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Abstract
Corona virus disease-19 (COVID-19) has substantially reduced human activities
and the associated anthropogenic emissions. This study quantifies the effects of
COVID-19 control measures on six major air pollutants over 68 cities in North
China by a Difference in Relative-Difference method that allows estimation of
the COVID-19 effects while taking account of the general annual air quality
trends, temporal and meteorological variations, and the spring festival effects.
Significant COVID-19 effects on all six major air pollutants are found, with NO2

having the largest decline (−39.6%), followed by PM2.5 (−30.9%), O3 (−16.3%),
PM10 (−14.3%), CO (−13.9%), and the least in SO2 (−10.0%), which shows the
achievability of air quality improvement by a large reduction in anthropogenic
emissions. The heterogeneity of effects among the six pollutants and different
regions can be partly explained by coal consumption and industrial output data.
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1 INTRODUCTION

Corona virus disease-19 (COVID-19) has brought many countries’ economies and people’s ways of life to a stand-still
during the pandemic due to the implementation of COVID-19 control measures. As these measures are unprecedentedly
wide-spread and over a prolonged period, they have largely curtailed human activities and emission profiles, and created
an opportunity to evaluate the effects of emission reduction measures implemented over a large area over an extended
time period. The evaluation for the COVID-19 effects offers a rare opportunity to gauge the lower limits of air pollution
in the study region at the current energy consumption pattern and industrial installation.

China was the earliest country that encountered the COVID-19 epidemic and implemented control measures to
stop the spread of the virus. Since Wuhan lock-down on January 23, 2020, all provinces in the China mainland
implemented strict measures to reduce person-to-person contacts, ranging from keeping nonessential factories and
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offices closed to travel restrictions and a high level of self home-quarantine in the population. While these measures
have effectively limited the spread of the virus, it has also substantially reduced anthropogenic activities and emis-
sions. It is of great need to measure the extent of the air quality changes as the results of the reduced human
activities.

Existing studies in evaluating the COVID-19’s effects on air quality tend to estimate the effects by directly comparing
the periods across years, or the periods before/after the lock-down in 2020, which ignored the confounding of general air
quality trend and different meteorological variation. Bauwens et al. (2020) investigated the impacts on NO2 in China and
other early epicenters using satellite observations. To eliminate the interference of the lunar new year, they compared the
average NO2 between 11 February and 24 March 2020 to the same period in 2019 and found that NO2 dropped by 40%
over 16 lock-down cities in China on average. Cadotte (2020) used the differences in the average concentrations between
February in 2019 and 2020 as measures of the COVID-19 effects in six international cities. Sicard et al. (2020) assessed the
effect of lock-down in four European cities and Wuhan by comparing the lock-down period in 2020 to the same periods
in 2017–2019. Otmani et al. (2020) studied the impact of COVID-19 lock-down on PM10, SO2, and NO2 in Salé of Morocco
by the differences between the concentrations before and during the lock-down period. Sharma et al. (2020) studied the
effects of restricted emissions on air quality in India by comparing the average concentrations in 2020 with those over the
same period in the previous years.

Cares have to be exercised when quantifying the COVID-19 effects on air quality. In particular, meteorological con-
founding has to be considered. Temperature, which is a driver for ozone, naturally increases from early January to
after Wuhan lock-down on January 23, 2020. Hence, the increase in a factor of 1.5–2 found in Shi and Brasseur (2020)
in the ozone was partly due to more solar radiation in the warmer COVID-19 control period. A calculation given in
the supplementary materials (SM) shows that similar increases in the ozone happened over the same time periods
in 2019.

Another issue is the air quality trend which prevents simple yearly matching and comparison. This is par-
ticularly needed in China as the air pollution mitigation initiatives since 2013 (State Council of China, 2013)
has led to significant reductions in PM2.5, PM10, and SO2 in North China (Chen et al., 2018; Liu et al., 2019;
Shen et al., 2017; Tânia et al., 2017). At the same time, there has been an increasing trend in ozone (O3)
(Tan et al., 2018; Wang et al., 2019). Hence, a direct comparison between the COVID-19 control period in 2020
and the same time period in 2019 would mix the effects of the yearly trends and the COVID-19 lock-down
measures.

