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a b s t r a c t

We consider a multivariate time series model which represents a high dimensional vector process as a
sum of three terms: a linear regression of some observed regressors, a linear combination of some latent
and serially correlated factors, and a vector white noise. We investigate the inference without imposing
stationary conditions on the target multivariate time series, the regressors and the underlying factors.
Furthermore we deal with the endogeneity that there exist correlations between the observed regressors
and the unobserved factors. We also consider the model with nonlinear regression term which can be
approximated by a linear regression function with a large number of regressors. The convergence rates
for the estimators of regression coefficients, the number of factors, factor loading space and factors are
established under the settings when the dimension of time series and the number of regressors may both
tend to infinity together with the sample size. The proposed method is illustrated with both simulated
and real data examples.
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1. Introduction

In this modern information age, the availability of large or
vast time series data bring the opportunities with challenges to
time series analysts. The demand of modeling and forecasting
high-dimensional time series arises from various practical prob-
lems such as panel study of economic, social and natural (such
as weather) phenomena, financial market analysis, communica-
tions engineering. On the other hand, modeling multiple time se-
ries even with moderately large dimensions is always a challenge.
Although a substantial proportion of the methods and the theory
for univariate autoregressive and moving average (ARMA) models
has found themultivariate counterparts, the usefulness of unregu-
larized multiple ARMA models suffers from the overparametriza-
tion and the lack of the identification (Lütkepohl, 2006). Various
methods have been developed to reduce the number of parameters
and to eliminate the non-identification issues. For example, Tiao
and Tsay (1989) proposed to represent a multiple series in terms
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of several scalar component models based on canonical correla-
tion analysis, Jakeman et al. (1980) adopted a two stage regression
strategy based on instrumental variables to avoid usingmoving av-
erage explicitly. Another popular approach is to represent multi-
ple time series in terms of a few factors defined in various ways;
see, among others, Stock and Watson (2005), Bai and Ng (2002),
Forni et al. (2005), Lam et al. (2011), and Lam and Yao (2012).
Davis et al. (2012) proposed a vector autoregressive (VAR) model
with sparse coefficient matrices based on partial spectral coher-
ence. LASSO regularization has also been applied in VAR model-
ing; see, for example, Shojaie and Michailidis (2010) and Song and
Bickel (2011).

This paper can be viewed as a further development of Lam et al.
(2011) and Lam and Yao (2012) which express a high-dimensional
vector time series as a linear transformation of a low-dimensional
latent factor process plus a vector white noise. We extend their
methodology and explore three new features. We only deal with
the caseswhen the dimension is large in relation to the sample size.
Hence all asymptotic theory is developed when both the sample
size and the dimension of time series tend to infinity together.

Firstly, we add a regression term to the factor model. This is a
useful addition as in many applications there exist some known
factors which are among the driving forces for the dynamics of
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most the component series. For example, temperature is an im-
portant factor in forecasting household electricity consumptions.
The price of a product plays a key role in its sales over different re-
gions. The capital asset pricing model (CAPM) theory implies that
the market index is a common factor for pricing different assets.
When the regressor and the latent factor are uncorrelated, we esti-
mate the regression coefficients first by the least squares method.
We then estimate the number of factors and the factor loading
space based on the residuals resulted from the regression estima-
tion. We show that the latter is asymptotically adaptive to the un-
known regression coefficients in the sense that the convergence
rates for estimating the factor loading space and the factor process
are the same as if the regression coefficients were known. We also
consider the models with endogeneity in the sense that there ex-
ist correlations between the regressors and the latent factors. We
show that the factor loading space can still be identified and esti-
mated consistently in the presence of the endogeneity. However
relevant instrumental variables need to be employed if the ‘origi-
nal’ regression coefficients have to be estimated consistently. The
exploration in this direction has some overlap with Pesaran and
Tosetti (2011), although themodels, the inferencemethods and the
asymptotic results in the two papers are different.

Our second contribution lies in the fact that we do not im-
pose stationarity conditions on the regressors and the latent factor
process throughout the paper. This enlarges the potential applica-
tion substantially, as many important factors in practical problems
(such as temperature, calendar effects) are not stationary. Different
from themethod of Pan and Yao (2008)which can also handle non-
stationary factors but is computationally expensive, our approach
is a direct extension of Lam et al. (2011) and Lam and Yao (2012)
and, hence, is applicable to the cases when the dimensions of time
series is in the order of thousands with an ordinary personal com-
puter.

Finally, we focus on the factor models with a nonlinear regres-
sion term. By expressing the nonlinear regression function as a
linear combination of some base functions, we turn the problem
into the model with a large number of linear regressors. Now the
asymptotic theory is establishedwhen the sample size, the dimen-
sion of time series and the number of regressors go to infinity to-
gether.

The rest of the paper is organized as follows. Section 2 deals
with linear regression models with latent factors but without
endogeneity. The models with the endogeneity are handled in
Section 3. Section 4 investigates the models with nonlinear
regression term. Simulation results are reported in Section 5.
Illustrationwith some stock prices included in S&P500 is presented
in Section 6. All the technical proofs are relegated to the Appendix.

2. Regression with latent factors

2.1. Models

Consider the regression model

yt = Dzt + Axt + εt , (1)

where yt and zt are, respectively, observable p× 1 andm× 1 time
series, xt is an r × 1 latent factor process, εt ∼ WN(0, Σε) is a
white noise with zero mean and covariance matrix Σε and εt is
uncorrelated with (zt , xt), D is an unknown regression coefficient
matrix, and A is an unknown factor loading matrix. The number of
the latent factors r is an unknown (fixed) constant.With the obser-
vations {(yt , zt) : t = 1, . . . , T }, the goal is to estimate D, A and
r , and to recover the factor process xt , when p is large in relation
to the sample size T . As our inference will be based on the serial
dependence of each and across yt , zt and xt , we assume E(zt) = 0
and E(xt) = 0 for simplicity.
In this section, we consider the simple case when zt and xt are
uncorrelated. This condition ensures that the coefficient matrix D
in (1) is identifiable. However the factor loading matrix A and the
factor xt are not uniquely determined by (1), as we may replace
(A, xt) by (AH,H−1xt) for any invertible matrix H. Nevertheless
the linear space spanned by the columns of A, denoted by M(A),
is uniquely defined. M(A) is called the factor loading space. Hence
there is no loss of the generality in assuming that A is a half
orthogonal matrix in the sense that ATA = Ir . In this paper, we
always adhere with this assumption. Once we have specified a
particular A, xt is uniquely defined accordingly. On the other hand,
when cov(zt , xt) ≠ 0, the endogeneity makes D unidentifiable,
which will be dealt with in Section 3.

2.2. Estimation

Formally the estimation forDmay be treated as a standard least
squares problem, since

yt = Dzt + ηt , ηt = Axt + εt , (2)

and cov(zt , ηt) = 0; see (1). Write D = (d1, . . . , dp)
T. The least

squares estimator for D can be expressed as

D = (d1, . . . ,dp)
T, di =


1
T

T
t=1

ztzTt

−1 1
T

T
t=1

yi,t zt


, (3)

where yi,t is the ith component of yt .
The estimation for M(A) is based on the residualsηt = yt −Dzt , using the same idea as Lam et al. (2011) and Lam and Yao

(2012), thoughwe do not assume that the processes concerned are
stationary. To this end, we introduce some notation first. Let

Σx(k) =
1

T − k

T−k
t=1

cov(xt+k, xt),

Σxε(k) =
1

T − k

T−k
t=1

cov(xt+k, εt),

Ση(k) =
1

T − k

T−k
t=1

cov(ηt+k, ηt).

When, for example, xt is stationary, Σx(k) is the autocovariance
matrix of xt at lag k. It follows from the second equation in (2) that
for any k ≠ 0,

Ση(k) = AΣx(k)AT
+ AΣxε(k). (4)

For a prescribed fixed positive integer k̄, define

M =

k̄
k=1

Ση(k)Ση(k)T. (5)

We assume rank(M) = r . This is reasonable as it effectively as-
sumes that the latent factor process xt is genuinely r-dimensional.
Since M is implicitly sandwiched by A and AT, Mb = 0 for any
b ⊥ M(A). Thus we may take the eigenvectors of M correspond-
ing to non-zero eigenvalues as the columns of A, as the choice of
A is almost arbitrary as long as M(A) does not change. Let A =

(a1, . . . , ar), where a1, . . . , ar be the r orthonormal eigenvectors
ofM corresponding to the r largest eigenvaluesλ1 ≥ · · · ≥ λr > 0.
ThenA is a half orthogonalmatrix in the sense thatATA = Ir . In the
sequel, we always use A defined this way. When the r non-zero
eigenvalues of M are distinct, A is unique if we ignore the trivial
replacements of aj by −aj.

