θ0,M, θ∗
Mc)}|∞ diminishes to 0

as n → ∞. Or equivalently, rows of An should be chosen as asymptotically orthogonal to the
column space of ∇θMc ḡ(θ0,M, θ∗

Mc), the r × (p − m) sample gradient matrix with respect to the
nuisance parameters. As an additional key consideration, we note that the gradient with respect
to θM evaluated at (θ0,M, θ∗

Mc) should not vanish; otherwise, a flat estimating function at θ0,M
is not informative. Thus, An∇θM ḡ(θ0,M, θ∗

Mc) is required to be nonsingular. In practice, the true
θ0,M is unknown so an estimate, denoted by θ∗

M, is needed when constructing An.
By putting the ideas together, we propose to find An row by row with the optimizations

an
k = arg min

u∈Rr
|u|1 such that

∣∣{∇θ ḡ(θ∗)}Tu − ξk
∣∣∞ � τ , (7)

where θ∗ = {(θ∗
M)T, (θ∗

Mc)
T}T is an initial estimate for θ0, τ is a tuning parameter and {ξk}m

k=1
are the canonical basis of the linear space Mξ = {b = (b1, . . . , bp)

T : bj = 0 for any j =
m + 1, . . . , p}, i.e., ξk is chosen such that its kth component is 1 and all other components are 0.
Thus, a 100(1 − α)%-level confidence region for θM is given as follows:

(i) When m is fixed, C1−α = {θM ∈ R
m : �∗An

(θM) � χ2
m,1−α}, where χ2

m,1−α is the (1 −
α)-quantile of the chi-square distribution with m degrees of freedom.

(ii) When m is diverging, C1−α = {θM ∈ R
m : �∗An

(θM) � m + z1−α(2m)1/2}, where z1−α is
the (1 − α)-quantile of standard normal distribution N (0, 1). The rationale is that (χ2

m −
m)/(2m)1/2 → N (0, 1) in distribution as m → ∞.

To construct f An(· ; ·) in (6), one needs no more than the original estimating functions g(· ; ·) and
an initial estimate θ∗. This strategy is new and effective, as it can be generally adapted to handle
nuisance parameters with empirical likelihood or as a development of its own interests. Theorem 1
in § 4.1 establishes the validity of the above procedure. Briefly speaking, for a given consistent
initial estimate θ∗, the estimated confidence region is asymptotically valid as n → ∞, allowing
both r and p to diverge at some exponential rate of n. Requiring a consistent initial estimate θ∗ is
not restrictive, and can be broadly satisfied by sparse penalized estimates in cases such as linear
models and generalized linear models. For more general problems associated with estimating
equations, we advocate applying θ̂PEL given by (2). As an advantage of our method, it does not
require the bias correction step when using the transformed estimating function f An(· ; ·). As a
comparison, in Zhang & Zhang (2013) and van de Geer et al. (2014), bias correction is necessary
to construct normal-distribution-based confidence intervals in high-dimensional linear models.

Let � = E{∇θgi(θ0)}. The existence of ak such that �Tak = ξk is an elementary requirement,
since � ∈ R

r×p with r � p, ak may not be unique. A major challenge of the theoretical analysis
is the identifiability of An from (7) for high-dimensional problems. We impose the following
regularity condition.
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134 J. Chang, S. X. Chen, C. Y. Tang AND T. T. Wu

Condition 1. For each k = 1, . . . , m there is a nonrandom ak satisfying�Tak = ξk , |ak |1 � C1
for some uniform constant C1 > 0, and max1�k�m |an

k − ak |1 = Op(ωn) for some ωn → 0.

Let �̂n = ∇θ ḡ(θ∗). It follows from the existence of ak that ξk = �̂T
nak + (� − �̂n)

Tak =
�̂T

nak + ek . Under some mild conditions, |�̂n − �|∞ → 0 in probability. This, together with
the assumption that |ak |1 � C1, implies that ek is stochastically small uniformly over all its
components such that |ek |∞ = op(1). This can be seen as an attempt to recover a nonrandom
ak with no noise asymptotically (Candès & Tao, 2007; Bickel et al., 2009). Thus, an

k from (7)
satisfies |an

k − ak |1 → 0 in probability if �̂n satisfies the routine conditions for sparse signal
recovering. It can be shown that C1 in Condition 1 can be replaced by some diverging sequence
γn and our main results remain valid. Theorem 1 in § 4.1 indicates that it only requires ωn to
satisfy mω2

n(m+ log r) = o(1) for the validity of our procedure. For the just-identified case where
r = p, our assumption on the existence of �Tak = ξk is weaker than that of Neykov et al. (2018),
which assumes � to be invertible to make ak = �−1ξk unique.

Our statistical inferential procedure can be extended to broader cases of interest. For a general
function S(θM) ∈ R

q of a specified θM, the formulation of Qin & Lawless (1995) can be applied
to construct the confidence region for S(θM):

C1−α =
{

v ∈ R
q : min

θM:S(θM)=v
�∗An
(θM) � χ2

q,1−α
}

.

For a univariate and monotone transformation S(·), the confidence region with empirical likeli-
hood has the invariant property (Hall & La Scala, 1990). In the special case S(θM) = LθM with
L ∈ R

q×m, i.e., q linear combinations of θM, the validity of the confidence region defined in such
a way can be established following the same idea as our analysis.

Empirical likelihood with over-identified general estimating equations may provide a unique
opportunity for enhancing the accuracy of the statistical inference. For the inference of m-
dimensional components θM, one may opt to find m̃ (m̃ � m) linear combinations of the original
estimating function. The rationale is that �Tu = ξk , as in Condition 1, may yield multiple linearly
independent sparse solutions. Practically, an option is to implement (7) sequentially: upon finding
a solution an,1

k , one runs (7) to find another solution an,2
k subject to an additional linear constraint

such that (an,1
k )Tan,2

k = 0. Using over-identification (m̃ > m) for θM is beneficial for improving
the accuracy of statistical inference (Qin & Lawless, 1994). As shown in our simulation in § 5,
such improvement is substantial.