There are studies on statistical models with applications to air quality. Fassó and Finazzi (2013) proposes a spa-
tiotemporal model with time-varying coefficient and latent variables, and applications in mapping the daily average NO2
concentration in Europe; see Wan et al. (2021) for extension to China’s air pollution modeling. Liang et al. (2015) and
Zhang et al. (2020) proposed a nonparametric spatial and temporal adjustment to the meteorological confounding in air
quality assessments.

A key in the COVID-19 effect study is to impute the would-be average pollution concentrations in the absence
of the COVID-19. We propose a Difference in Relative-Difference (DiRD) method which extends the existing
Different-in-Difference method (DiD) method (Angrist & Pischke, 2008; Card & Krueger, 1994; Lechner, 2011) in two
aspects. As meteorology plays significant roles in the observed pollution concentrations, we adopt the flexible nonpara-
metric regression method to remove the meteorological confounding, which is related to the semiparametric approach
in Abadie (2005) and the nonparametric estimation in Lu et al. (2019). As the yearly trend of air quality is significantly
impacted by human effort, we make the conditional parallel trends assumption on relative differences instead of the
absolute differences.

Our study finds striking COVID-19 effects on the six major air pollutants in 68 cities in North China. The effects
were the most significant on NO2 with 67 of the 68 cities having statistically significant reductions at 5% level, fol-
lowed by PM2.5 (60 cities) and PM10 (48 cities), CO and O3 in 51 and 47 cities, and SO2 in 40 cities, respectively.
It is found that NO2 was reduced by 39.6% compared with the non-COVID-19 baseline among the 68 cities, fol-
lowed by PM2.5 (30.9%), O3 (16.3%), PM10 (14.3%), CO (13.9%), and SO2 (10.0%). The cities located in the northwest
of Henan province, east of Shandong province, and a substantial area of Hebei province had the most decrease
in NO2 and PM2.5.

The paper is organized as follows. Section 2 introduces the study design and shows evidence of meteorological
confounding. Section 3 outlines the Difference in Relative-Difference (DiRD) method with the proposed estimation pro-
cedure. Section 4 contains details on the statistical inference of the estimated treatment effect. Section 5 reports the results
of COVID-19 effects and analyses.
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2 DATA AND METEOROLOGICAL CONFOUNDING

This section introduces the study region and data for the study, and demonstrate the meteorological confounding on air
pollution.

2.1 Study region and data

Our study includes all 68 prefecture-level or above cities from five provinces (Hebei, Henan, Shandong, Shanxi, and
Shaanxi) and two mega cities (Beijing and Tianjin) in North China. The 68 cities constitute the focal region in China’s
air pollution mitigation campaign (Ministry of Ecology and Environment of China, 2018), which has endured severe air
pollution, largely driven by heavy industrial productions (steel, iron, and building materials).

The data are hourly measurements of six major air pollutants: PM2.5, PM10, NO2, SO2, CO, and O3 from 368 monitoring
sites administrated by the China National Environmental Monitoring Centre. We consider meteorological variables from
China’s Central Meteorological Agency (CMA) as confounding covariates for the causal inference. The meteorological
variables include air pressure (PRES), surface air temperature (TEMP), surface dew point temperature (DEWP), wind
direction (cbwd), cumulative wind velocity (Iws), and cumulative precipitation (IRAIN). The wind directions are grouped
into five categories: NW, NE, SW, SE and CV, where NE = {NE,NNE,ENE}, NW = {W,N,NW,NNW,WNW}, SW = {SW,SSW,
WSW}, SE = {E,S,SE,ESE,SSE} and CV means calm or when the wind speed is less than 0.5 m/s. The cumulative wind
speed (Iws) is the cumulation of the hourly wind speed under a wind direction and is reset to zero when the direction is
changed. Similarly, the cumulative precipitation sums over the precipitation (IRAIN) since it begins to rain and is reset
to zero when it stops. Each air-quality site is matched to the nearest CMA site. Figure 1 shows the geographical locations
of the cities, and the air quality and meteorological sites.

