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Summary

We propose a new unit-root test for a stationary null hypothesis H0 against a unit-root alternative H1.
Our approach is nonparametric as H0 assumes only that the process concerned is I (0), without specifying
any parametric forms. The new test is based on the fact that the sample autocovariance function converges
to the finite population autocovariance function for an I (0) process, but diverges to infinity for a process
with unit roots. Therefore, the new test rejects H0 for large values of the sample autocovariance function.
To address the technical question of how large is large, we split the sample and establish an appropriate
normal approximation for the null distribution of the test statistic. The substantial discriminative power of
the new test statistic is due to the fact that it takes finite values under H0 and diverges to infinity under H1.
This property allows one to truncate the critical values of the test so that it has asymptotic power 1; it also
alleviates the loss of power due to the sample-splitting. The test is implemented in R.

Some key words: Autocovariance; Integrated process; Normal approximation; Power-one test; Sample-splitting.

1. Introduction

Models with unit roots are frequently used for nonstationary time series. The importance of the unit-
root concept stems from the fact that many economic, financial, business and social-domain data exhibit
segmented trend-like or random wandering phenomena. While the random-walk-like behaviour of stock
prices was noticed much earlier, for example by Jules Regnault, a French broker, in 1863 and by Louis
Bachelier in his 1900 PhD thesis, the development of statistical inference for unit roots started only in the
late 1970s. Nevertheless, the literature on unit-root tests is by now immense and diverse. We review only
a selection of important developments below, leading naturally to the new test presented in this paper.

The Dickey–Fuller tests (Dickey & Fuller, 1979, 1981) deal with Gaussian random walks with inde-
pendent errors. Efforts to relax the condition of independent Gaussian errors have led to, among others,
the augmented Dickey–Fuller tests (Said & Dickey, 1984; Elliott et al., 1996), which deal with auto-
regressive errors, and the Phillips–Perron test (Phillips, 1987; Phillips & Perron, 1988), which estimates
the long-run variance of the error process nonparametrically. The augmented Dickey–Fuller tests have been
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further extended to deal with structural breaks in trend (Zivot & Andrews, 1992), long memory processes
(Robinson, 1994), seasonal unit roots (Chan & Wei, 1988; Hylleberg et al., 1990), bootstrap unit-root tests
(Paparoditis & Politis, 2005), nonstationary volatility (Cavaliere & Taylor, 2007), panel data (Pesaran,
2007) and local stationary processes (Rho & Shao, 2019); see the survey papers by Stock (1994) and
Phillips & Xiao (1998), and the monographs by Hatanaka (1996) and Maddala & Kim (1998) for further
references.

The Dickey–Fuller tests and their variants are based on regression of a time series on its first lag, in
which the existence of a unit root is postulated as a null hypothesis in the form of the regression coefficient
being equal to 1. This null hypothesis is tested against a stationary alternative hypothesis that the regression
coefficient is smaller than 1. This setting leads to innate indecisive inference for ascertaining the existence of
unit roots, as a statistical test is incapable of accepting a null hypothesis. To place the assertion of unit roots
on firmer ground, Kwiatkowski et al. (1992) adopted a different approach: their proposed test considers a
stationary null hypothesis against a unit-root alternative. It is based on a plausible representation of possible
nonstationary time series in which a unit root is represented as an additive random-walk component. Then,
under the null hypothesis, the variance of the random-walk component is zero. The test of Kwiatkowski
et al. (1992) is the one-sided Lagrange multiplier test for testing the variance being zero against it being
greater than zero.