3.2. Over-identification test

Over-identification provides an opportunity to develop a statistical test for checking the valid-
ity of model specification. In low-dimensional cases, the Sargan–Hansen J -test (Sargan, 1958;
Hansen, 1982) and the empirical likelihood ratio test (Qin & Lawless, 1994) can be used. Qin &
Lawless (1994) shows that �(θ̌n) = −2 log{nnL(θ̌n)} → χ2

r−p in distribution under H0, where θ̌n
is the maximizer of L(θ) in (4). It can be shown that the Sargan–Hansen J statistic is first-order
equivalent to the empirical likelihood ratio statistic �(θ̌n), therefore they share the same limiting
distribution. When the paradigm shifts to high-dimensional settings, the asymptotic quadratic
form no longer holds and the limiting χ2

r−p distribution becomes invalid.
Our over-identification test is developed from the marginal empirical likelihood ratios. Given

θ̂n, a consistent estimate of θ0 under H0, we define the marginal empirical likelihood ratio for the
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High-dimensional empirical likelihood inference 135

jth estimating function gj(· ; ·) in g(· ; ·) as

�j(θ̂n) = 2 max
λ∈�̂n,j

n∑
i=1

log{1 + λgi,j(θ̂n)},

where �̂n,j = {λ ∈ R : λgi,j(θ̂n) ∈ U for any i = 1, . . . , n} with an open interval U containing
zero. Based on {�j(θ̂n)}r

j=1, we propose the following test statistic:

Tn = max
j∈J

�j(θ̂n), (8)

where J is a prescribed index set with |J | = q. Since the calculation of �j(θ̂n) only involves
univariate optimizations, calculating Tn is highly scalable and can be done efficiently. The intuition
of (8) is that when H0 is true, each �j(θ̂n) should take a relatively small value. In contrast, when
H0 is violated, one expects that at least some �j(θ̂n) will be large.

The selection of the index set J in (8) is the key to developing a powerful procedure for a
high-dimensional over-identification test. In low-dimensional cases, a natural choice of J is to
include all r estimating functions. However, additional consideration is necessary when dealing
with high-dimensional problems. To illustrate the idea, we add the subscript J in Tn here to
emphasize the dependency. In our method, the α-level critical value for Tn,J is selected as the
(1−α)-quantile of the distribution of |ĜJ |2∞, where ĜJ follows some q-dimensional multivariate
normal distribution. Let j� = arg max1�j�r �j(θ̂n). For any two different index sets J1 and J2

satisfying j� ∈ J1 ∩J2 and J1 ⊂ J2, it is easy to see that Tn,J1 = Tn,J2 . Due to the fact that ĜJ1

is a subvector of ĜJ2 , the (1−α)-quantile of the distribution of |ĜJ1 |2∞ will be no larger than that
of |ĜJ2 |2∞. Hence, when too many components are included in constructing the test statistic, the
associated critical value inevitably becomes too large, which will lead to power loss. To obtain a
powerful test, we only need to select a small index set J , with j� being included to best maintain
the signal for detecting the violation of H0; see also Chang et al. (2017, § 2.3) for more discussion
on such a phenomenon for an L∞-type test statistic. Further, results in Chang et al. (2013, 2016)
show that �j(θ̂n) diverges fast if |ḡj(θ̂n)| does not converge to zero fast enough, the signal from
violating H0 that the over-identification test intends to detect. Thus, one should ideally include
in the index set J those j with large |ḡj(θ̂n)|. The selection of J will be elaborated more at the
end of this section.

Obviously, the test statistic Tn in (8) depends on the estimate θ̂n. Recall that S = supp(θ0) =
{1 � k � p : θ0,k =| 0} with |S| = s. Our theoretical analysis requires θ̂n to satisfy the following
two properties under H0:

Property 1. θ̂n,S − θ0,S = n−1 ∑n
i=1 m(Xi; θ0)+n with |n|2 = op(n−1/2);

Property 2. pr(θ̂n,Sc = 0) → 1 as n → ∞,

where m(· ; ·) is the s-dimensional influence function of θ̂n,S . To require |n|2 = op(n−1/2) in
Property 1 is not stringent, and can be satisfied by penalized likelihood estimates up to a bias
correction (Fan & Li, 2001). Property 2 is the oracle property. As seen below, Property 2 is not
essential, but more involved characterization is required without it. In special cases including
the linear and generalized linear models, we recommend applying bias correction or refitting
the selected model to obtain less biased estimates, for example using the method in Belloni &
Chernozhukov (2013). For more general models with estimating equations, θ̂n can be chosen
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136 J. Chang, S. X. Chen, C. Y. Tang AND T. T. Wu

as the bias-corrected estimate θ̂PELbc given by (3) in § 2.2, which meets the requirements by
Proposition 2 in § 2.2.

Denote V̂J (θ̂n) = n−1 ∑n
i=1 gi,J (θ̂n)

⊗2 and VJ (θ0) = EJ {gi,J (θ0)
⊗2}. Here, when we

define VJ (θ0) we only take the expectation with respect to Xi and treat the index set J
as given, which itself might be random. For any j ∈ J , let σ̂ 2

j (θ̂n) = n−1 ∑n
i=1 g2

i,j(θ̂n).
Based on the well-known self-Studentized property of the empirical likelihood ratio, it can
be shown under H0 that supj∈J |�j(θ̂n) − n{ḡj(θ̂n)}2σ̂−2

j (θ̂n)| = op(1). By expanding ḡJ (θ̂n)

around θ0, we have n1/2[diag{V̂J (θ̂n)}]−1/2ḡJ (θ̂n) = n−1/2 ∑n
i=1 wi(θ0)+ ̃n, where wi(θ0) =

[diag{VJ (θ0)}]−1/2{gi,J (θ0) + [EJ {∇θS gi,J (θ0)}]mi(θ0)} and |̃n|∞ = op(n−1/2). Follow-
ing the idea of Gaussian approximation (Chernozhukov et al., 2017), we can approximate the
distribution of Tn = maxj∈J �j(θ̂n) by that of |Ĝ|2∞, where Ĝ ∼ N (0, Ŵ ) for some Ŵ .