Letηt = yt −Dzt and
Ση(k) =

1
T − k

T−k
t=1

(ηt+k − η̄)(ηt − η̄)T, η̄ =
1
T

T
t=1

ηt .
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The above discussion leads to a natural estimator of A denoted
by A ≡ (a1, . . . ,ar). Here a1, . . . ,ar are the orthonormal
eigenvectors of M corresponding to the r largest eigenvaluesλ1 ≥

· · · ≥ λr , where

M =

k̄
k=1

Ση(k)Ση(k)T. (6)

Since A is a half orthogonal matrix, we may extract the factor
process byxt = AT(yt −Dzt); see (2).

All the arguments above are based on a known r which is
actually unknown in practice. The determination of r is a key
step in our inference. In practice we may estimate it by the ratio
estimator

r = argmin
λj+1λj

: 1 ≤ j ≤ R

, (7)

whereλ1 ≥ · · · ≥ λp are the eigenvalues of M, and R is a constant
whichmay be taken as R = p/2; see LamandYao (2012) for further
discussion on this estimation method.

2.3. Asymptotic properties

We present the asymptotic theory for the estimation methods
described in Section 2.2 when T , p → ∞ while r is fixed. We also
assumem fixed now; see Section 4 for the results whenm → ∞ as
well. We do not impose stationarity conditions on yt , zt and xt . In-
steadwe assume that they aremixing processes; see Condition 2.1.
Hence our results in the special case when zt ≡ 0 extend those
in Lam et al. (2011) and Lam and Yao (2012) to nonstationary cases.
Pan and Yao (2008) dealtwith a differentmethod for nonstationary
factor models.

We introduce some notation first. For any matrix H, we de-
note by ∥H∥F = {tr(HTH)}1/2 the Frobenius norm of H, and by
∥H∥2 = {λmax(HTH)}1/2 the L2-norm, where tr(·) and λmax(·) de-
note, respectively, the trace and the maximum eigenvalue of a
square matrix. We also denote by ∥H∥min the square-root of the
minimum nonzero eigenvalue of HTH. Note that when H = h is a
vector, ∥h∥F = ∥h∥2 = ∥h∥min = (hTh)1/2, i.e. the conventional
Euclidean norm for vector h.

Condition 2.1. The process {(yt , zt , xt)} is α-mixing with the
mixing coefficients satisfying the condition


∞

k=1 α(k)1−2/γ < ∞

for some γ > 2, where

α(k) = sup
i

sup
A∈F i

−∞
, B∈F ∞

i+k

P(A ∩ B) − P(A)P(B)
,

and F
j
i is the σ -field generated by {(yt , zt , xt) : i ≤ t ≤ j}.

Condition 2.2. For any i = 1, . . . ,m, j = 1, . . . , p and t , E(|zi,t |2γ )

≤ C1, E(|ζj,t |
2γ ) ≤ C1 and E(|εj,t |

2γ ) ≤ C1, where C1 > 0 is a
constant, γ is given in Condition 2.1, and zi,t is the ith element of
zt , ζj,t and εj,t are the jth element of, respectively, Axt and εt .

Condition 2.3. There exists a constant C2 > 0 such that λmin{E
(ztzTt )} > C2 for all t .

Condition E(|ζj,t |
2γ ) ≤ C1 in Condition 2.2 can be guaranteed

by some suitable conditions on each xi,t , as A is a half orthogonal
matrix. For example, it holds if maxi,t E(|xi,t |2γ ) < ∞. Proposi-
tion 2.1 establishes the convergence rate of the estimator for the
p × m coefficient matrix D. Since p → ∞ together with the sam-
ple size T , the convergence rate depends on p. Especially when
p/T → 0, the least squares estimator D is a consistent estima-
tor for D. This condition can be relaxed if we impose some sparse
condition on D, and then apply appropriate thresholding onD. We
do not pursue this further here. When p is fixed, the convergence
rate is T 1/2 which is the optimal rate for the regression with the
dimension fixed.

Proposition 2.1. Let Conditions 2.1–2.3 hold. As T → ∞ and p →

∞, it holds that

∥D − D∥F = Op

p1/2T−1/2.

To state the results for estimating factor loadings, we introduce
more conditions.

Condition 2.4. There exist positive constants Ci (i = 3, 4) and
δ ∈ [0, 1] such that C3p1−δ

≤ ∥Σx(k)∥min ≤ ∥Σx(k)∥2 ≤ C4p1−δ

for all k = 1, . . . , k̄.

Condition 2.5. Matrix M admits r distinct positive eigenvalues
λ1 > · · · > λr > 0.

The constant δ in Condition 2.4 controls the strength of the fac-
tors. When δ = 0, the factors are strong. When δ > 0, the fac-
tors are weak. In fact the value of δ reflects the sparse level of the
factor loading matrix A, and a certain degree of sparsity is present
when δ > 0. Therefore not all components of yt − Dzt carry the
information for all factor components. This causes difficulties in
recovering the factor process. This argumentwill be verified in The-
orem 2.2. See also Remark 1 in Lam and Yao (2012). Condition 2.5
implies thatAdefined as in Section 2.2 is unique. This simplifies the
presentation significantly, as Theorem 2.1 can present the conver-
gence rates of the estimator for A directly. Without Condition 2.5,
the same convergence rates can be obtained for the estimation of
the linear space M(A); see (9). Let

κ1 = min
1≤k≤k̄

∥Σxε(k)∥min and κ2 = max
1≤k≤k̄

∥Σxε(k)∥2.

Note that both κ1 and κ2 may diverge as p → ∞.

Theorem 2.1. Let Conditions 2.1–2.5 hold. Suppose that r is known
and fixed, then

∥A − A∥2 =


Op(pδT−1/2),

if κ2 = o(p1−δ) and p2δT−1
= o(1);

Op(κ
−2
1 κ2pT−1/2),

if p1−δ
= o(κ1) and κ−2

1 κ2pT−1/2
= o(1).

The convergence rates in Theorem 2.1 are exactly the same as
Theorem 1 of Lam et al. (2011) which deals with a pure factor
model, i.e. model (2) with zt ≡ 0. In this sense, the estimator A
is asymptotically adaptive to unknown D.

Theorem 2.2. Let Conditions 2.1–2.5 hold, and r be known and fixed.
If ∥Σε∥2 is bounded as p → ∞, then

p−1/2
∥Axt − Axt∥2 = Op(∥A − A∥2 + p−1/2

+ T−1/2).
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Theorem 2.2 deals with the convergence of the extracted factor
term. Combining it with Theorem 2.1, we obtain

p−1/2
∥Axt − Axt∥2

=


Op(pδT−1/2

+ p−1/2),

if κ2 = o(p1−δ) and p2δT−1
= o(1);

Op(κ
−2
1 κ2pT−1/2

+ p−1/2
+ T−1/2),

if p1−δ
= o(κ1) and κ−2

1 κ2pT−1/2
= o(1).

Thus when all the factors are strong (i.e. δ = 0) and κ2 = o(p), it
holds that p−1/2

∥Axt − Axt∥2 = Op(p−1/2
+ T−1/2), which is the

optimal convergence rate specified in Theorem 3 of Bai (2003).
In general the choice ofA inmodel (1) is not unique,we consider

the error in estimating M(A) instead of a particular A, as M(A) is
uniquely defined by (1) and does not vary with different choices
of A. To this end, we adopt the discrepancy measure used by Pan
and Yao (2008): for two p × r half orthogonal matrices H1 and
H2 satisfying the condition HT

1H1 = HT
2H2 = Ir , the difference

between the two linear spaces M(H1) and M(H2) is measured by

D(M(H1), M(H2)) =


1 −

1
r
tr(H1HT

1H2HT
2). (8)

In fact D(M(H1), M(H2)) always takes values between 0 and 1. It
is equal to 0 if and only if M(H1) = M(H2), and to 1 if and only if
M(H1) ⊥ M(H2).

Theorem 2.3. Let Conditions 2.4–2.5 hold. Suppose that r is known
and fixed, then

{D(M(A), M(A))}2

≍ ∥(A − A)T(A − A) − AT(A − A)(A − A)TA∥2.