Despite the many exciting developments mentioned above, testing for the existence of unit roots remains
a challenge in time series analysis, as most available methods suffer from lack of accurate size control
and low power. In this paper we propose a new test that is based on a radically different idea from
existing approaches. Our setting is similar in spirit to that of Kwiatkowski et al. (1992), in that we test a
stationary null hypothesis H0 against a unit-root alternative H1. However, our approach is nonparametric
as H0 assumes only that the process concerned is I (0), without specifying any parametric forms. The
new test is based on the simple fact that under H0 the sample autocovariance function converges to the
finite population autocovariance function, while under H1 it diverges to infinity. Therefore, we can reject
H0 for large absolute values of the sample autocovariance function. To address the technical question of
how large is large, we split the sample and establish an appropriate normal approximation for the null
distribution of the test statistic. Our sample autocovariance function-based test statistic offers substantial
discriminative power as it takes finite values under H0 and diverges to infinity under H1. This property
allows us to truncate the critical values determined by the normal approximation to ensure that the test has
asymptotic power 1; furthermore, it alleviates the loss of power due to the sample-splitting, so that our test
outperforms the test of Kwiatkowski et al. (1992) in a power comparison simulation. Another advantage
of the new method is that it has remarkable discriminative power, being able to tell the difference between,
for example, a random walk and an ar(1) with autoregressive coefficient close to but still smaller than 1,
a case in which most available unit-root tests, including the method of Kwiatkowski et al. (1992), suffer
from weak discriminative power. Admittedly, the new test is technically sophisticated, which we argue is
inevitable in order to gain improvement over existing methods. Nevertheless, we have developed an R (R
Development Core Team, 2022) function ur.test in the package HDTSA that implements the test in an
automatic manner.

2. Main results

2.1. A power-one test

A time series {Yt} is said to be I (0), denoted by Yt ∼ I (0), if E(Yt) ≡ μ, E(Y 2
t ) < ∞ and

∑∞
k=0 |γ (k)| <

∞ where γ (k) ≡ cov(Yt+k , Yt). Let ∇Yt = Yt − Yt−1, ∇0Yt = Yt and ∇dYt = ∇(∇d−1Yt) for any integer
d � 1. A time series {Yt} is said to be I (d), denoted by Yt ∼ I (d), if {∇dYt} is I (0) and {∇d−1Yt} is not
I (0). An I (d) process is also called a unit-root process with integration order d. Given the observations
{Yt}n

t=1, we are interested in testing the hypotheses

H0 : Yt ∼ I (0) versus H1 : Yt ∼ I (d) for some integer d � 1. (1)
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Write Ȳ = n−1
∑n

t=1 Yt and denote the sample autocovariance function at lag k by γ̂ (k) = n−1
∑n−k

t=1 (Yt+k −
Ȳ )(Yt − Ȳ ), which is a consistent estimator for γ (k) under H0. When Yt ∼ I (d), Wold’s decomposition
for the purely nondeterministic I (0) process gives

∇dYt = μd +
∞∑

j=0

ψjεt−j, (2)

where μd = E(∇dYt) is a constant, ψ0 = 1 and {εt} is white noise. Proposition 1 indicates that γ̂ (k)
diverges to infinity under H1. Thus we can reject H0 for large values of |γ̂ (k)|.

Proposition 1. Let Yt satisfy (2) with independent εt ∼ (0, σ 2
ε ) and

∑∞
j=1 j|ψj| < ∞.Write a = ∑∞

j=0 ψj

and Vd−1(t) = Fd−1(t)− ∫ 1
0 Fd−1(t) dt where Fd−1(t) is the scalar multi-fold integrated Brownian motion

defined recursively by Fj(t) = ∫ t
0 Fj−1(x) dx for any j � 1, with F0(t) the standard Brownian motion. For

any given integer k � 0, as n → ∞ we have that (i) n−(2d−1)γ̂ (k) → a2σ 2
ε

∫ 1
0 V 2

d−1(t) dt in distribution
if μd = 0, and (ii) n−2d γ̂ (k) → φd,kμ

2
d in probability if μd |= 0, where φd,k > 0 is a bounded constant

depending only on d and k.