Since θ̂n is estimated from the data Xn = {X1, . . . , Xn}, its influence function mi(·) and the
estimating function gi(·) are dependent. As discussed below Proposition 2 in § 2.2, the unknown
index set S can be consistently estimated. To simplify the notation and without loss of generality,
we assume S is known. Otherwise, we can replace it in practice by Ŝ = supp(θ̂PEL) for θ̂PEL in
(2). To elaborate with details on Ŵ , we present the framework by selecting θ̂n as θ̂PELbc given
in (3). Recall that Rn = supp(λ̂) and λ̂ corresponds to θ̂PEL in the inner optimization of (2).
Singling out Rn here is necessary to concretely present a synthetic framework.

To avoid loss of generality, we do not impose any relationship between the two index sets J
and Rn in our theoretical analysis. Let I = Rn ∪ J . Both the estimating functions in g(· ; ·)
indexed by I, and the covariance matrix of θ̂n,S contribute to the joint distribution of {�j(θ̂n)}j∈J ;
see the Supplementary Material. For any L ⊂ {1, . . . , r}, we define VL(θ0) = EL{gi,L(θ0)

⊗2}
and JL = {[EL{∇θS gi,L(θ0)}]TV −1/2

L (θ0)}⊗2. Again, both expectations are taken with respect to
Xi and the index set L is treated as given. To ensure the validity of Ŵ given in (10), we rewrite
g(· ; ·) as

g(· ; ·) = {gRn∩J (· ; ·)T, gRn∩J c(· ; ·)T, gRc
n∩J (· ; ·)T, gIc(· ; ·)T}T.

Define B = [EJ {∇θS gi,J (θ0)}]J −1
Rn

[ERn{∇θS gi,Rn(θ0)}]TV −1
Rn
(θ0) with blocks

B =
(

B11 B12
B21 B22

)
, (9)

where B11 and B22 are |Rn ∩ J | × |Rn ∩ J | and |Rc
n ∩ J | × |Rn ∩ J c| matrices. Let

Q̂ =
(

I|Rn∩J | − B̂11 − B̂12 0
−B̂21 − B̂22 I|Rc

n∩J |

)
,

where Ik is the identity matrix with order k , and B̂ij (i, j = 1, 2) are the corresponding
estimates of Bij in the matrix B̂ = {∇θS ḡJ (θ̂n)}Ĵ −1

∗,Rn
{∇θS ḡRn(θ̂n)}TV̂ −1

Rn
(θ̂n) with Ĵ∗,Rn =

[{∇θS ḡRn(θ̂n)}TV̂ −1/2
Rn

(θ̂n)]⊗2. Last, we define

Ŵ = {[diag{V̂J (θ̂n)}]−1/2Q̂V̂ 1/2
I (θ̂n)

}⊗2, (10)

with V̂J (θ̂n) = n−1 ∑n
i=1 gi,J (θ̂n)

⊗2 and V̂I(θ̂n) = n−1 ∑n
i=1 gi,I(θ̂n)

⊗2.
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High-dimensional empirical likelihood inference 137

For a given α ∈ (0, 1), the critical value is given by

ĉvα = inf {t ∈ R : pr(|Ĝ|2∞ > t | Xn) � α}, (11)

where Ĝ ∼ N (0, Ŵ ) with Ŵ defined in (10). We reject H0 if Tn > ĉvα . Furthermore, ĉvα can
be conveniently obtained by simulation with Ŵ obtained from data. That is, one can generate
independent Ĝ1, . . . , ĜM from N (0, Ŵ ) for a large M and approximate ĉvα in (11) by ĉvα, M =
inf {x ∈ R : F̂M (x) � 1 − α}, where F̂M (x) = M−1 ∑M

b=1 I (|Ĝb|2∞ � x). The validity of the test
is established in § 4.2. Theorem 2 justifies that the size of the test is asymptotically α under H0,
and Theorem 3 elucidates the power of the test when H0 is violated.

This section is concluded with a final remark that Rn from (2) is an ideal candidate for J if
θ̂n is selected to be θ̂PELbc. As we discussed before, the index set J should include those j with
large |ḡj(θ̂n)|. Chang et al. (2018, Proposition 3) shows that components gj(· ; ·)with large values
in |ḡj(θ̂n)| are included in Rn. Furthermore, under H1, if E{gi,j(θ̂n)} =| 0 for some j, its sample
counterpart |ḡj(θ̂n)| tends to take some large value, and hence the corresponding index would fall
into Rn. In practice, we recommend using Rn for the over-identification test, which is the one
implemented in our numerical studies. Our simulation in § 5.2 shows that the over-identification
test performs very well. By choosing J in (8) as Rn, the test is powerful compared with the one
using all the estimating functions, especially when r is large.

4. Theoretical analysis

4.1. Inference for low-dimensional components

To establish theoretical guarantees for the validity of the confidence sets C1−α given in § 3.1,
we assume the following regularity conditions.

Condition 2. For any X and j = 1, . . . , p, gj(X ; θ) is twice continuously differentiable
with respect to θ . Both supθ∈� max1�j�r max1�l�p n−1 ∑n

i=1 |∂gi,j(θ)/∂θl|2 = Op(1) and
supθ∈� max1�j�r max1�l1,l2�p n−1 ∑n

i=1 |∂2gi,j(θ)/∂θl1∂θl2 | = Op(1) hold.

Condition 3. For some uniform constants C2 > 0 andγ > 4, max1�j�r E{supθ∈� |gi,j(θ)|γ } <
C2.

Condition 4. Assume max1�j�r n−1 ∑n
i=1 |gi,j(θ0)|2 = Op(1).

Condition 5. Eigenvalues of E{gi(θ0)
⊗2} are uniformly bounded away from zero and infinity.