This theorem establishes the link between D(M(A), M(A)) andA−Awhen r is known. Obviously, the RHS of the above expression
can be bounded by 2∥A−A∥

2
2. This implies thatD(M(A), M(A)) =

Op(∥A − A∥2). In fact, the convergence of D(M(A), M(A)) does
not depend on Condition 2.5. Even when M admits multiple non-
zero eigenvalues, and, therefore,A is not uniquely defined, it can be
shown based on the similar arguments as for Theorem 1 in Chang
et al. (2014) that

D(M(A), M(A))

=


Op(pδT−1/2),

if κ2 = o(p1−δ) and p2δT−1
= o(1);

Op(κ
−2
1 κ2pT−1/2),

if p1−δ
= o(κ1) and κ−2

1 κ2pT−1/2
= o(1),

(9)

which is the same as that followed by Theorem 2.3when Condition
2.5 holds.

Theorems 2.1–2.3 present the asymptotic properties when the
number of factors r is assumed to be known. However, in practice
we need to estimate r as well. Lam and Yao (2012) showed that
for the ratio estimatorr defined in (7), P(r ≥ r) → 1. In spite of
favorable finite sample evidences reported in Lam and Yao (2012),
it remains as a unsolved challenge to establish the consistencyr .
Following the idea of Xia et al. (2013), we adjust the ratio estimator
as follows

r = argmin
λj+1 + CTλj + CT

: 1 ≤ j ≤ R

, (10)

where CT = (p1−δ
+ κ2)pT−1/2 log T . Theorem 2.4 shows thatr is

a consistent estimator for r .

Theorem 2.4. Let Conditions 2.1–2.5 hold, and (p1−δ
+ κ2)pT−1/2

log T = o(1). Then P(r ≠ r) → 0.
With the estimator r , we may define an estimator for A asA = (a1, . . . ,ar), wherea1, . . . ,ar are the orthonormal eigenvec-
tors of M, defined in (6), corresponding to ther largest eigenvalues.
ThenA = A whenr = r . To measure the error in estimating the
factor loading space, we use

D(M(A), M(A)) =


1 −

1
max(r, r) tr(AATAAT).

This is a modified version of (8). It takes into account the fact
that the dimensions of M(A) and M(A) may be different. Obvi-
ously D(M(A), M(A)) = D(M(A), M(A)) ifr = r . We show
below thatD(M(A), M(A)) → 0 in probability at the same rate as
D(M(A), M(A)). Hence evenwithout knowing r ,M(A) is a consis-
tent estimator for M(A). Let ρ = ρ(T , p) denote the convergence
rate of D(M(A), M(A)), i.e. ρD(M(A), M(A)) = Op(1), see Theo-
rems 2.1 and 2.3. For any ϵ > 0, there exists a positive constantMϵ

such that P{ρD(M(A), M(A)) > Mϵ} < ϵ. Then,

P{ρD(M(A), M(A)) > Mϵ}

≤ P{ρD(M(A), M(A)) > Mϵ,r = r}
+ P{ρD(M(A), M(A)) > Mϵ,r ≠ r}

≤ P{ρD(M(A), M(A)) > Mϵ} + o(1)
≤ ϵ + o(1) → ϵ

which implies ρD(M(A), M(A)) = Op(1). Hence,D(M(A), M(A))

→ 0 shares the same convergence rate of D(M(A), M(A)) which
means that M(A) has the oracle property in estimating the factor
loading space M(A).

3. Models with endogeneity

In last section, the consistent estimation for the coefficient
matrix D is used in identifying the latent factor process. The
consistency is guaranteed by the assumption that cov(zt , xt) =

E(ztxTt ) = 0. However when the endogeneity exists inmodel (1) in
the sense that the regressor zt and the latent factor xt are contem-
poraneously correlatedwith each other,D is no longer identifiable.
Nevertheless (1) can be written as

yt = [D + AE(xtzTt ){E(ztzTt )}
−1

]zt
+A[xt − E(xtzTt ){E(ztzTt )}

−1zt ] + εt

≡ D⋆zt + Ax⋆
t + εt , (11)

where the latent factor x⋆
t = xt − E(xtzTt ){E(ztzTt )}

−1zt is un-
correlated with the regressor zt . Hence if we apply the methods
presented in Section 2 to model (1) in the presence of the endo-
geneity, D defined in (3) is a consistent estimator for D⋆

= D +

AE(xtzTt ){E(ztzTt )}
−1 instead of the original regression coefficient

D, provided that D⋆ so defined is a constant matrix independent
of t . The latter is guaranteed when both xt and zt are stationary.
Furthermore, the recovered factor processxt is an estimator for x⋆

t .
Hence in the presence of the endogeneity and if D⋆ defined in (11)
is a constant matrix, the factor loading space M(A) can still be es-
timated consistently although the ordinary least squares estimator
for the regression coefficient matrix D is no longer consistent.

For some applications, the interest lies in estimating the
‘original’ D and xt ; see, e.g., Angrist and Krueger (1991). Then we
may employ a set of instrument variables wt in the sense that wt
is correlated with zt but uncorrelated with both xt and εt . Usually,
we require thatwt is q × 1 with q ≥ m. It follows from (1) that

ytwT
t = DztwT

t + ε⋆
t , ε⋆

t = AxtwT
t + εtwT

t . (12)

Since E(xtwT
t ) = 0 and E(εtwT

t ) = 0, we may view the first
equation in the above expression as similar to a ‘normal equation’
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in a least squares problem by ignoring ε⋆
t . This leads to the

following estimator for D:

D =


1
T

T
t=1

ytwT
t R

T


1
T

T
t=1

ztwT
t R

T
−1

(13)

where R is any m × q constant matrix with rank(R) = m, to
match the lengths of wt and zt . When q = m, we can choose
R = Im. This is the ‘instrument variables method’ widely used in
econometrics. We refer to Morimune (1983), Bound et al. (1996),
Donald and Newey (2001), Hahn and Hausman (2002) and Caner
and Fan (2012) for further discussion on the choice of instrument
variables and the related issues. It follows from (12) and (13) that

D − D =


1
T

T
t=1

ε⋆
tR

T


1
T

T
t=1

ztwT
t R

T
−1

.

The proposition below shows thatD is a consistent estimator with
the optimal convergence rate. See also Proposition 2.1.

Condition 3.1. For any i = 1, . . . , q and t , E(|wi,t |
2γ ) ≤ C1 for

γ > 2 and C1 > 0 specified in, respectively, Conditions 2.1 and
2.2.

Condition 3.2. The smallest eigenvalue of {E(wtzTt )}
TRTR{E(wtzTt )}

is uniformly bounded away from zero for all t .

Condition 3.2 implies that all the components of the instrument
variableswt are correlated with the regressor zt . When q = m and
R = Im, it reduces to the condition that all the singular values of
E(wtzTt ) are uniformly bounded away from zero for all t .

Proposition 3.1. Let Conditions 2.1–2.2 and 3.1–3.2 hold. As T →

∞ and p → ∞, it holds that

∥D − D∥F = Op(p1/2T−1/2).

With the consistent estimator D in (13), the factor loading
space and the latent factor process may be estimated in the same
manner as in Section 2.2. The asymptotic properties presented in
Theorems 2.1–2.3 can be reproduced in the similar manner.

4. Models with nonlinear regression functions

Now we consider the model with nonlinear regression term:

yt = g(ut) + Axt + εt , (14)

where g(·) is an unknown nonlinear function, ut is an observed
process with fixed dimension, and other terms are the same as in
model (1). Oneway to handle a nonlinear regression is to transform
it into a high-dimensional linear regression problem. To this end,
let g = (g1, . . . , gp)T, and

gi(u) =

∞
j=1

di,jlj(u), i = 1, 2, . . . ,

where {lj(·)} is a set of base functions. Suppose we use the approx-
imation with the firstm terms only. Let zt = (l1(ut), . . . , lm(ut))

T,
and D be the p×mmatrix with di,j as its (i, j)th element, then (14)
can be expressed as

yt = Dzt + Axt + εt + et , (15)

where the additional error term et collects the residuals in approx-
imating g(·) by the firstm terms only, i.e. the ith component of et is

j>m di,jlj(ut). This makes (15) formally different from model (1).
Furthermore a fundamentally new feature in (15) is thatmmay be
large in relation to p or/and T . Hence the new asymptotic theory
with all T , p,m → ∞ together will be established in order to take
into account those non-trivial changes. Due to (11), wemay always
assume that cov(zt , xt) = 0. Condition 4.2 ensures that et in (15)
is asymptotically negligible. Hence model (15) is as identifiable as
(1) at least asymptotically when m → ∞. Consequently we may
estimate D using the ordinary least squares estimator:

D =


1
T

T
t=1

ytzTt


1
T

T
t=1

ztzTt

−1

.