By Proposition 1, one may consider rejecting H0 for large values of Tnaive = ∑K0
k=0 |γ̂ (k)|2 with a

prescribed integer K0 � 0, as Tnaive converges to
∑K0

k=0 |γ (k)|2 < ∞ under H0. Unfortunately, there are
two obstacles to using Tnaive: (i) to determine the critical values one has to derive the null distribution
of an{Tnaive − ∑K0

k=0 |γ (k)|2} with some an → ∞; (ii) one needs a consistent estimator for
∑K0

k=0 |γ (k)|2
under H0, which is not readily available as we do not know whether or not H0 holds in practice. To
overcome these two obstacles, we implement the idea of data-splitting. Let N = �n/2�. Define γ̂1(k) =
N −1

∑N−k
t=1 (Yt+k − Ȳ )(Yt − Ȳ ) and γ̂2(k) = N −1

∑2N−k
t=N+1(Yt+k − Ȳ )(Yt − Ȳ ). The test statistic for (1) is

defined as

Tn =
K0∑

k=0

|γ̂2(k)|2,

where K0 � 0 is a prescribed integer that controls the amount of information from different time lags to
be used. Although our theory allows K0 to diverge with the sample size n, the simulation results reported
in § 3 indicate that the finite-sample performance of the test is robust with respect to different values of K0

and the test works well even with small K0.
Formally, we reject H0 at the significance level φ ∈ (0, 1) if Tn > cvφ , where cvφ is the critical value

satisfying prH0
(Tn > cvφ) → φ. As we will see in (3), {γ̂1(k)}K0

k=0 are used to determine the critical value
cvφ . One obvious concern with splitting the sample into two halves is loss of testing power. However,
the fact that Tn takes finite values under H0 and diverges to infinity under H1 implies that Tn has strong
discriminative power to tell H1 apart from H0, which is enough to provide more power than, for example,
the test of Kwiatkowski et al. (1992). Our simulation results indicate that the sample-splitting works well
even for sample size n = 80. Under H0, write yt,k = 2{(Yt −μ)(Yt+k −μ)−γ (k)}sgn(k + t −N −1/2). For
� � 1 define B2

� = E{(∑�

t=1 Qt)
2} where Qt = ∑K0

k=0 ξt,k with ξt,k = 2yt,kγ (k). The following regularity
conditions are needed; see the Supplementary Material for a discussion of their validity.

Condition 1. Under H0, max1�t�n E(|Yt|2s1) � c1 for two constants s1 ∈ (2, 3] and c1 > 0.

Condition 2. Under H0, {Yt} is α-mixing with α(τ) = supt supA∈F t−∞ ,B∈F∞
t+τ |pr(AB)− pr(A)pr(B)| �

c2τ
−β1 for any τ � 1, where F t

−∞ and F∞
t+τ denote the σ -fields generated by {Yu}u�t and {Yu}u�t+τ ,

respectively, and c2 > 0 and β1 > 2(s1 − 1)s1/(s1 − 2)2 are two constants, with s1 as specified in
Condition 1.

Condition 3. Under H0, there is a constant c3 > 0 such that B2
� � c3� for any � � 1.
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Theorem 1. Suppose that H0 holds with Conditions 1–3 satisfied, and let K0 = o{nξ(β,s1)}with ξ(β, s1) =
min[(s1−2)/(4s1), (β−1)(s1−2)/{(2β+2)s1}], where s1 andβ1 are specified, respectively, in Conditions 1
and 2, and β = β1(s1 − 2)2/{2s1(s1 − 1)}. Then, as n → ∞,

sup
u>0

∣∣∣∣∣pr
{

n1/2Tn > u + n1/2
K0∑

k=0

|γ̂1(k)|2
}

− 1 +�

(
2Nu

B2N−K0n1/2

)∣∣∣∣∣ → 0.