Condition 2 is standard on the first- and second-order derivatives of g(· ; ·), ensuring its smooth-
ness. If there exist two uniform envelope functions Bn,1(·) and Bn,2(·) with E{B2

n,1(Xi)} < ∞
and E{Bn,2(Xi)} < ∞ such that |∂gj(X ; θ)/∂θl| � Bn,1(X ) and |∂2gj(X ; θ)/∂θl1∂θl2 | � Bn,2(X )
(j = 1, . . . , r; l, l1, l2 = 1, . . . , p) for any θ ∈ �, then Condition 2 holds automatically. More gen-
erally, if there exist envelope functions Bn,jl(·) such that |∂gj(X ; θ)/∂θl|2 � Bn,jl(X ) (j = 1, . . . , r;
l = 1, . . . , p) for any θ ∈ �, and |E{Bk

n,jl(Xi)}| � H1k!H k−2
2 for any k � 2, where H1 and H2 are

two uniform positive constants independent of j and l, then Petrov (1995, Theorem 2.8) implies
that sup1�j�r sup1�l�p n−1 ∑n

i=1 Bn,jl(Xi) = Op(1), provided log(rp) = o(n), and Condition 2
holds as well. Conditions 3 and 4 put constraints on the moments of estimating functions. In fact,
the order Op(1) required in Conditions 2 and 4 can be replaced by Op(�n) with some diverging
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138 J. Chang, S. X. Chen, C. Y. Tang AND T. T. Wu

sequence�n, and our main results remain valid. We use Op(1) here for ease of presentation. Con-
dition 5 ensures the nonsingularity of the covariance matrix of gi(θ0). Under those conditions,
we then have the following theorem.

Theorem 1. Under Conditions 1–5, if |θ∗
M−θ0,M|1 = Op(ξ1,n)and |θ∗

Mc−θ0,Mc |1 = Op(ξ2,n)

for some ξ1,n → 0 and ξ2,n → 0, the following results hold:

(i) If m is fixed, then �∗An
(θ0,M) → χ2

m in distribution as n → ∞, provided that nξ2
2,n(τ

2 +
ξ2

1,n + ξ2
2,n) = o(1) and ω2

n log r = o(1).
(ii) If m diverges with n, then (2m)−1/2{�∗An

(θ0,M)− m} → N (0, 1) in distribution as n → ∞,
provided that mξ2,n = o(1), mω2

n(m + log r) = o(1), m3n2/γ−1 = o(1) and mnξ2
2,n(τ

2 +
ξ2

1,n + ξ2
2,n) = o(1).

To ensure the validity of the inferential procedure in § 3.1, a consistent initial estimate θ∗
is required in Theorem 1. Theorem 1 also suggests that a faster convergence rate of θ∗ would
allow higher dimensionality of r. Define s∗ = |{1 � k � m : θ0,k =| 0}| and select θ∗ as θ̂PEL
given by (2). It follows immediately from Proposition 1 that ξ1,n = s∗αn and ξ2,n = (s − s∗)αn.
Theorem 1 holds provided that m(s − s∗)αn = o(1), mω2

n(m + log r) = o(1), m3n2/γ−1 =
o(1), mnτ 2(s − s∗)2α2

n = o(1) and mns2(s − s∗)2α4
n = o(1). For the bias-corrected penalized

empirical likelihood estimator θ̂PELbc of Chang et al. (2018) in (3),
√

n-consistency is achievable
for estimating each component of θ0,S . In such a case, ξ1,n = s∗n−1/2 and ξ2,n = (s − s∗)n−1/2,
and Theorem 1 holds when mω2

n(m + log r) = o(1), m3n2/γ−1 = o(1), mτ 2(s − s∗)2 = o(1) and
m(s2 + m)(s − s∗)2n−1 = o(1). In addition, if m is fixed, Theorem 1 holds if ω2

n log r = o(1),
s2τ 2 = o(1) and s4n−1 = o(1). Therefore, with a polynomial decay rate ωn when approximating
ak in Condition 1, our method accommodates exponentially diverging r as n → ∞.

Here are some example scenarios regarding the above conditions. In a just-identified case, let
us consider linear regression Yi = W T

i θ0 + εi, where εi is independent of predictor variables
Wi = (Wi,1, . . . , Wi, p)

T ∈ R
p, and the estimating function is g(Xi; θ) = Wi(Yi − W T

i θ) with
Xi = (Yi, W T

i )
T. Condition 2 is equivalent to max1�j1, j2�p n−1 ∑n

i=1 W 2
i, j1W 2

i, j2 = Op(1). Then,
Conditions 2–4 hold if Wi and εi are sub-Gaussian and log p = o(n). In an over-identified case,
we consider a linear regression model Yi = W T

i θ0 + εi with instrumental variables Zi ∈ R
r for

r > p and the estimating function g(Xi; θ) = Zi(Yi − W T
i θ). Analogously to the just-identified

case, Conditions 2–5 are met if Wi, Zi and εi are sub-Gaussian, log p = o(n), and the eigenvalues
of E(ε2

i Z⊗2
i ) are uniformly bounded away from zero and infinity. If εi is independent of Zi, the

last requirement is equivalent to the boundedness of the eigenvalues of cov(Zi).

4.2. Over-identification test

Let q = |J | and hn = |Rn|. To investigate the properties of the over-identification test in
§ 3.2, we impose the following condition.

Condition 6. With γ specified in Condition 3, there is a uniform constant C3 > 0 such that
E{|∂gi,j(θ0)/∂θl|γ } < C3 for any j = 1, . . . , r and l = 1, . . . , p. In addition, assume

sup
θ∈�

max
j∈J

1

n

n∑
i=1

|gi,j(θ)|γ = Op(1). (12)

The following theorem is for the Type I error of the proposed over-identification test.
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High-dimensional empirical likelihood inference 139

Theorem 2. Assume B defined in (9) to satisfy that ‖B‖∞ is bounded away from infinity, and all
the eigenvalues of ([ERn{∇θS gi,Rn(θ0)}]T)⊗2 and ([EJ {∇θS gi,J (θ0)}]T)⊗2 are uniformly bounded
away from zero and infinity. Select θ̂n = θ̂PELbc defined as (3), with Proposition 2 in § 2.2 being
satisfied. Let hn � s and Conditions 2, 5 and 6 hold. If s3h2

n log4 q = o(n), sh2
n(log hn) log4 q =

o(n), s6 log2 q = o(n), s2hn log5 q = o(n), nφ2
n log q = o(1) and q2(log n)3γ+3 = o(nγ−2), then

sup0<α<1 |prH0
(Tn > ĉvα)− α| → 0 as n → ∞, where ĉvα is estimated in (11).