We introduce some regularity conditions first.

Condition 4.1. Supports of the process ut are subsets of U, where
U is compact with nonempty interior. Furthermore the density
function of ut is uniformly bounded and bounded away from zero
for all t .

Condition 4.2. It holds for all largem that

sup
i

sup
u∈U

gi(u) −

m
j=1

di,jlj(u)

 = O(m−λ)

where λ > 1/2 is a constant.

Condition 4.3. The eigenvalues of E(ztzTt ), are uniformly bounded
away from zero and infinity for all t , where zt = (l1(ut), . . . ,
lm(ut))

T.

Condition 4.4. E(Axt |ut) = 0 and E(εt |ut) = 0 for all t .

Condition 4.5. For each j = 1, . . . ,m, E(|lj(ut)|
2γ ) ≤ C1, where

γ > 2 and C1 > 0 are specified in, respectively, Conditions 2.1 and
2.2.

Condition 4.1 is often assumed in nonparametric estimation,
it can be weakened at the cost of lengthier proofs. Condition 4.2
quantifies the approximation error for regression function g(·). It
is fulfilled by commonly used sieve basis functions such as spline,
wavelets, or the Fourier series, provided that all components of g(·)
are in the Hölder space. See Ai and Chen (2003) for further detail
on the sieve method.

Proposition 4.1. Let Conditions 2.1–2.2 and 4.2–4.5 hold, and
mT−1/2

= o(1). Then

∥D − D∥F = Op(p1/2m1/2T−1/2
+ p1/2m1/2−λ).

Comparing this proposition with Propositions 2.1 and 3.1, m
enters the convergence rates, and the term Op(p1/2m1/2−λ) is due
to approximating g(ut) by Dzt . Based on the estimator D, we can
define an estimator for the nonlinear regression functiong(u) = D(l1(u), . . . , lm(u))T.

The theorem below follows from Proposition 4.1. It gives the
convergence rate forg.
Theorem 4.1. Let Conditions 2.1–2.2 and 4.1–4.5 hold, and mT−1/2

= o(1). Then
u∈U

∥g(u) − g(u)∥2
2 du = Op(pmT−1

+ pm−2λ).

It is easy to see from Theorem 4.1 that the best rate forg(·) is
attained if we choose m ≍ T 1/(2λ+1), which fulfills the condition
mT−1/2

= o(1) as λ > 1/2. When g(·) is twice differentiable,
λ = 2 for somebasis functions, the convergence rate is pT−4/5. This
is the optimal rate for the nonparametric regression of p functions
(Stone, 1985). Hereafter, we always setm ≍ T 1/(2λ+1).
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Table 1
Relative frequency estimates of P(r = r) for Example 1 with stationary factors.

p 100 200 400 600 800

δ = 0 D known T = 0.5p 0.700 0.960 0.990 0.995 1
T = p 0.900 0.985 1 1 1
T = 1.5p 0.980 1 1 1 1

D unknown T = 0.5p 0.615 0.940 0.990 0.995 1
T = p 0.865 0.985 1 1 1
T = 1.5p 0.960 1 1 1 1

δ = 0.5 D known T = 0.5p 0.105 0.805 0.950 0.805 0.930
T = p 0.285 0.880 0.940 1 0.975
T = 1.5p 0.895 0.975 1 1 1

D unknown T = 0.5p 0.065 0.765 0.930 0.780 0.910
T = p 0.280 0.880 0.940 1 0.975
T = 1.5p 0.870 0.975 0.995 1 1
With the estimator D, we may proceed as in Section 2.2 to
estimate the factor loading space and to recover the latent factor
process. However there is a distinctive new feature now: the
number of lags k̄ used in defining both M in (5) and M in (7)
may tend to infinity together with m in order to achieve good
convergence rates.

Theorem 4.2. Let Conditions 2.1–2.2, 2.4 and 4.2–4.5 hold, λ ≥ 1,
k̄T−1/2

= o(1), and m ≍ T 1/(2λ+1). Suppose that r is known, and the
r positive eigenvalues of M are distinct. Then

∥A − A∥2

=


Op{pδ

[k̄1/2T−1/2
+ k̄−1T (1−λ)/(2λ+1)

]},

if κ2 = o(p1−δ) and p2δ[k̄T−1
+ T (2−2λ)/(2λ+1)

] = o(1);
Op{pκ2κ

−2
1 [k̄1/2T−1/2

+ k̄−1T (1−λ)/(2λ+1)
]},

if p1−δ
= o(κ1) and p2κ2

2κ
−4
1 [k̄T−1

+ T (2−2λ)/(2λ+1)
]

= o(1).

From Theorem 4.2, the best convergence rate forA is attained
when we choose k̄ ≍ T 1/(2λ+1). The model with linear regression
considered in Section 2.3 corresponds to the cases with λ = ∞.
Note Theorem 4.2 implies that k̄ ≍ 1 should be used when λ = ∞

and m is fixed in order to attain the best possible rates. This is
consistent with the procedures used in Section 2.2.

Now we comment on the impact of p on the convergence rate,
which depends critically on the factor strength δ ∈ [0, 1] specified
in Condition 2.4. To simplify the notation, let κ1 ≍ κ2 ≍ κ which is
a mild assumption in practice. Suppose pδT (1−λ)/(2λ+1)

= o(1) and
k̄ ≍ T 1/(2λ+1), Theorem 4.2 then reduces to

∥A − A∥2 =


Op(pδT−λ/(2λ+1)), if κ = o(p1−δ);
Op(pκ−1T−λ/(2λ+1)), if p1−δ

= o(κ).

If κp−(1−δ)
→ ∞, there is an additional factor κp−(1−δ) in the con-

vergence rate of ∥A − A∥2 than that under the setting κp−(1−δ)
→

0, which implies that ∥A − A∥2 converges to zero faster in the
case κ = o(p1−δ). The dimension p must satisfy the condition
pδT (1−λ)/(2λ+1)

= o(1), which is automatically fulfilled when δ =

0, i.e. the factors are strong. However when the factors are weak in
the sense δ ≠ 0, p can only be in the order p = o(T (λ−1)/{(2λ+1)δ})
to ensure the consistency in estimating the factor loading matrix.

Theorem 4.3. Let the condition of Theorem 4.2 hold. In addition, if
∥Σε∥2 is bounded as p → ∞, then

p−1/2
∥Axt − Axt∥2 = Op(∥A − A∥2 + p−1/2

+ T−(2λ−1)/(4λ+2)).

Comparing the above theorem with Theorem 2.2, it has one
more term T (2λ−1)/(4λ+2) in the convergence rate. When the
dimension m is fixed and λ = ∞, it reduces to Theorem 2.2. On
the other hand, we can also consider the model (1) with diverging
number of regressors (i.e., m → ∞). Noting Proposition 4.1 with
λ = ∞ and using the same argument of Theorem 2.1, it holds that

∥A − A∥2

=


Op{k̄−1pδ(k̄3/2 + m1/2)T−1/2

},

if κ2 = o(p1−δ) and pδ(k̄1/2 + m1/2)T−1/2
= o(1);

Op{k̄−1pκ2κ
−2
1 (k̄3/2 + m1/2)T−1/2

},

if p1−δ
= o(κ1) and pκ2κ

−2
1 (k̄1/2 + m1/2)T−1/2

= o(1);

provided that m = o(T 1/2) and k̄ = o(T 1/3). Theorem 2.1 can be
regarded as the special case of this result with fixed k̄ and m. Note
that the best convergence rate for ∥A− A∥2 is attained under such
setting if we choose k̄ ≍ m1/3.

5. Numerical properties

In this section, we illustrate the finite sample properties of the
proposed methods in two simulated models, one with a linear
regression term and one with a nonlinear regression term. For
the linear model, both stationary and nonstationary factors were
employed. In each model, we set the dimension of yt at p =

100, 200, 400, 600, 800 and the sample size T = 0.5p, p, 1.5p
respectively. For each setting, 200 samples were generated.