One may select the critical value as cvφ,naive = z1−φB̂2N−K0/(2N ) + ∑K0
k=0 |γ̂1(k)|2, where z1−φ is the

(1 − φ)-quantile of the standard normal distribution N (0, 1) and B̂2N−K0 is an estimate of B2N−K0 that
satisfies the condition B̂2N−K0/B2N−K0 → 1 in probability under H0, as then the rejection probability of the
test under H0 converges to φ; see § 2.3 and Theorem 3. Unfortunately,

∑K0
k=0 |γ̂1(k)|2 diverges to infinity

under H1, and this leads to substantial power loss. To remedy this defect, we apply the truncation idea from
Chang et al. (2017, § 2.3). More precisely, we set the critical value as

cvφ = cvφ,naive I (T )+ κn I (T c), (3)

where κn = 0.1 log N with N = �n/2� and the event T satisfies the conditions prH0
(T ) → 1 and

prH1
(T c) → 1 as n → ∞. Observe that prH0

(cvφ = cvφ,naive) → 1 and prH1
(cvφ = κn) → 1; the former

ensures that the rejection probability of the proposed test under H0 converges to the nominal level φ.
Proposition 1 shows that prH1

{|γ̂2(0)|2 > κn} → 1. Owing to Tn � |γ̂2(0)|2, we have prH1
(Tn > κn) → 1,

which entails that the proposed test has power 1 asymptotically. We will describe in § 2.2 how to specify
a qualified event T .

Theorem 2. Let cvφ be defined by (3) with T satisfying prH0
(T ) → 1 and prH1

(T c) → 1, and suppose

that B̂2N−K0/B2N−K0 → 1 in probability under H0 as n → ∞. Then (i) prH0
(Tn > cvφ) → φ if the

conditions of Theorem 1 hold, and (ii) prH1
(Tn > cvφ) → 1 if Yt satisfies (2) with independent εt ∼ (0, σ 2

ε )

and
∑∞

j=1 j|ψj| < ∞.

2.2. Determining the event T in (3)

The critical value cvφ defined in (3) depends on the event T . Let Xt = ∇Yt and γ̂x(k) = (n −
1)−1

∑n−k
t=2 (Xt+k − X̄ )(Xt − X̄ ) for k � 0, where X̄ = (n − 1)−1

∑n
t=2 Xt . To avoid the effect of the

innovation variance σ 2
ε , we consider the ratio R = {γ̂ (0)+ γ̂ (1)}/{γ̂x(0)+ γ̂x(1)}. Notice that R = Op(1)

under H0 and prH1
(R � C∗N 3/5) → 1 for any fixed constant C∗ > 0. We define T in (3) by

T = {R < C∗N 3/5}. (4)

To use T with finite samples, C∗ must be specified according to the underlying process.

Proposition 2. Let Yt ∼ I (1) satisfy (2) with independent εt ∼ (0, σ 2
ε ) and

∑∞
j=1 j|ψj| < ∞. Write

η = ∑∞
j=0 ψ

2
j + ∑∞

j=0 ψjψj+1. As n → ∞, we have that (i) n−1R → 2a2η−1
∫ 1

0 V 2
0 (t) dt in distribution if

μ1 = 0, where a and V0(t) are defined in Proposition 1, and (ii) n−2R → 6−1σ−2
ε η−1μ2

1 in probability if
μ1 |= 0.

Proposition 2 shows that R with μ1 |= 0 diverges faster than R with μ1 = 0. Thus, for any given
C∗ > 0, the requirement prH1

(T c) → 1 is satisfied more readily with μ1 |= 0. Hence, we focus on
the cases with μ1 = 0 only. Recall that Xt = ∇Yt = μ1 + ∑∞

j=0 ψjεt−j. Then a2η−1 = λ−1(1 + ρ)−1,
where ρ = (

∑∞
j=0 ψ

2
j )

−1
∑∞

j=0 ψjψj+1 is the first-order autocorrelation coefficient and λ = σ 2
S /σ

2
L with the

short-run variance σ 2
S = σ 2

ε

∑∞
j=0 ψ

2
j and the long-run variance σ 2

L = σ 2
ε (

∑∞
j=0 ψj)