Theorem 2 shows the Type I error of the proposed over-identification test is approximately
α. If we select J = Rn, which means q = hn, then Theorem 2 is valid if s3h2

n log4 hn = o(n),
sh2

n log5 hn = o(n), s6 log2 hn = o(n) and nφ2
n log hn = o(1). As discussed in Chang et al. (2018),

Proposition 2 holds even if r and p grow at some exponential rate n with hn � n. Therefore, the
proposed over-identification test can be employed in the case that r and p diverge exponentially.

To show the test is consistent, we assume that under the alternative hypothesis H1, there exists
some ςn > 0 that may decay to zero as n → ∞ such that

inf
θ∈� |E{gi(θ)}|∞ � ςn. (13)

Let θ∗ = arg inf θ∈� |E{gi(θ)}|∞ and j∗ = arg max1�j�r |E{gi,j(θ∗)}|. We impose the following
condition.

Condition 7. For ςn specified in (13), |ḡj∗(θ̂n)− E{gi,j∗(θ̂n)}| = op(ςn).

The following theorem states the power of the proposed over-identification test under the
alternative hypothesis.

Theorem 3. Let (13) and Condition 7 hold under H1. Select J satisfying J ⊇ Rn. If (12)
holds and ς−2

n n2/γ−1 log q = o(1), then prH1
(Tn > ĉvα) → 1 as n → ∞.

5. Numerical studies

5.1. Confidence set estimations

The methods in § 3.1 are implemented to construct confidence sets in two simulation examples:
a linear regression model and an analysis of longitudinal data using over-identified estimating
equations. We use the functionslim in theR packageflare (R Development Core Team, 2021)
to solve the optimization (7) with the tuning parameter τ = 0.5(n−1 log p)1/2, which meets the
conditions in our theory. The estimate (2) is used as the initial estimate θ∗ in (6) and (7). The
smoothly clipped absolute deviation penalty with local quadratic approximation (Fan & Li, 2001)
is employed for both penalty functions P1,π(·) and P2,ν(·) in (2) for all the numerical experiments.
The extended Bayesian information criterion (Chen & Chen, 2008) is applied to determine the
tuning parameters π and ν by a two-dimensional grid search. All simulation experiments are
repeated 1000 times.

Example 1 (Linear regression model). We consider a linear regression model Yi = ZT
i θ0 + εi,

where θ0 = (1.5, 1.2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0, . . . , 0)T with the first 10 components
being nonzero, and Zi ∼ N (0,�z) with �z = (σz, kl)p×p and σz, kl = I (k = l) + 0.5I (k =|
l). This is a just-identified model. Our method is compared with a few existing alternatives:
the desparsified method of van de Geer et al. (2014) implemented by the R package hdi, the
estimating equation approach of Neykov et al. (2018) implemented by the R package clime, and
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Table 1. Empirical frequencies (%) of the estimated confidence intervals covering the truth
in the linear regression example

(n, p, r) Method Level θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

(50,100,100) EL 90% 90.3 88.5 89.6 88.9 90.1 90.0 88.8 90.6 87.5 89.4
95% 94.5 93.8 94.1 93.8 94.5 95.0 94.1 94.9 94.4 94.2
99% 98.7 98.8 98.4 98.0 98.8 98.8 97.9 98.6 98.9 98.2

EE 90% 92.1 92.2 90.6 91.9 92.4 92.9 94.6 95.8 94.2 96.0
95% 97.8 95.6 95.9 95.9 96.5 96.7 96.8 97.8 97.6 97.9
99% 99.7 98.5 99.1 99.3 99.2 99.6 99.3 99.9 99.6 99.5

Desparsity 90% 88.9 88.8 88.1 88.0 88.2 88.2 85.5 87.6 87.4 85.5
95% 93.6 94.0 94.1 94.3 94.7 93.5 93.0 93.8 94.5 92.3
99% 98.7 99.4 98.9 99.1 99.3 98.6 98.8 98.5 98.5 98.5

Debias 90% 94.3 93.0 94.0 93.9 93.2 94.3 92.6 92.7 93.5 91.5
95% 96.3 96.5 96.5 97.3 96.5 97.4 96.5 96.0 96.7 95.8
99% 98.5 99.5 99.5 99.6 99.3 99.6 99.3 98.7 99.8 99.0

(100,500,500) EL 90% 88.3 88.7 89.3 89.0 88.9 89.7 88.2 88.1 89.2 89.0
95% 93.2 94.1 94.1 93.8 93.9 93.5 94.3 93.4 94.5 94.2
99% 98.2 98.4 98.3 98.8 98.4 98.7 98.9 98.0 98.9 98.4

EE 90% 93.4 92.8 92.7 91.1 91.8 91.6 94.0 94.6 95.7 95.3
95% 97.3 96.0 96.3 95.5 95.4 95.3 96.4 97.3 98.0 97.8
99% 99.3 98.9 98.8 99.0 99.1 99.0 99.5 99.6 99.8 99.5

Desparsity 90% 89.0 87.9 89.3 88.2 89.7 86.9 89.2 87.8 87.6 89.5
95% 94.9 94.1 94.7 94.4 94.0 93.2 95.2 94.1 95.1 94.3
99% 98.5 99.4 99.2 99.0 98.9 99.1 98.6 99.1 98.9 99.1

Debias 90% 93.5 94.5 92.9 92.3 90.9 92.0 92.9 94.0 91.4 91.8
95% 97.4 96.9 96.0 95.7 95.7 95.5 96.4 96.7 95.5 96.0
99% 99.6 99.1 99.1 99.1 99.0 99.1 99.7 99.3 99.2 99.1

EL, the proposed method; EE, Neykov et al. (2018)’s method; Desparsity, van de Geer et al. (2014)’s method; Debias,
Javanmard & Montanari (2014)’s method.

Table 2. Average lengths of the 95% confidence intervals in the linear regression example with
(n, p, q) = (50, 100, 100)

Method θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

EL 0.815 0.769 0.771 0.781 0.758 0.749 0.770 0.760 0.789 0.782
EE 0.905 0.884 0.887 0.862 0.889 0.867 0.857 0.867 0.854 0.869

Desparsity 0.837 0.841 0.852 0.856 0.867 0.846 0.841 0.851 0.847 0.864
Debias 0.840 0.841 0.845 0.849 0.859 0.840 0.842 0.851 0.849 0.867

the debiased approach of Javanmard & Montanari (2014) using the code downloaded from the
author’s website. We consider two settings with (n, p, r) = (50, 100, 100) and (100, 500, 500),
respectively.