Example 1. Consider the linear model yt = Dzt + Axt + εt , in
which zt follows the VAR(1) model:

zt =


5/8 1/8
1/8 5/8


zt−1 + et , (16)

where et ∼ N(0, I2). Let D be a p × 2 matrix of which the el-
ements were generated independently from the uniform distri-
bution U(−2, 2), xt be 3 × 1 VAR(1) process with independent
N(0, I3) innovations and the diagonal autoregressive coefficient
matrix with 0.6, −0.5 and 0.3 as the main diagonal elements. This
is a stationary factor process with r = 3 factors. The elements of A
were drawn independently from U(−2, 2) resulting a strong fac-
tor case with δ = 0. Also we considered a weak factor case with
δ = 0.5 for which randomly selected p − ⌊p1/2⌋ elements in each
column of A were set to 0. Let εt be independent and N(0, Ip). To
show the impact of the estimated coefficient matrix D on the es-
timation for the factors, we also report the results from using the
true D. We report the results with k̄ = 1 only, since the results
with 1 ≤ k̄ ≤ 10 are similar. The relative frequency estimates of
P(r = r) are reported in Table 1. It shows that the defect in es-
timating r due to the errors in estimating D is almost negligible.
Fig. 1 displays the boxplots of the estimation errors D(M(A),
M(A)). Again the performance with the estimated coefficient ma-
trix D is only slightly worse than that with the true D. When
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Fig. 1. Boxplots of D(M(A), M(A)) for Example 1 with stationary factor, and δ = 0 (3 top panels) and δ = 0.5 (3 bottom panels). Errors obtained using true D are marked
with ‘oracle’, and usingD are marked with ‘real’.
Fig. 2. Boxplots of p−1/2
∥D − D∥F for Example 1 with endogeneity, and δ = 0 (3 top panels) and δ = 0.5 (3 bottom panels).
the factors are weaker (i.e. when δ = 0.5), it is harder to esti-
mate both the number of factors and the factor loading space. All
those findings are in line with the asymptotic results presented in
Section 2.3.

Now we consider the case with the endogeneity. To this end,
we changed the definition for the regressor process zt in the above
setting. Instead of (16), we let

z1,t = 0.1x1,t + 0.1ut + 0.1u2
t ,

z2,t = 0.1x2,t − 0.1ut + 0.1u2
t ,

where ut is an AR(1) process defined by ut = 0.5ut−1 + ϵt and
ϵt ∼ N(0, 1). The ordinary least squares estimator ofD is no longer
consistent now. We employ two different instrument variables
wt = (ut , u2
t )

T and wt = (ut , u2
t , u

3
t , u

4
t )

T, as they are correlated
with zt but uncorrelated with xt and εt . The estimation error forD is measured by the normalized Frobenius norm p−1/2

∥D − D∥F .
Setting R = I2 for wt and the elements of R are generated from
U(−2, 2) for wt in (13), we computed first both the ordinary least
squares (OLS) estimates and the instrument variable method (IV)
estimates for D, and then the estimates for the number of factors
r and the factor loading matrix A based on, respectively, the two
sets of residuals resulted from the two regression estimationmeth-
ods. The results are reported in Figs. 2 and 3 and Table 2 where
IV2 and IV4 represent the estimation usingwt andwt respectively.
Those simulation results reinforce the findings in Section 3, which
indicate that the existence of the endogeneity has no impact in
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Fig. 3. Boxplots of D(M(A), M(A)) for Example 1 with endogeneity, and δ = 0 (3 top panels) and δ = 0.5 (3 bottom panels).
Table 2
Relative frequency estimates of P(r = r) for Example 1 with endogeneity.

p 100 200 400 600 800

IV2 T = 0.5p 0.660 0.885 0.995 0.995 1
T = p 0.855 0.990 1 1 1
T = 1.5p 0.960 1 1 1 1

IV4 T = 0.5p 0.590 0.865 0.975 0.970 0.965
δ = 0 T = p 0.845 0.970 0.970 0.990 0.985

T = 1.5p 0.930 0.990 0.980 0.970 0.975

OLS T = 0.5p 0.580 0.865 0.990 1 1
T = p 0.855 0.980 1 1 1
T = 1.5p 0.945 1 1 0.995 1

IV2 T = 0.5p 0.280 0.665 0.625 0.630 0.620
T = p 0.600 0.715 0.980 1 1
T = 1.5p 0.550 0.980 0.990 1 1

IV4 T = 0.5p 0.205 0.570 0.550 0.605 0.550
δ = 0.5 T = p 0.510 0.650 0.890 0.960 0.925

T = 1.5p 0.580 0.915 0.950 0.935 0.940

OLS T = 0.5p 0.225 0.405 0.635 0.625 0.640
T = p 0.535 0.705 1 1 0.995
T = 1.5p 0.630 0.955 1 1 0.995
identifying and in estimating the factor loading space. More pre-
cisely, Fig. 2 shows that the errors p−1/2

∥D − D∥F for the OLS
method are unusually large, as it effectively estimates D⋆ in (11)
instead of D. On the other hand, the IV method provides accurate
estimates for D. However the differences of the two methods on
the subsequent estimation for the number of factors r and the fac-
tor loading spaceM(A) are small; see Table 2 and Fig. 3. Since the IV
method uses extra information, it tends to offer slightly better per-
formance. Nevertheless Table 2 indicates that this improvement in
estimating r is almost negligible. Also, the results are not sensitive
to the choice of R as long as the instrument variables are properly
selected.

Now we consider the model with nonstationary factors xt =

3(x1,t , x2,t , x3,t)T:

x1,t − 2t/T = 0.8(x1,T−1 − 2t/T ) + e1,t , x2,t = 3t/T ,

x3,t = x3,t−1 +


10
T

e3,t ,
(17)

where ej,t are independent and N(0, 1). The other settings are the
same as the first part of this example. The results are reported in
Table 3 and Fig. 4. The patterns are similar to those in Table 1 and
Fig. 1, except that for a fixed p, the performance does not necessar-
ily improvewhen the sample size T increases; see Fig. 4. This is due
Table 3
Relative frequency estimates of P(r = r) for Example 1 with nonstationary factors.

p 100 200 400 600 800

δ = 0 D known T = 0.5p 0.155 0.525 0.855 0.925 0.970
T = p 0.465 0.800 0.940 0.990 0.990
T = 1.5p 0.625 0.890 0.995 0.985 1

D unknown T = 0.5p 0.110 0.525 0.835 0.920 0.970
T = p 0.430 0.780 0.940 0.990 0.990
T = 1.5p 0.595 0.890 0.995 0.985 1

δ = 0.5 D known T = 0.5p 0 0.070 0.175 0.385 0.525
T = p 0.025 0.235 0.535 0.705 0.765
T = 1.5p 0.145 0.475 0.740 0.815 0.860

D unknown T = 0.5p 0 0.055 0.160 0.380 0.520
T = p 0.025 0.215 0.520 0.685 0.760
T = 1.5p 0.125 0.465 0.740 0.805 0.850
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Fig. 4. Boxplots of D(M(A), M(A)) for Example 1 with nonstationary factors, and δ = 0 (3 top panels) and δ = 0.5 (3 bottom panels). Errors obtained using true D are
marked with ‘oracle’, and usingD are marked with ‘real’.
Table 4
Relative frequency estimates of P(r = r) for Example 2 (with nonlinear regression).

p 100 200 400 600 800

δ = 0 g known T = 0.5p 0.780 0.865 0.965 0.975 0.985
T = p 0.840 0.920 0.990 1 1
T = 1.5p 0.820 0.990 1 1 1

g unknown T = 0.5p 0.750 0.860 0.955 0.975 0.980
T = p 0.830 0.890 0.990 1 1
T = 1.5p 0.780 0.990 1 1 1

δ = 0.5 g known T = 0.5p 0.270 0.665 0.725 0.430 0.650
T = p 0.390 0.700 0.850 0.810 0.800
T = 1.5p 0.390 0.720 0.885 0.960 1

g unknown T = 0.5p 0.260 0.625 0.665 0.390 0.600
T = p 0.390 0.655 0.760 0.810 0.795
T = 1.5p 0.335 0.700 0.875 0.950 1
to the nonstationary nature of the factors defined in (17): new ob-
servations bring in the information on the new and time-varying
underlying structure as far as the factor processes are concerned.

Example 2. We now consider a model with nonlinear regression
function. Let ut = ut be a univariate AR(1) process defined by
ut = 0.5ut−1 + et with independent N(0, 1) innovations et . The
nonlinear regression function g(ut) = (g1(ut), . . . , gp(ut))

T was
defined as

gi(ut) =
exp(α(1)

i ut)

1 + exp(α(1)
i ut)

, i = 1, . . . ,
p
2

and gi(ut) = sin(α
(2)
i ut), i =

p
2

+ 1, . . . , p,

where the parameters α
(1)
i were drawn independently from

N(0, 4), and α
(2)
i were drawn independently from U(−2, 2) re-

spectively. We used the same A, xt and εt as in the first part of
Example 1.