2. Write σ̂ 2
S = γ̂x(0).
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Applying the estimation method for the long-run variance suggested in § 2.3, we can obtain σ̂ 2
L , the kernel-

type estimate ofσ 2
L , based on {Xt−X̄ }n

t=2. Then we can estimateλ andρ by λ̂ = σ̂ 2
S /σ̂

2
L and ρ̂ = γ̂x(1)/γ̂x(0).

As E{∫ 1
0 V 2

0 (t) dt} = 1/6, we now specify the model-dependent constant C∗ in (4) as

C∗ = 2cκ/{λ̂(1 + ρ̂)} (5)

for some constant cκ > 1/6. Our extensive simulation results indicate that this specification of C∗ with
cκ ∈ [0.45, 0.65] works well across a range of models.

Although the above specification was derived for Yt ∼ I (1), our simulation results indicate that it also
works well for I (2) processes. Testing I (0) against I (d) with d > 1 is easier than doing so with d = 1, as
the autocovariances are of order at least n2d−1 for I (d) processes; hence the difference between the values
of Tn under H1 and those under H0 increases as d increases.

2.3. Estimation of B2
2N−K0

Write m = 2N − K0. Recall that Qt = ∑K0
k=0 ξt,k with ξt,k = 2yt,kγ (k). Let Vm be the long-run variance

of the sequence {Qt}m
t=1. We then have B2

2N−K0
= mVm. Define Q̃t = ∑K0

k=0 ξ̃t,k with ξ̃t,k = 2ỹt,k γ̂ (k), where

ỹt,k = 2{(Yt − Ȳ )(Yt+k − Ȳ ) − γ̂ (k)}sgn(k + t − N − 1/2). Let G̃j = m−1
∑m

t=j+1 Q̃tQ̃t−j if j � 0 and

G̃j = m−1
∑m

t=−j+1 Q̃t+jQ̃t otherwise. We can estimate Vm by Ṽm = ∑m−1
j=−m+1 K(j/bm)G̃j with a kernel K(·)

and bandwidth bm. Let

B̂2N−K0 = (mṼm)
1/2.

Andrews (1991) found that the quadratic spectral kernel is optimal for such an estimation. We suggest
using this kernel in practice by calling the function lrvar of the R package sandwich (Zeileis et al.,
2021) with the default bandwidth specified in the function. To state the required asymptotic property for
B̂2N−K0 with general kernels, we need the following regularity conditions.

Condition 4. The kernel function K(·) : R → [−1, 1] is continuously differentiable on R and is such
that (i) K(0) = 1, (ii) K(x) = K(−x) for any x ∈ R, and (iii)

∫ ∞
−∞ |K(x)| dx < ∞. Let K∗ = K0 + 2 satisfy

K13
∗ log K∗ = o(n1−2/s2) with s2 as specified in Condition 5. The bandwidth bm → ∞ as n → ∞ satisfies

bm = o{n1/2−1/s2(K5
∗ log K∗)−1/2} and K4

∗ = o(bm).

Condition 5. Under H0, max1�t�n E(|Yt|2s2) � c4 for two constants s2 > 4 and c4 > 0, and the
α-mixing coefficients {α(τ)}τ�1 satisfy α(τ) � c5τ

−β2 for two constants c5 > 0 and β2 > max{2s2/

(s2 − 2), s2/(s2 − 4)}, where α(τ) is as defined in Condition 2.

Theorem 3. Suppose that Conditions 4 and 5 hold.Then, as n → ∞, B̂2N−K0/B2N−K0 → 1 in probability
under H0.