Table 1 reports the empirical frequencies of the estimated univariate confidence intervals that
cover the truth. At each level, the empirical coverage probabilities are close to the nominal
level. We observe that our method has similar coverage accuracy to the desparsified method
and better coverage accuracy than the estimating equation approach and the debiased approach.
The average lengths of the 95% confidence intervals are reported in Table 2. We can see that the
proposed empirical-likelihood-based method outperforms the other methods. The two- and three-
dimensional confidence regions constructed from our method are plotted in the Supplementary
Material.
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Table 3. Empirical frequencies (%) of the empirical-likelihood-based confidence
intervals covering the truth in the repeated measurements example

(n, p, r) Level θ1 θ2 θ3 θ4 θ5

(50,100,200) 90% 87.3 88.3 89.6 89.9 88.9
95% 93.4 93.6 94.9 94.5 93.8
99% 97.5 98.0 98.8 98.4 98.2

(100,200,400) 90% 89.3 89.1 92.5 92.5 88.9
95% 93.8 94.5 96.4 96.2 94.8
99% 98.0 98.9 99.2 98.9 98.6

Table 4. Comparison of the lengths of the 95% empirical-likelihood-based confidence
intervals in the repeated measurements example with (n, p, r) = (50, 100, 200)

Method θ1 θ2 θ3 θ4 θ5

One estimating equation 0.325 0.329 0.323 0.322 0.323
Two estimating equations 0.289 0.293 0.285 0.288 0.285

Example 2 (Regression model with repeated measurements). For mi (i = 1, . . . , n) repeated
measurements, we consider the model Yij = ZT

ijθ0 + εij (i = 1, . . . , n; j = 1, . . . , mi), where

θ0 = (3, 1.5, 0, 0, 2, 0, . . . , 0)T, Zij ∼ N (0,�z) with �z = (σz,kl)p×p and σz,kl = 0.3|k−l|, and
(εi1, . . . , εimi)

T ∼ N (0,�ε) with �ε = (σε,kl)p×p and σε,kl = I (k = l) + 0.5I (k =| l). Denote
by Yi = (Yi1, . . . , Yimi)

T and Zi = (ZT
i1, . . . , ZT

imi
)T, respectively, the response variables and

the corresponding predictor variables, and write Xi = (Y T
i , ZT

i )
T. To incorporate the within-

subject dependence, we apply the estimating function g(Xi; θ) = [{ZT
i K−1/2

i M1K−1/2
i (Yi −

ZT
i θ)}T, . . . , {ZT

i K−1/2
i MκK−1/2

i (Yi − ZT
i θ)}T]T, as in Qu et al. (2000), where Ki ∈ R

mi×mi is a
diagonal matrix of the conditional variance for subject i, and Mj (j = 1, . . . , κ) are working
correlation matrices. We set mi = 3 and κ = 2 in this smulation, with M1 being the identity
matrix of order 3 and M2 being compound symmetry with diagonal elements of 1 and off-diagonal
elements of 0.5. Since κ = 2, there are twice estimating equations as parameters, so this is an
over-identified case with r = 2p. For the first five components of the parameters, the empirical
frequencies that the estimated confidence intervals cover the truth are reported in Table 3. Similar
to Example 1, we see satisfactory performance of the proposed method in the over-identified
case. The two- and three-dimensional empirical-likelihood-based confidence regions are in the
Supplementary Material.

The sequential procedure described at the end of § 3.1 is also implemented by finding two
estimating equations for each individual component in this over-identified example. We found
similar coverage accuracy for such a method. To see its advantage, Table 4 compares the lengths
of the 95% confidence intervals using one estimating equation versus two estimating equations.
It can be seen that the confidence intervals using two estimating equations are about 11% shorter
than those using only one estimating equation, which shows a potential advantage of our method,
since more information can be retained through the over-identification of estimating functions.

5.2. Over-identification test

To assess the over-identification test in § 3.2, we consider the mean of a normal distributed
random vector X = (X1, . . . , Xp)

T, where only the first component X1 has a nonzero mean of 5
and the remaining components all have mean zero. The first p estimating functions are simply
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142 J. Chang, S. X. Chen, C. Y. Tang AND T. T. Wu

Table 5. Empirical percentages of rejecting H0 in the model specification test exam-
ple. Case 1 corresponds to a correct model specification and Case 2 corresponds
to a model misspecification; Method 1 uses the set of estimating functions selected

by Rn, and Method 2 uses all the estimating functions
σ11 (n, p) Method 1 Method 2

Case 1 52 (50, 1) 0.056 0.056
(50, 10) 0.061 0.061
(50, 50) 0.061 0.002
(50, 100) 0.058 0.002
(100, 100) 0.047 0.002

Case 2 52 × 0.7 (50, 1) 0.492 0.492
(50, 10) 0.521 0.521
(50, 50) 0.580 0.082
(50, 100) 0.601 0.054
(100, 100) 0.738 0.286

52 × 0.5 (50, 1) 0.915 0.915
(50, 10) 0.911 0.911
(50, 50) 0.883 0.143
(50, 100) 0.890 0.257
(100, 100) 0.994 0.381

52 × 0.3 (50, 1) 1.000 1.000
(50, 10) 1.000 1.000
(50, 50) 0.998 0.167
(50, 100) 1.000 0.743
(100, 100) 1.000 0.294

from the components of g(X ; θ) = X − θ with θ0 = (5, 0, . . . , 0)T. In addition, we impose an
extra moment restriction gp+1(X ; θ) = X 2

1 −θ2
1 −25, where θ1 is the first component of θ . In this

setting, the number of estimating equations is r = p + 1. We consider the following two cases:

Case 1. The covariance matrix � = (σij)p×p is compound symmetry with diagonal σ11 = 52

and σii = 1 for all i =| 1. All off-diagonal elements σij = 0.3 for i =| j.

Case 2. The covariance matrix � = (σij)p×p is compound symmetry with diagonal σ11 =
52 × a with a < 1 and σii = 1 for all i =| 1. All off-diagonal elements σij = 0.3 for i =| j.