We used the polynomial expansion to approximate g(ut),
i.e. gi(ut) ≈

m
j=1 di,jlj(ut) with lj(ut) = uj−1

t , where the order m
was set as ⌊2T 1/5

⌋. We obtained d̂i,j by the least square estimation.
Putg(ut) = (ĝ1(ut), . . . , ĝp(ut))

T for ĝi(ut) =
m

j=1 d̂i,jlj(ut). The
residualsηt = yt −g(ut)were then used to estimate the latent fac-
tors. We set k̄ = ⌊2T 1/5

⌋; see Theorem 4.2. The simulation results
are reported in Table 4 and Fig. 5, which present similar patterns
as in the first part of Example 1.

6. Real data analysis

We illustrate our method by modeling the daily returns of
123 stocks from 2 January 2002 to 11 July 2008. The stocks were
selected among those contained in the S&P500 which were traded
everyday during this period. The returns were calculated based on
the daily close prices.We have in total T = 1642 observationswith
the dimension p = 123. This data has been analyzed in Lam and
Yao (2012). They identified two factors under a pure factor model
setting, i.e. model (1) with zt ≡ 0. Furthermore the estimated
factor loading space contains the return of the S&P500. Hence it
can be regarded as one of the two factors. Since the S&P500 index
is often viewed as a proxy of the market index, it is reasonable to
take its return as a known factor zt in our model (1). We calculated
the ordinary least square estimator for the regression coefficient
matrix D which is now a 123 × 1 vector with each element
representing the impact of the S&P500 index to the return of the
corresponding stock. As all the estimated elements are positive,
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Fig. 5. Boxplots of D(M(A), M(A)) for Example 2 with nonlinear regression, and δ = 0 (3 top panels) and δ = 0.5 (3 bottom panels). Errors obtained using true g are
marked with ‘oracle’, and usingg are marked with ‘real’.
(a) The eigenvalues of M. (b) Ratio of the eigenvalues of M.

(c) The estimated latent factor.

(d) S&P 500 returns.

Fig. 6. The estimated eigenvalues (multiplied by 106), the ratio of eigenvalues, the estimated latent factor and the S&P500 returns in 2 January 2002–11 July 2008.
indicating the positive correlations between the returns of market
index and the those 123 stocks.

Fig. 6 displays the first 30 eigenvalues of M, defined as in (6)
with k̄ = 1, sorted in the descending order. The ratio ofλi+1/λi in
the right panel indicates that there is only one latent factor. Varying
k̄ between 1 and 20 did not alter this result. Fig. 6(c) shows that
the sparks of the estimated factor process occur around 22 July,
2002, which is consistent with the oscillations of S&P500 index,
although the S&P500 are less volatile. The autocorrelations of the
estimated factorsγ T

j (yt −Dzt), whereγj is the unit eigenvector ofM corresponding to its jth largest eigenvalue, are plotted in Fig. 7
for j = 1, 2, 3. The autocorrelations of the first factor is significant
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Fig. 7. The ACFs of the first three estimated factors.
non-zero. On the other hand, there are hardly any significant non-
zero autocorrelations for both the second and the third factors.

To gain some appreciation of the latent factor, we divide
the 123 stocks into eight sectors: Financial, Basic Materials,
Industrial Goods, Consumer Goods, Healthcare, Services, Utilities
and Technology. We estimated the latent factor for each of those
eight sectors. Those estimated sector factors are plotted in Fig. 8.
We observe that those estimated sector factors behave differently
for the different sectors. Especially the Basic Materials sector
exhibits the largest fluctuation. Consequently, we may deduce
that the oscillations, especially the sparks, of the estimated factor
in Fig. 6(c) are largely due to changes in the Basic Materials
sector. This is consistent with the relevant economics and finance
principles. Basic Materials sector includes mainly the stocks of
energy companies such as oil, gas, coal et al. The energy, especially
oil, is the foundation for economic and social development. Hence,
the changes in oil price are often considered as important events
which underpin stock market fluctuations, see, e.g. Jones and Kaul
(1996) and Kilian and Park (2009). During January 2002–December
2003, international oil price had a huge increase. It rose 19% from
the average in 2002. The 2003 invasion of Iraq marks a significant
event as Iraq possesses a significant portion of the global oil
reserve. Hence, the returns of the Basic Materials sector oscillate
dramatically during that period. Among other sectors, Industrial
and Consumer Goods have similar behaviors. However, the returns
of both the sectors have little changes around zero, thus they have
little contributions to the estimated factor. The same arguments
hold for the Utilities sector. Also note that the returns for the
Financial, Healthcare, Services and Technology sectors are much
less volatile in comparison to that of the Basic Materials sector. We
may conclude that, the estimated factor mainly reflects the feature
of stocks in Basic Materials sector. The factor also contains some
market information about the Financial, Healthcare, Services and
Technology sectors, but less so on the Industrial Goods, Consumer
Goods and Utilities sectors.

We repeat the above exercise for another set of return data in 14
July 2008–11 July 2014 from the 196 stocks contained in S&P500.
Now T = 1510 and p = 196. The ratios of λi+1/λi shown in
Fig. 9(b) indicate that there is still only one latent factor, in addition
to S&P500. The estimated latent factor shown in Fig. 9(c) fluctuated
widely around 2009, which is consistent with the pronounced
decline the stock market due to the global financial crisis. While
the latent factor process seems to resemble the returns of S&P500
(see Figs. 9(c) and (d)), the two series are orthogonal with each
other (with the sample correlation coefficient equal to 0.00047).
The estimated factors for each of the eight sectors are plotted in
Fig. 10. In contrast to the findings in 2002–2008, all the eight
sectors contributed to the fluctuation around 2009, though the
financial sector was most predominant. The crisis caused by the
sharp down-turn of financial industry in early 2009 impacted all
sectors in the society.
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Appendix

Throughout the Appendix, we use Cs to denote generic
uniformly positive constants only depends on the parameters Cis
appear in the technical conditions which may be different in
different uses. Meanwhile, we denote Axt by ζt . We first present
the following lemmas which are used in proofs of the propositions
and theorems.

Lemma A.1. Under Conditions2.1–2.2,∥T−1T
t=1{ztz

T
t −E(ztzTt )}∥F

= Op(mT−1/2).

Proof. For any i, j = 1, . . . ,m, by Cauchy–Schwarz inequality and
Davydov inequality,

E
 1T

T
t=1

{zi,tzj,t − E(zi,tzj,t)}
2

=
1
T 2

T
t=1

E[{zi,tzj,t − E(zi,tzj,t)}2]

+
1
T 2


t1≠t2

E[{zi,t1zj,t1 − E(zi,t1zj,t1)}{zi,t2zj,t2 − E(zi,t2zj,t2)}]

≤
C
T

+
C
T 2


t1≠t2

α(|t1 − t2|)1−2/γ
≤

C
T

+
C
T

T
u=1

α(u)1−2/γ . (18)

Then, E{∥T−1 T
t=1{ztz

T
t −E(ztzTt )}∥

2
F } = O(m2T−1)which implies

the result. �

Proof of Proposition 2.1. Note that (D−D)T = (T−1T
t=1 ztz

T
t )

−1

(T−1 T
t=1 ztη

T
t ) and λmin(T−1 T

t=1 ztz
T
t ) is bounded away from

zero with probability approaching one, which is implied by Condi-
tion 2.3 and Lemma A.1, then ∥D − D∥F = Op(∥T−1 T

t=1 ztη
T
t ∥F ).

For each i = 1, . . . ,m and j = 1, . . . , p, from cov(zt , ηt) = 0
and similar to (18), we can obtain E{(T−1 T

t=1 zi,tηj,t)
2
} ≤ CT−1.
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Fig. 8. The estimated latent part Axt across different sectors.
Then, E{∥T−1 T
t=1 ztη

T
t ∥

2
F } = O(pT−1). Hence, ∥D − D∥F =

Op(p1/2T−1/2). �

Lemma A.2. Under Conditions 2.1–2.2, if k = o(T ), then

∥Ση(k) − Ση(k)∥F = ∥D −D∥
2
F J1,k + ∥D −D∥F J2,k + J3,k

where E(J21,k) ≤ Ckm2(T − k)−1
+ Cm2α(k)2−4/γ , E(J22,k) ≤

Ckpm(T − k)−1
+ Cpmα(k)2−4/γ and E(J23,k) ≤ Ckp2(T − k)−1.
Proof. For each k = o(T ),

Ση(k) − Ση(k) =
1

T − k

T−k
t=1

(ηt+kηT
t − ηt+kη

T
t )

+
1

T − k

T−k
t=1

{ηt+kη
T
t − E(ηt+kη

T
t )}

+ η̄η̄T
−

1
T − k

T−k
t=1

ηt+kη̄
T
−

1
T − k

T−k
t=1

η̄ηT
t

= I1,k + I2,k + I3,k + I4,k + I5,k.
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(a) The eigenvalues of M. (b) Ratio of the eigenvalues of M.