2.4. Implementation of the test

Based on § 2.2 and § 2.3, Algorithm 1 outlines the steps of performing our test, which includes two
tuning parameters. The algorithm is implemented in an R function ur.test in the package HDTSA (Lin
et al., 2021). To perform the test using function ur.test, one merely needs to input the time series {Yt}n

t=1

and the nominal level φ. The package sets the default value cκ = 0.55 and returns the five testing results
for K0 = 0, 1, . . . , 4. One can also set (cκ , K0) subjectively. We recommend using cκ ∈ [0.45, 0.65] and
K0 ∈ {0, 1, 2, 3, 4}.

To illustrate robustness with respect to the choice of (cκ , K0), we apply our test to 14 U.S. annual
economic time series (Nelson & Plosser, 1982) that are often used for testing unit roots in the literature.
The results with cκ ∈ {0.45, 0.55, 0.65} and K0 ∈ {0, 1, 2, 3, 4} are exactly the same for each of the 14 time
series; see the Supplementary Material for details.
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Algorithm 1. Sample autocovariance function-based unit-root test.

Input: Time series {Yt}n
t=1, nominal level φ, and two (optional) tuning parameters (cκ , K0).

Step 1. Compute γ̂ (k), γ̂1(k), γ̂2(k) and γ̂x(k). Put ρ̂ = γ̂x(1)/γ̂x(0).
Step 2. Call function lrvar from the R package sandwich, with the default bandwidth

of the function, to compute the long-run variances of {Q̃t} and {Xt}, denoted by
Ṽ2N−K0 and σ̂ 2

L , respectively, where Q̃t is defined in § 2.3. Put λ̂ = γ̂x(0)/σ̂ 2
L .

Step 3. Calculate the test statistic Tn = ∑K0
k=0 |γ̂2(k)|2 and the critical value cvφ as in (3)

with B̂2N−K0 = (2N − K0)
1/2Ṽ 1/2

2N−K0
and T given in (4) for C∗ specified in (5).

Step 4. Reject H0 if Tn > cvφ .

3. Simulation study

We investigate the finite-sample properties of our test Tn by simulation with K0 ∈ {0, 1, 2, 3, 4} and
cκ ∈ {0.45, 0.55, 0.65}. We also consider Tn with the untruncated critical value cvφ,naive, i.e., cκ = ∞ in
(5). Hualde & Robinson (2011) proposed the pseudo maximum likelihood estimator d̂ for the integration
order d in the autoregressive fractionally integrated moving average models that can be used to construct a
t-statistic d̂/sd(d̂) for H0 : d = 0 versus H1 : d � 1. We call the test that rejects H0 if d̂/sd(d̂) > z1−φ the
hr test, where z1−φ is the (1 −φ)-quantile of N (0, 1). For comparison, we include the test of Kwiatkowski
et al. (1992) and the hr test in our experiments. We set N = 40, 70, 100 and repeat each setting 2000 times.
To examine the rejection probability of the tests under H0, we consider the following three models.

Model 1: Yt = ρYt−1 + εt .
Model 2: Yt = εt + φ1εt−1 + φ2εt−2.
Model 3: Yt − ρ1Yt−1 − ρ2Yt−2 = εt + 0.5εt−1 + 0.3εt−2.

To examine the rejection probability of the tests under H1, we consider the following four models.
Model 4: ∇Yt = Zt , Zt = ρZt−1 + εt .
Model 5: ∇Yt = Zt , Zt = εt + φ1εt + φ2εt−1.
Model 6: ∇Yt = Zt , Zt − ρ1Zt−1 − ρ2Zt−2 = εt + 0.5εt + 0.3εt−1.
Model 7: ∇2Yt = Zt , Zt = εt + φ1εt + φ2εt−1.

Unless specified otherwise, we always assume that εt ∼ N (0, σ 2
ε ) independently with σ 2

ε = 1 or 2 and set
the nominal level φ to 5%. The results with different (cκ , K0) are similar, indicating once again that our
test is robust with respect to the choice of (cκ , K0). We list the results with K0 = 0 and σ 2

ε = 1 in Table 1,
and report other results and the εt ∼ t(2) and εt ∼ t(5) cases in the Supplementary Material.