Our analysis also considers monthly coal consumption and industrial outputs in the last two winters. The provincial
coal consumption data were acquired from China Coal Resource Association (http://www.sxcoal.com/). The monthly
major industrial outputs for iron, steel, cement, and electricity are from the National Bureau of Statistics of China. Elec-
tricity generation and metallurgy are the two largest coal consuming sectors in North China. The analysis of the coal
consumption and industrial outputs are provided in the supplementary file.

2.2 Meteorological confounding

Conventional air quality assessment is based on raw average concentrations. However, the observed concentration is
subject to meteorological confounding, that makes the raw statistical measures incomparable, since the weather condition
endures much variation in different years; see Liang et al. (2015) for an adjustment approach to remove the confounding.

F I G U R E 1 The study region consisting of 68 cities from the five
provinces plus Beijing and Tianjin in North China with locations of
air-quality monitoring stations in blue bullets and the meteorological
stations in red triangles
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Figure 2 displays the scatter plots of two meteorological variables (the dew point and pressure) at two sites (Beichen
in Tianjin and Linfen Gongshan in Shanxi) during four periods in January, February in 2019 and 2020, respectively.
The panel of February in 2020 largely corresponds to the COVID-19 control period. PM2.5 concentration is signified
by color. It is shown from the panels that higher PM2.5 is associated with higher dew point when the meteoro-
logical condition is favorable for secondary generation of PM2.5. The confounding effect of the air pressure is less
pronounced than that of the dew point. Figure 2 also reveals varying distributions of meteorological conditions between
the 2 years, shown by the marginal density plots on the top and right edges of the panels. Compared with Febru-
ary 2019, the distribution of the dew point in February 2020 is more skewed with higher values for both sites. This
implies that the meteorological condition in 2020 is less favorable than the same period in 2019, and hence we should
not directly compare the raw PM2.5 averages over the two periods when estimating the COVID-19 effects. Further,
the panel of the lock-down period in February 2020 shows a visible reduction in the PM2.5 relative to the other pan-
els, which suggests that the lock-down did mitigate the pollution of PM2.5 even under an unfavorable meteorological
condition.

3 STUDY DESIGN AND MODELING

In this section, we present the proposed Difference in Relative-Difference (DiRD) method for estimating the
COVID-19 effect by introducing the study design, the nonparametric regression and the estimation for the treatment
effect.

3.1 Study design

A direct comparison of pollution concentrations between the COVID-19 control period in 2020 and the corre-
sponding period in 2019 would mix the COVID-19 effects with nonrelated mitigation measures. A valid approach
is to compare the observed concentrations over the COVID-19 control period with the counterfactual concentra-
tions in the absence of the lock-down in the same COVID-19 period in 2020 after adjusting for the meteorological
confounding.

The DiRD method uses a design of four study periods shown in Table 1. The period before the lock-down is from
December 1, 2019 to January 22, 2020, while the lock-down period is from January 31 to February 29 in 2020. There is an
8-day gap between the two periods to avoid the lunar new year (LNY) holidays effect, because the LNY day is the most
important holiday in China during which nonessential industrial and service operations are suppressed and also alters
the general emission and air quality profiles. Similarly, two matching periods in the previous year were defined, where
the 8-day LNY gap was determined according to the LNY day in 2019.

3.2 Regression on meteorological data

Let Y ijt be the concentration of a pollutant and Xijt = (Z′
ijt,Wijt)′ be the meteorological variables at time t of winter season

i (i = 2019 for the 2018–2019 winter and i = 2020 for the 2019–2020 winter seasons, respectively) and a study period j (j = 1
before and j = 2 after the LNY) in a monitoring site of a city, where Zijt is a vector of continuous meteorological variables
and W ijt is the discrete wind direction.