(c) The estimated latent factor.

(d) S&P 500 returns.

Fig. 9. The estimated eigenvalues (multiplied by 106), the ratio of eigenvalues, the estimated latent factor and the S&P500 returns in 14 July 2008–11 July 2014.
As

I1,k = (D −D)


1

T − k

T−k
t=1

zt+kzTt


(D −D)T

+ (D −D)


1

T − k

T−k
t=1

zt+kη
T
t



+


1

T − k

T−k
t=1

ηt+kz
T
t


(D −D)T,

then

∥I1,k∥F ≤ ∥D −D∥
2
F

 1
T − k

T−k
t=1

zt+kzTt


F

+ ∥D −D∥F

 1
T − k

T−k
t=1

zt+kη
T
t


F

+ ∥D −D∥F

 1
T − k

T−k
t=1

ηt+kz
T
t


F

.

For any i, j = 1, . . . ,m,

E


1
T − k

T−k
t=1

zi,t+kzj,t

2

≤ 2E


1
T − k

T−k
t=1

{zi,t+kzj,t − E(zi,t+kzj,t)}
2

+ 2max
t

{E(zi,t+kzj,t)}2.

By Cauchy–Schwarz inequality and Davydov inequality,
E


1
T − k

T−k
t=1

{zi,t+kzj,t − E(zi,t+kzj,t)}
2

=
1

(T − k)2

T−k
t=1

E[{zi,t+kzj,t − E(zi,t+kzj,t)}2]

+
1

(T − k)2

t1≠t2

E[{zi,t1+kzj,t1 − E(zi,t1+kzj,t1)}

× {zi,t2+kzj,t2 − E(zi,t2+kzj,t2)}]

≤
C

T − k
+

Ck
T − k

+
Ck(k − 1)
(T − k)2

+
C

T − k

T−2k−1
u=1

α(u)1−2/γ (19)

and {E(zi,t+kzj,t)}2 ≤ Cα(k)2−4/γ . Then, E[{(T − k)−1 T−k
t=1

zi,t+kzj,t}2] ≤ Ck(T − k)−1
+ Cα(k)2−4/γ . Thus, E{∥(T − k)−1T−k

t=1 zt+kzTt ∥
2
F } ≤ Ckm2(T − k)−1

+ Cm2α(k)2−4/γ . By the
same argument, we can obtain E{∥(T − k)−1 T−k

t=1 zt+kη
T
t ∥

2
F } ≤

Ckpm(T − k)−1
+ Cpmα(k)2−4/γ and E{∥(T − k)−1 T−k

t=1 ηt+kzTt ∥
2
F }

≤ Ckpm(T−k)−1
+Cpmα(k)2−4/γ . Hence, ∥I1,k∥F = ∥D−D∥

2
F J1,k+

∥D − D∥F J2,k where E(J21,k) ≤ Ckm2(T − k)−1
+ Cm2α(k)2−4/γ

and E(J22,k) ≤ Ckpm(T − k)−1
+ Cpmα(k)2−4/γ . On the other hand,

similar to (19), we can obtain E(∥I2,k∥2
F ) ≤ Ckp2(T − k)−1. For I3,k,

we have E(∥I3,k∥2
F ) ≤ E(∥η̄∥

4
2). By Jensen inequality and Davydov

inequality, E(∥I3,k∥2
F ) ≤ Cp2T−1. Following the same way, we have

both E(∥I4,k∥2
F ) and E(∥I5,k∥2

F ) can be bounded by Ckp2(T − k)−1.
Hence, we complete the proof. �

Lemma A.3. Under Condition 2.4, for k = 1, . . . , k̄,

∥Ση(k)∥2 ≤ Cp1−δ
+ Cκ2.
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Fig. 10. The estimated latent part Axt across different sectors.
Proof. Note that Ση(k) = AΣx(k)AT
+ Σxε(k), then ∥Ση(k)∥2 ≤

∥A∥
2
2∥Σx(k)∥2 + ∥Σxε(k)∥2. From Condition 2.4, we complete the

proof. �

Lemma A.4. Under Conditions 2.1–2.4,

∥M − M∥2 = Op{(p1−δ
+ κ2)pT−1/2

+ p2T−1
}.

Proof. Note that

∥M − M∥2 ≤

k̄
k=1

∥Ση(k) − Ση(k)∥2
2

+ 2
k̄

k=1

∥Ση(k)∥2∥Ση(k) − Ση(k)∥2 = I1 + I2.

By Lemmas A.2 and A.3, we can obtain

I1 ≤ 3∥D −D∥
4
F

k̄
k=1

J21,k + 3∥D −D∥
2
F

k̄
k=1

J22,k

+ 3
k̄

k=1

J23,k = Op(p2T−1)
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and

I2 ≤ 2

∥D −D∥

2
F

k̄
k=1

J1,k + ∥D −D∥F

k̄
k=1

J2,k +

k̄
k=1

J3,k


× sup

1≤k≤k̄
∥Ση(k)∥2

= Op{(p1−δ
+ κ2)pT−1/2

}.

Hence, we complete the proof. �

Lemma A.5. Under Condition 2.4,

λr(M) ≥


Cp2(1−δ), if κ2 = o(p1−δ);

Cκ2
1 , if p1−δ

= o(κ1).

Proof. From (5), we know

λr(M) = λmin

 k̄
k=1

{Σx(k)AT
+ Σxε(k)}{Σx(k)AT

+ Σxε(k)}T

.

For each k = 1, . . . , k̄,

λmin[{Σx(k)AT
+ Σxε(k)}{Σx(k)AT

+ Σxε(k)}T]

≍


λmin{Σx(k)Σx(k)T},

if λmax{Σxε(k)Σxε(k)T} = o(λmin{Σx(k)Σx(k)T});
λmin{Σxε(k)Σxε(k)T},
if λmax{Σx(k)Σx(k)T} = o(λmin{Σxε(k)Σxε(k)T}).

Notice Condition 2.4, then

λmin[{Σx(k)AT
+ Σxε(k)}{Σx(k)AT

+ Σxε(k)}T]

≥


Cp2(1−δ), if κ2 = o(p1−δ);

Cκ2
1 , if p1−δ

= o(κ1).

Hence, we complete the proof. �

Proof of Theorem 2.1. By Lemma A.5, ∥M − M∥2 = op{λr(M)}

provided that either case (i) κ2 = o(p1−δ) and p2δT−1
= o(1) or (ii)

p1−δ
= o(κ1) and κ−2

1 κ2pT−1/2
= o(1) hold. By Lemma 3 of Lam

et al. (2011), and using the same argument of the proof of Theorem
1 in their paper,

∥A − A∥2 =


Op(pδT−1/2),

if κ2 = o(p1−δ) and p2δT−1
= o(1);

Op(κ
−2
1 κ2pT−1/2),

if p1−δ
= o(κ1) and κ−2

1 κ2pT−1/2
= o(1).

Hence, we complete the proof. �

Proof of Theorem 2.2. Note thatAxt − Axt = AATAxt +AATεt − Axt +AAT(ηt − ηt)

= (AAT
− AAT)Axt +A(A − A)Tεt

+AATεt +AAT(ηt − ηt)

= I1 + I2 + I3 + I4.

For I1, ∥I1∥2 ≤ 2∥A − A∥2∥Axt∥2 ≤ Op(p1/2∥A − A∥2). For
I2, ∥I2∥2 ≤ ∥A − A∥2∥εt∥2 = Op(p1/2∥A − A∥2). For I3, as
E(∥I3∥2

2) =
r

i=1 E{(aTi εt)
2
} ≤ rλmax(Σε), then I3 = Op(1). For

I4, by Proposition 2.1, ∥I4∥2 ≤ ∥D − D∥2∥zt∥2 = Op(p1/2T−1/2).
Hence, p−1/2

∥Axt − Axt∥2 ≤ Op(∥A − A∥2 + p−1/2
+ T−1/2). �

Proof of Theorem 2.3. LetΣζ (k) = (T −k)−1 T−k
t=1 cov(ζt+k, ζt),

then Σζ (k) = AΣx(k)AT. Note that

tr{Σζ (1)T(Ip −AAT)Σζ (1)} = tr{Σx(1)T(Ir − ATAATA)Σx(1)}

≥ tr(Ir − ATAATA)λmin{Σx(1)Σx(1)T}
= r{D(M(A), M(A))}2λmin{Σx(1)Σx(1)T}.