Clearly, the moment conditions are correctly specified in Case 1, but not in Case 2. We conduct
the experiments for a few settings of (n, p, r) in this example. We apply (11) to obtain the critical
value of the test. Further, we compare the performances of the test by using two different choices
of J in (8). The first one, referred to as Method 1, uses the set Rn of estimating functions selected
by (2). The other one, referred to as Method 2, simply uses J containing all estimating functions.
We report in Table 5 the empirical percentages rejecting H0 atα = 0.05 level. In Case 1, we expect
the rate to be close to 0.05, which is indeed the case for our advocated Method 1 of choosing
Rn as J . Method 2 works well when the dimension is low, but it gets much worse with p and
r getting close to n. In Case 2, the closer the rate is to 1, the better the power is for the testing
procedure. We tried three settings with a = 0.7, 0.5 and 0.3, respectively, where a smaller value
in a can be viewed as more severe violation of H0. One can clearly see that the advocated method
works quite well in terms of providing a more powerful test with the right choice of estimating
functions. The power improves consistently for more severe violation of the null hypothesis. As
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Table 6. The estimated regression coefficients and 95% confidence intervals for the selected vari-
ables associated with moderate to vigorous physical activity over time using penalized empirical
likelihood, as compared to linear regression. The column C.I. Ratio lists the ratio of the 95%
confidence intervals constructed from over-identified estimating functions and the linear models

Variable Repeated Linear Reg. C.I. Ratio

TAAG (time) −0.280 (−0.310, −0.210) −0.297 (−0.356, −0.237) 0.840
Body mass index −0.056 (−0.136, −0.016) −0.098 (−0.163, −0.041) 0.984

Self-management strategies 0.072 ( 0.052, 0.172) 0.126 (0.065, 0.186) 0.992
Social support from friends 0.118 ( 0.048, 0.148) 0.079 (0.023, 0.135) 0.890

Smoker −0.102 (−0.132, −0.022) −0.044 (−0.100, 0.011) 0.991
Father’s education 0.059 ( 0.029, 0.139) 0.087 ( 0.023, 0.151) 0.859
Mother’s education 0.067 ( 0.037, 0.147) 0.073 ( 0.010, 0.137) 0.862

Number of parks within 1 mile 0.088 ( 0.058, 0.178) 0.126 ( 0.061, 0.182) 0.992

for the Method 2, it works well when p and r are small, but it becomes powerless in moderate
high-dimensional cases, which is consistent with our discussions in § 3.2.

5.3. Multi-level longitudinal study of physical activity among girls

We analyse a dataset from a longitudinal study of physical activities among girls from ado-
lescence into young adulthood. The main goal of this study is to identify individual, social and
environmental factors associated with moderate to vigorous physical activity among those girls
over time using a multilevel approach. An initial cohort of 730 girls were randomly recruited
in Maryland in 2006, and 428 girls had complete assessments at all three study periods in 2006
(n = 730), 2009 (n = 589) and 2015 (n = 460) at ages 14, 17 and 23. The response variable,
moderate to vigorous physical activity minutes, was assessed from accelerometers, and over 800
variables were collected, including: (i) demographic and psychosocial information, individual-
and social-level variables; (ii) height, weight and triceps skinfold to assess body composition;
and (iii) geographical information systems and self-report for neighbourhood-level variables.

In this example we consider an over-identified model specification with r > p; see the longitu-
dinal data example in § 5.1. The same estimating equations and basis matrices M1 and M2 of size
3 × 3 as in § 5.1 are used. Eight predictor variables out of 34 screened variables were selected in
the model for the logarithm of response; see Table 6. The second column of Table 6 provides the
regression coefficients together with the 95% componentwise confidence intervals estimated by
the approach in § 3.1 using the over-identified estimating equations. We see that none of the 95%
confidence intervals contain 0, showing that all the selected variables are statistically significant
in the model. We applied the over-identification test in § 3.2, and found no significant statistical
evidence against the model specification with over-identification.

In the selected model, the first variable, TAAG, is an ordinal variable indicating the time of
study when data were collected. As expected, physical activities decreased significantly over
time among young females. The variable self-management strategies, an aggregated variable of
eight questionnaire items, and social support from friends, a sum of three questionnaire items, are
positively correlated with the response. Parents’ education and number of parks within 1 mile of
home have a positive impact on physical activities. On the other hand, BMI and being a smoker
are negatively correlated with physical activities. Our findings are consistent with the previous
results (Young et al., 2014, 2018; Grant et al., 2015).

As for comparisons, we apply an alternative approach using a linear regression model. The
third column of Table 6 reports the componentwise point estimates and confidence intervals for
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the eight selected variables. All the confidence intervals in this approach are wider than those
from the over-identified estimating equations; the ratios of the interval lengths are reported in
the fourth column of Table 6. In particular, the variable smoker is significant when applying the
over-identified approach, but becomes insignificant if ignoring the within-subject dependence.

The two-dimensional confidence regions for TAAG, i.e., time, versus other covariates are
given in the Supplementary Material. The constructed confidence regions are not symmetric at
the estimate, reflecting the merit that the empirical-likelihood-based confidence region is data
oriented and free of shape constraint.

6. Discussion

It would be interesting to extend high-dimensional statistical inference to a setting with some
unknown functional-valued parameters. A possible strategy is to apply the sieve method (Ai &
Chen, 2003) to approximate the functional-valued parameters with some linear combinations of
diverging numbers of given basis functions. Then the estimation of unknown functional-valued
parameters is transferred to the estimation of the coefficients in the sieve approximation; and the
frameworks of Chang et al. (2018) and this paper apply. Nevertheless, accommodating functional-
valued parameters will introduce foundational changes in the settings. New developments in both
theory and methods are beyond the scope of this study.We plan to carefully investigate the problem
in a future project.
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of the empirical-likelihood-based confidence regions in § 5, and an extra simulation example.

Appendix

Write θ0 = (θ0,1, . . . , θ0,p)
T. Recall that S = {1 � k � p : θ0,k =| 0}. To investigate the properties of the

penalized empirical likelihood estimator θ̂PEL defined in (2), we need the following technical conditions.