As the concentrations of air pollutants are highly nonlinear with respect to meteorological variables, we do
not impose parametric specifications on the regression functions and let the data decide the form instead. For
each period, we study the meteorological impacts on Y ijt of a pollutant by a nonparametric regression model
(Härdle, 1990):

Yijt = mij(Xijt(s)) + 𝜎ij
(
Xijt(s)

)
eijt(s), (1)

where mij(x) = E{Yijt|Xijt(s) = x}, 𝜎2
ij(x) = Var{Yijt|Xijt(s) = x} and eijt(s) are the standardized residuals satisfying that

E{eijt(s)|Xijt(s)} = 0 and Var{eijt(s)|Xijt(s)} = 1. The residuals {eijt(s)} are spatially and temporally stationary and satisfy the
𝛼-mixing conditions as in Zhang et al. (2020).
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F I G U R E 2 Scatter plots of the dew point temperature (DEWP) and the air pressure (PRES) with PM2.5 level superimposed by color in
January and February in 2019 and 2020, respectively. The marginal densities of Dew Point and Pressure are shown on the upper and right edges
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Dec-01-2018 to Feb-02-2019 8-day gap of LNY Feb-11-2019 to Feb-28-2019

2019, Period 1 2019, Period 2

Dec-01-2019 to Jan-22-2020 8-day gap of LNY Jan-31-2020 to Feb-29-2020

2020, Period 1 2020, Period 2

Note: The bold text represents the COVID-19 period in the study.

T A B L E 1 The four periods in the
Difference in Relative-Difference study
design, with 8-day gaps that correspond to
the lunar new year (LNY) holidays

We consider the Nadaraya–Watson (NW) kernel smoothing estimator to estimate m(x). Suppose that for the period
(i, j), we have nij hourly observations {(Xijt,Yijt)}

nij
t=1 from a monitoring site. The NW estimator of mij(x) is

m̂ij(x) =
∑nij

t=1 KH
(

z − Zijt
)

YijtI
(

Wijt = w
)

∑nij
t=1 KH

(
z − Zijt

)
I
(

Wijt = w
) , (2)

where KH(z) = (k (z1∕h1) … k (zd∕hd)) ∕ (h1 … hd) is a product kernel generated by the univariate kernel function k(⋅) for
x = (z′,w)′, z = (z1, … , zd)′ and smoothing bandwidths H = (h1, … , hd)′, and I

(
Wijt = w

)
is the indicator function for

a wind direction w. In implementation, we use the Gaussian kernel k(u) = (2𝜋)−1∕2 exp(−u2∕2) and the cross-validation
(CV) method to select the smoothing bandwidths H (Härdle, 1990).

There are two issues that require discussion. One is that the product kernel is a common way to do multi-
variate smoothing without implying different dimensions of the data being independent, as shown theoretically in
Simonoff (2012). Another issue is that the spatial and temporal dependence in the residuals would not affect the
estimation consistency as shown in Zhang et al. (2020), although they would affect the efficiency and the vari-
ance estimation. This is the reason for employing the spatial–temporal bootstrap in estimating the standard errors in
Section 4.

3.3 Difference in relative-difference method

For simplicity, we omit the time index t from now on and use Y ij and Xij as generic notations for pollutant concentrations
and the meteorological conditions in winter season i and period j. We adopt the notion of potential outcomes (Rubin, 1974)
to define the COVID-19 control effects on air quality.

Let Y ij(0) be the potential outcome that would be observed in the absence of lock-down treatment for the year i
(2019 or 2020) and a study period j (1 before and 2 after the LNY) and Y ij(1) be the counterpart that would be observed
under the lock-down treatment. Only one of the two potential outcomes can be observed for each period. For the three
periods (i, j)= (2019, 1), (2019, 2), and (2020, 1), Y ij =Y ij(0) as there was no lock-down treatment, and Y 2020,2 =Y 2020,2(1)
corresponds to the COVID-19 lock-down period.