By Condition 2.4,

tr{Σζ (1)T(Ip −AAT)Σζ (1)} ≥ Cp2(1−δ)
{D(M(A), M(A))}2.

At the same time,

tr{Σζ (1)T(Ip −AAT)Σζ (1)} − tr{Σζ (1)T(Ip − AAT)Σζ (1)}

= tr{AΣx(1)TAT(AAT
−AAT)AΣx(1)AT

}

≤ λmax{AT(AAT
−AAT)A}tr{Σx(1)Σx(1)T}

≤ Cp2(1−δ)
∥AT(AAT

−AAT)A∥2.

Note that tr{Σζ (1)T(Ip − AAT)Σζ (1)} = 0, then

{D(M(A), M(A))}2 ≤ C∥AT(AAT
−AAT)A∥2.

On the other hand, we have the following two inequality,

tr{Σζ (1)T(Ip −AAT)Σζ (1)}

≤ r{D(M(A), M(A))}2λmax{Σx(1)Σx(1)T}
≤ Cp2(1−δ)

{D(M(A), M(A))}2

and

tr{Σζ (1)T(Ip −AAT)Σζ (1)}

≥ λmin{Σx(1)Σx(1)T}tr{AT(AAT
−AAT)A}

≥ Cp2(1−δ)
∥AT(AAT

−AAT)A∥2.

Hence,

{D(M(A), M(A))}2 ≍ ∥AT(AAT
−AAT)A∥2.

Note that

AT(AAT
−AAT)A = −AT(A −A)(A −A)TA + (A −A)T(A −A),

then we complete the proof. �

Proof of Theorem 2.4. As (p1−δ
+ κ2)pT−1/2 log T → 0, then

∥M − M∥2 = op{λr(M)}. Then supj=1,...,p |λj − λj(M)| ≤ ∥M −

M∥2 = op{λr(M)}. For any j < r ,λj+1 + (p1−δ
+ κ2)pT−1/2 log Tλj + (p1−δ + κ2)pT−1/2 log T

p
−→ C > 0.

For any j > r , note that ∥M − M∥2 = op{(p1−δ
+ κ2)pT−1/2 log T }

which implies that |λj| = op{(p1−δ
+ κ2)pT−1/2 log T }, thenλj+1 + (p1−δ

+ κ2)pT−1/2 log Tλj + (p1−δ + κ2)pT−1/2 log T
p
−→ 1 > 0.

On the other hand,λr+1 + (p1−δ
+ κ2)pT−1/2 log Tλr + (p1−δ + κ2)pT−1/2 log T

p
−→ 0.

Hence, the criterion implies a consistent estimator of r . �

Proof of Proposition 3.1. Following the proof of Lemma A.1,
∥T−1 T

t=1{ztw
T
t − E(ztwT

t )}∥F = Op(m1/2q1/2T−1/2). Note that
rank(R) = m and Condition 3.1, it yields λmin(T−1 T

t=1 ztw
T
t R

T) is
bounded away from zerowith probability approaching one. Hence,
following the proof of Proposition 2.1,we can obtain the result. �

Proof of Proposition 4.1. For each i = 1, . . . , p,

di − di =


1
T

T
t=1

ztzTt

−1 1
T

T
t=1

ηi,tzt


+


1
T

T
t=1

ztzTt

−1 1
T

T
t=1

ei,tzt


.
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Then,

∥di − di∥2λmin


1
T

T
t=1

ztzTt


≤

 1
T

T
t=1

ηi,tzt


2

+

 1
T

T
t=1

ei,tzt


2

.

Note that E(ζt |ut) = 0 and E(εt |ut) = 0, we have ∥T−1 T
t=1 ηi,t

zt∥2 = Op(m1/2T−1/2) and ∥T−1 T
t=1 ei,tzt∥2 = ∥T−1 T

t=1 E(ei,t
zt)∥2 + Op(m1/2T−1/2), where Op(m1/2T−1/2)s are uniformly for
i = 1, . . . , p. On the other hand, ∥E(ei,tzt)∥2

2 = O(m1−2λ). Thus,
we complete the proof. �

Proof of Theorem 4.1. Let z = (l1(u), . . . , lm(u))T. For each i =

1, . . . , p,gi(u) − gi(u)

= zT

1
T

T
t=1

ztzTt

−1 1
T

T
t=1

zt(ei,t + ζi,t + εi,t)


− ei

where gi(u) = dT
i z + ei. Hence,

u∈U

|gi(u) − gi(u)|2 du

≤ 2

1
T

T
t=1

zTt (ei,t + ζi,t + εi,t)


1
T

T
t=1

ztzTt

−1

×


u∈U

zzT du


1
T

T
t=1

ztzTt

−1 1
T

T
t=1

zt(ei,t + ζi,t + εi,t)


+ Cm−2λ.

Let p(ut) be the density function of ut and pick vT such that
λmax(


u∈U

zzT du) =

u∈U

vTzzTv du, by Condition 4.1,

vTE(ztzTt )v =


ut∈U

vTztzTt vp(ut) dut

≥ C

ut∈U

vTztzTt v dut = Cλmax


u∈U

zzT du


.

From Condition 4.3, we know λmax(

u∈U

zzT du) ≤ C which
implies
u∈U

|gi(u) − gi(u)|2 du ≤ Op(mT−1) + O(m−2λ).

The terms Op(mT−1) and O(m−2λ) are uniformly for i = 1, . . . , p,
thus we complete the proof. �

Lemma A.6. For nonlinear regression model (14), under Condi-
tions 2.1, 2.2, 4.2 and 4.5, if k = o(T ), then

∥Ση(k) − Ση(k)∥F = ∥D −D∥
2
F J1,k + ∥D −D∥F J2,k + J3,k

where E(J21,k) ≤ Ckm2(T − k)−1
+ Cm2α(k)2−4/γ , E(J22,k) ≤

Ckpm(T − k)−1
+ Cpmα(k)2−4/γ and E(J23,k) ≤ Ckp2(T − k)−1

+

Cp2m−2λα(k)2−4/γ .

Proof. Noting supt ∥et∥∞ = O(m−λ), similar to Lemma A.2, we
can obtain the result. �

Lemma A.7. Under Conditions 2.1–2.2, 2.4, 4.2–4.5, if mT−1/2
=

o(1), k̄T−1/2
= o(1) and λ ≥ 1, then

∥M − M∥2 = Op{(p1−δ
+ κ2)p[(k̄3/2 + m)T−1/2

+ m1−λ
]}

+Op{p2[(k̄2 + m2)T−1
+ m2−2λ

]}.
Proof. Note that ∥M − M∥2 ≤
k̄

k=1{∥
Ση(k) − Ση(k)∥2

2 +

2∥Ση(k)∥2∥Ση(k) − Ση(k)∥2}. By Lemma A.6, we complete the
proof. �

Proof of Theorem 4.2. Note thatm = O(T 1/(2λ+1)), then

∥M − M∥2 = Op{(p1−δ
+ κ2)p(k̄3/2T−1/2

+ T (1−λ)(2λ+1))

+ p2(k̄2T−1
+ T (2−2λ)/(2λ+1))}.

Similar to the proof of Lemma A.5, we have

λr(M) ≥


Ck̄p2(1−δ), if κ2 = o(p1−δ);
Ck̄κ2

1 , if p1−δ
= o(κ1).

Then, by Lemma A.7, ∥M − M∥2 = op{λr(M)} provided that either
(i) κ2 = o(p1−δ) and p2δ[k̄T−1

+ T (2−2λ)/(2λ+1)
] = o(1) or (ii)

p1−δ
= o(κ1) and p2κ2

2κ
−4
1 [k̄T−1

+ T (2−2λ)/(2λ+1)
] = o(1) hold.

Using the same argument of the proof of Theorem 2.1, we obtain
the result. �

Proof of Theorem 4.3. Following the arguments of the proof of
Theorem 2.2, we can construct the result. �
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