Overall the rejection probabilities of our test under H0 are close to the nominal level φ = 5%, especially
when n is large, such as N = 100. The performance of our test is stable across different models with different
parameters, different K0 and different innovation distributions, whereas that of Kwiatkowski et al.’s test
and of the hr test vary and are adequate only in some settings. Table 1 indicates that our test works well for
Model 1 with both positive and negative ρ, while Kwiatkowski et al.’s test and the hr test perform poorly
when ρ < 0 and even worse when ρ > 0. Kwiatkowski et al.’s test and the hr test completely fail when
ρ = 0.9, as the rejection probabilities are at least 46.7%. This is due to the fact that when ρ is close to 1,
Kwiatkowski et al.’s test and the hr test have difficulties distinguishing ρ from 1, which is a unit root; see
also Table 3 of Kwiatkowski et al. (1992). Our test does not suffer from this closeness to 1, as the order of
the magnitude of the autocovariance function matters. Our test and that of Kwiatkowski et al. (1992) work
well for Model 2, while the hr test is too conservative. For Model 3, the rejection probabilities of our test
and the hr test are close to 5%, while Kwiatkowski et al.’s test does not work as its rejection probabilities
range from 16.6% to 26.2%. Our test with cκ = ∞ has no power, which shows that the truncation step for
the critical value in (3) is necessary. The test of Kwiatkowski et al. (1992) has impressive power owing to
the fact that it has a tendency to overestimate the rejection probability under H0, leading to inflated power.
Nevertheless, our test exhibits greater power in most cases. The hr test has good power for Models 4 and 5,
but performs poorly for Model 6. The power-one property of our test is observable in the simulation since
the rejection probability tends to 1 as N increases. Comparing the results of Models 5 and 7, we find that
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Table 1. Rejection probabilities (%) of the proposed test Tn with K0 = 0 and
cκ = 0.45, 0.55, 0.65, ∞, the test of Kwiatkowski et al. (1992), and the hr test; the nominal

level is 5%
Model 1 Model 4

ρ N ∞ 0.45 0.55 0.65 KPSS HR ρ N ∞ 0.45 0.55 0.65 KPSS HR

0.5 40 6.0 6.0 6.0 6.0 10.4 5.7 0.5 40 11.7 94.2 88.4 84.0 84.2 96.4
70 6.9 6.9 6.9 6.9 10.1 7.0 70 11.7 96.5 92.9 88.4 90.9 99.8
100 6.1 6.1 6.1 6.1 10.2 8.4 100 11.3 98.0 95.5 92.2 95.5 100.0

0.9 40 7.2 41.9 30.0 20.3 51.2 46.8 0.9 40 13.1 99.2 97.3 94.6 91.1 98.9
70 7.8 23.7 14.6 10.4 46.7 58.8 70 14.8 99.8 99.1 97.9 95.3 100.0
100 8.5 12.7 9.4 8.6 49.2 61.1 100 16.4 99.9 99.5 99.1 97.2 100.0

−0.5 40 7.4 7.4 7.4 7.4 1.8 0.1 −0.5 40 5.6 82.2 75.1 67.6 81.5 99.7
70 6.9 6.9 6.9 6.9 2.5 0.2 70 6.3 92.1 86.1 80.0 90.1 100.0
100 6.4 6.4 6.4 6.4 1.8 0.3 100 5.8 94.2 89.5 85.2 94.5 100.0

Model 2 Model 5
(φ1,φ2) N ∞ 0.45 0.55 0.65 KPSS HR (φ1,φ2) N ∞ 0.45 0.55 0.65 KPSS HR