We define the average treatment effect with the meteorological adjustment:

𝜏 = EX
[
E
(

Y2020,2(1) − Y2020,2(0)|X2020,2 = x
)]

= ∫ 𝜏(x)dFX(x), (3)

where 𝜏(x) = E
(

Y2020,2(1) − Y2020,2(0)|X2020,2 = x
)

is the conditional average treatment effect, and FX is the base-
line meteorological distribution in the long run and estimated using the meteorological data of Februaries since
2011. Let m0

2020,2(x) = E(Y2020,2(0)|X2020,2 = x) denote the would-be conditional average at a x. Hence, 𝜏(x) = m2020,2(x)
− m0

2020,2(x). As m2020,2(x) can be estimated by (2), the key is to estimate m0
2020,2(x). Let 𝜇(1) = ∫ m2020,2(x)dFX(x) and

𝜇(0) = ∫ m0
2020,2(x)dFX(x) be the meteorologically adjusted means of the potential outcomes Y 2020,2(1) and Y 2020,2(0),

respectively. Then, 𝜏 = 𝜇(1) − 𝜇(0). We use 𝜏∕𝜇(0) to compare the relative effects between different pollutants and
regions.

The conventional Difference-in-Difference (DiD) estimator requires the global parallel-trend assumption
E[Y2020,2(0) − Y2020,1(0)] = E[Y2019,2(0) − Y2019,1(0)], which means that the difference of the average outcomes of the
treated and control periods is invariant in the absence of the policy intervention, and leads to the average treatment
effect E[Y2020,2(1) − Y2020,2(0)] = E(Y2020,2 − Y2020,1) − E(Y2019,2 − Y2019,1). However, such assumption is unreasonable in
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our study for two reasons. First, it is implausible to assume that the absolute decrease across periods from j= 1 to j= 2
would be the same in the two years when the initial levels in the period 1 of the 2 years are quite different. Take the city
of Linfen as an example. Its SO2 average was 94 μg/m3 in period 1 and 53 μg/m3 in period 2 of 2019. It is hard to argue
that such the difference 41 μg/m3 happened in 2019 is maintained in 2020 as the first period concentration in 2020 was
48 μg/m3. Another reason is that air pollution is much affected by meteorological conditions, and the meteorological
distribution may not be the same in different periods.

We assume a relative conditional parallel-trend condition formulated as

m0
2020,2(x) − m2020,1(x)

m2020,1(x)
=

m2019,2(x) − m2019,1(x)
m2019,1(x)

. (4)

Note that m0
2020,2(x) is the regression function of Y 2020, 0(0), which is unobservable. Although (4) cannot be fully veri-

fied, we can check it using past years’ data not affected by the epidemic. We consider 2017 and 2019 with the corresponding
two periods before and after the LNY. We select 2017 because the solar calendar date of LNY in 2017 was closer to 2019
than that of 2018. The DiRD assumption on 2017 and 2019 can be written as m2019,2(x)−m2019,1(x)

m2019,1(x)
= m2017,2(x)−m2017,1(x)

m2017,1(x)
, which is

equivalent to Δ(x) =∶ m2019,2(x)
m2019,1(x)

− m2017,2(x)
m2017,1(x)

= 0.

To verify the assumption, we compute the estimates Δ̂(xi) by using the NW estimate m̂i,j(x) at the meteorological
observations {xi}N

i=1 in all Februaries of the last 10 years. Figure 3 displays the estimated Δ̂(xi) with PM2.5 and NO2 as the
outcome variable. The figure provides the density plots of Δ̂(xi) and the scatter plots for the four meteorological variables:
DEWP (dew point), Iws (cumulative wind speed), PRES (pressure), and TEMP (temperature). The figures for PM10, SO2,
CO, and O3 are included in the supplementary. The figure shows Δ̂(xi) was largely distributed around zero and lends
support to the assumption of Δ(x) = 0.

Based on the assumption (4), the unobserved would-be regression function

m0
2020,2(x) = m2020,1(x) +

m2020,1(x)
m2019,1(x)

{m2019,2(x) − m2019,1(x)} (5)

F I G U R E 3 The distribution of Δ̂(xi) for PM2.5 and NO2, respectively. In each figure, the left panel is the density plots of Δ̂(xi), and the
four panels on the right are the scatter plots between Δ̂(xi) and the meteorological variables
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and thus

𝜏(x) = {m2020,2(x) − m2020,1(x)} −
m2020,1(x)
m2019,1(x)

{m2019,2(x) − m2019,1(x)}. (6)

By estimating each mij(x) using the NW estimator, we attain the estimator 𝜏(x) and the COVID-19 effects by averaging
𝜏(x) over all February’s meteorological data from 2011 to 2020, say {Xt}T

t=1, namely

𝜏 = 1
T

T∑
t=1

𝜏(Xt). (7)

Similarly, we have �̂�(1) = 1
T

∑T
t=1 m̂2020,2(Xt) and �̂�(0) = 1

T

∑T
t=1 m̂0

2020,2(Xt). The estimation procedure is conducted for
each air quality monitoring site with the meteorological data from the matched weather site. The citywise COVID-19
effect is estimated by averaging over all monitoring sites in a city.