Condition A1. Assume that inf θ∈{θ=(θT
S ,θT

Sc )T∈�:|θS−θ0,S |∞>ε,θSc =0} |E{gi(θ)}|∞ � (ε) for any ε > 0,

where (·) is a function satisfying lim inf ε→0+ ε−β(ε) � K1 for some uniform constants K1 > 0 and
β ∈ (0, 1].

For some C∗ ∈ (0, 1), define Mθ = {1 � j � r : |ḡj(θ)| � C∗νρ ′
2(0

+)} for any θ ∈ �. Let
bn = max{an, ν2} with an = ∑p

k=1 P1,π (|θ0,k |), and
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ln = max
θ∈{θ=(θT

S ,θT
Sc )T∈�:|θS−θ0,S |∞�cn ,θSc =0}

|Mθ | (A1)

for some cn → 0 satisfying b1/(2β)
n c−1

n → 0 with β as specified in Condition A1. We assume ln � s with
s = |S|.

Condition A2. For any X and j = 1, . . . , r, gj(X ; θ) is continuously differentiable with respect to θ ,
and max1�j�r maxk /∈S E{supθ∈� |∂gi,j(θ)/∂θk |} � K2 for some uniform constant K2 > 0.

Condition A3. For some uniform constants K3 > 0 and γ > 4, max1�j�r E{supθ∈� |gi,j(θ)|γ } � K3.

Condition A4. Let VF(θ0) = E{gi,F(θ)⊗2} for any F ⊂ {1, . . . , r}. There exist uniform constants
0 < K4 < K5 such that K4 < λmin{VF(θ0)} � λmax{VF(θ0)} < K5 for any F with |F | � ln, where ln is
defined in (A1).

Condition A5. The following hold: supθ∈� max1�j�r max1�k�p n−1
∑n

i=1 |∂gi,j(θ)/∂θk | = Op(1) and
supθ∈� max1�j�r n−1

∑n
i=1 |gi,j(θ)|4 = Op(1).

Condition A6. For cn specified in (A1), maxk∈S sup0<t<|θ0,k |+cn
P′

1,π (t) = O(χn) for some χn → 0.

Conditions A1–A6 are simplified versions of Conditions 1–6 in Chang et al. (2018), and we refer to
Chang et al. (2018) for detailed discussion of their validity. With the additional assumption bn =
o(mink∈S |θ0,k |2β), that the signal strength of the nonzero components of θ0 does not diminish to zero too
fast, Condition A6 can be replaced by

max
k∈S

sup
c|θ0,k |<t<c−1|θ0,k |

P′
1,π (t) = O(χn). (A2)

for some constant c ∈ (0, 1). For those asymptotically unbiased penalties like the smoothly clipped
absolute deviation penalty (Fan & Li, 2001) and the minimax concave penalty (Zhang, 2010), χn = 0 in
(A2) for sufficiently large n if bn = o(mink∈S |θ0,k |2β). Define κn = max{l1/2

n n−1/2, s1/2χ 1/2
n b1/(4β)

n }. Based
on Conditions A1–A6, Proposition 1 holds provided that the following restrictions are satisfied:

log r = o(n1/3), s2lnb1/β
n = o(1), l2

nn−1 log r = o(1), max{bn, lnκ
2
n } = o(n−2/γ ),

l1/2
n κn = o(ν) and l1/2

n max{lnν, s1/2χ 1/2
n b1/(4β)

n } = o(π).
(A3)

The convergence rate αn specified in Proposition 1 equals b1/(2β)
n . If bn = o(mink∈S |θ0,k |2β) and

P1,π (·) is selected as the asymptotically unbiased penalty, χn specified in (A2) can be selected as 0.
Since an = O(sπ), the restrictions (A3) in this scenario can be simplified to log r = o(n1/3),
ln = o(min{n1/2(log r)−1/2, n1/2−1/γ }), and the tuning parameters ν and π satisfy lnn−1/2 = o(ν),
ν = o(min{s−β l−β/2n , n−1/γ }), l3/2

n ν = o(π) and π = o(min{s−2β−1l−βn , s−1n−2/γ }). If log r = o(n1/3) and
ln = o(min{n(γ−4)/(5γ )s−2/5, n1/(2β+5)s−(4β+2)/(2β+5)}), there exist suitable selections of ν and π satisfying
these conditions. Furthermore, we need two additional conditions, listed below, to construct Proposition 2.

Condition A7. For any X and j = 1, . . . , p, gj(X ; θ) is twice continuously differentiable with respect
to θ , and supθ∈� max1�j�r maxk1,k2∈S n−1

∑n
i=1 |∂2gi,j(θ)/∂θk1∂θk2 |2 = Op(1).

Condition A8. Let QF = ([E{∇θS gi,F(θ0)}]T)⊗2 for any F ⊂ {1, . . . , r}. There exist uniform constants
0 < K6 < K7 such that K6 < λmin(QF) � λmax(QF) < K7 for any F with s � |F | � ln, where ln is defined
as in (A1).
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Based on Conditions A1–A8, Proposition 2 holds provided that the following restrictions are satisfied:

log r = o(n1/3), bn = o(n−2/γ ), nsχ 2
n = o(1), nlnκ

4
n max{s, n2/γ } = o(1),

l2
n(log r)max{s3b1/β

n , lnn−1 log r} = o(1), nlns2 max{l2
nν

4, s2χ 2
n b1/β

n } = o(1),

l1/2
n κn = o(ν) and l1/2

n max{lnν, s1/2χ 1/2
n b1/(4β)

n } = o(π).

(A4)

Notice that an = O(sπ). Under the reasonable case χn = 0 and ln ∼ s, restrictions (A4)
hold provided that log r = o(n1/3) and s = o[min{n1/9, n1/(10β+7)(log r)−2β/(10β+7), n(γ−4)/(7γ )}],
and the tuning parameters ν and π satisfy the conditions π = o[min{n−2/γ s−1, s−5β−1(log r)−β}],
ν = o[min{n−1/γ , s−5β/2(log r)−β/2, n−1/4s−5/4}], s3/2ν = o(π) and sn−1/2 = o(ν). Due to s =
o[min{n1/9, n1/(10β+7)(log r)−2β/(10β+7), n(γ−4)/(7γ )}], there exist suitable selections of ν and π satisfying
these conditions.
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