(0.8, 0.3) 40 6.2 6.2 6.2 6.2 7.6 0.9 (0.8, 0.3) 40 11.8 94.3 88.8 82.3 82.0 99.4
70 6.4 6.4 6.4 6.4 6.2 0.4 70 11.8 96.6 92.7 88.3 90.1 100.0
100 7.2 7.2 7.2 7.2 7.0 0.4 100 12.1 98.4 95.4 91.8 95.3 100.0

(0.9, 0.5) 40 6.7 6.7 6.7 6.7 8.5 0.4 (0.9, 0.5) 40 11.8 95.3 90.0 84.2 83.5 99.8
70 6.5 6.5 6.5 6.5 8.1 0.0 70 12.2 97.2 93.8 89.8 89.2 100.0
100 5.6 5.6 5.6 5.6 7.4 0.0 100 11.6 98.6 96.4 92.7 94.8 100.0

(0.95, 0.9) 40 7.2 7.2 7.2 7.2 9.0 0.0 (0.95, 0.9) 40 13.1 95.0 90.0 83.9 83.0 99.6
70 7.1 7.1 7.1 7.1 7.3 0.2 70 11.6 97.3 93.8 89.7 90.2 100.0
100 5.5 5.5 5.5 5.5 8.1 0.0 100 13.7 99.0 96.4 92.3 95.2 100.0

Model 3 Model 6
(ρ1, ρ2) N ∞ 0.45 0.55 0.65 KPSS HR (ρ1, ρ2) N ∞ 0.45 0.55 0.65 KPSS HR

(0.4, 0.2) 40 7.2 8.2 7.4 7.3 22.5 4.8 (0.4, 0.2) 40 14.8 98.0 95.2 90.6 85.9 29.2
70 7.7 7.7 7.7 7.7 17.3 5.0 70 15.4 99.1 97.0 93.8 92.0 43.4
100 7.2 7.2 7.2 7.2 18.0 5.1 100 16.6 99.6 98.8 96.5 96.5 54.5

(0.5, 0.1) 40 8.5 8.9 8.5 8.5 19.6 5.4 (0.5, 0.1) 40 14.2 99.1 95.9 91.3 84.7 30.2
70 8.0 8.0 8.0 8.0 16.6 6.2 70 14.8 99.4 97.2 94.0 91.2 47.8
100 6.3 6.3 6.3 6.3 17.4 5.9 100 15.0 99.6 98.5 96.2 95.5 60.9

(0.6, 0.1) 40 8.5 12.7 9.6 8.7 26.2 6.0 (0.6, 0.1) 40 14.5 99.2 97.1 93.3 87.2 27.6
70 7.3 7.3 7.3 7.3 22.4 6.8 70 15.7 99.7 98.5 96.2 93.5 37.3
100 7.6 7.6 7.6 7.6 20.3 7.0 100 16.4 99.8 99.1 97.7 95.7 44.0

Model 7 Model 7
(φ1,φ2) N ∞ 0.45 0.55 0.65 KPSS HR (φ1,φ2) N ∞ 0.45 0.55 0.65 KPSS HR

(0.8, 0.3) 40 6.7 100.0 100.0 99.9 98.5 100.0 (0.9, 0.5) 40 7.0 100.0 100.0 100.0 98.4 100.0
70 6.3 100.0 100.0 100.0 99.7 100.0 70 5.5 100.0 100.0 100.0 99.5 100.0
100 7.0 100.0 100.0 100.0 99.8 100.0 100 5.9 100.0 100.0 100.0 99.9 100.0

(0.95, 0.9) 40 8.0 100.0 100.0 100.0 98.5 100.0
70 7.3 100.0 100.0 100.0 99.2 100.0
100 6.1 100.0 100.0 100.0 99.9 100.0

KPSS, the test of Kwiatkowski et al. (1992); HR, the test that rejects H0 if d̂/sd(d̂) > z1−φ where z1−φ is the (1 −
φ)-quantile of N (0, 1).

our test displays the power-one property more distinctly as our test statistic has more discriminative power
between I (2) and I (0) than between I (1) and I (0).
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