One may need to demonstrate the relationship between the pollutant’s concentration and a univariate meteoro-
logical variable. We define the marginal dependence function with respect to one variable X (k) while removing the
confounding of the other variables denoted as X(− k). Let g(x) = g(x(k), x(−k)) be a generic multivariate function of x,
and

g(k)(x(k)) = ∫ g(x(k), x(−k))dFX(−k)|x(k) (x(−k)) (8)

be the marginal dependence function, where FX(−k)|x(k) is the conditional distribution of X(− k) on X (k) = x(k) derived from
the baseline meteorological distribution FX. By substituting g(x) with the conditional effect 𝜏(x), the regression function
m2020,2(x), and the counterfactual regression function m0

2020,2(x), we obtain the univariate functions 𝜏 (k)(⋅), m(k)
2020,2(⋅), and

m0(k)
2020,2(⋅).

For estimation, by the law of large numbers, we may use the baseline meteorological data {Xt}T
t=1 over the 10 years

to estimate (8) by ĝ(k)(x(k)) =
∑

Xt∈A(x(k) ,b) ĝ(Xt)

N(x(k),b)
, where A(x(k), b) = {Xt ∶ |X (k)

t − x(k)| ≤ b} is the cross-section of the X-domain

which has its component X (k)
t within a neighborhood of x(k), N(x(k), b) is sample size within A(x(k), b), b is a smoothing

parameter.
Figure 4 displays the estimated marginal dependence function m̂(k)

2020,2(x
(k)), the counterfactual one m̂0(k)

2020,2(x
(k)),

and the marginal treatment effect 𝜏
(k)(x(k)) with x(k) being the dew point and temperature, respectively. As shown

in these functions, the concentration of air pollutants tends to increase when the dew point increases, while the
confounding effect of the temperature is less pronounced. Besides, the estimated counterfactual curves m̂0(k)

2020,2(x
(k))

were higher than the observed m̂(k)
2020,2(x

(k)), which was an early sign for the COVID-19 control measures’ effect
on reducing the potential level of air pollution consistently over the dew point and the temperature variables,
respectively.

4 INFERENCE FOR THE TREATMENT EFFECT

In this section, we consider statistical inference for 𝜏 and in particularly the variance estimation. The spatial–temporal
dependence in the residuals of Model (1) has to be considered. Note that 𝜏 − 𝜏 admits an expansion after some algebraic
manipulations:

𝜏 − 𝜏 = I1 + I2 + op(n
− 1

2
ij ), (9)

where I1 = ∫ (𝜏(x) − 𝜏(x)) dFX(x) and

I2 = ∫ 𝜏(x)d{F̂X(x) − FX(x)} =
2020∑

i=2011

[
(T)−1

ni2∑
t=1

𝜏(Xi2t) −
1

10 ∫ 𝜏(x)dFXi2(x)

]
.
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F I G U R E 4 Estimated marginal dependence functions m̂(k)
2020,2(x

(k)), the counterfactual regression function m̂0(k)
2020,2(x

(k)), and the
conditional treatment effect 𝜏 (k)(x(k)) with X (k) being the dew point and temperature for PM2.5 and NO2 using data from Tianjin Beichen site.
The smoothing bandwidth b= 2.8 for the dew point and b= 2.1 for the temperature

These two terms are resulted from the estimation errors in the regression function and the baseline meteorologi-
cal distributions, respectively. It may be shown, by following the approach in Zhang et al. (2020) (section 4), that
𝜏 is asymptotically normally distributed with 𝜏 being the asymptotic mean under certain conditions. The asymp-
totic variance of 𝜏 is very involved as both the spatial and temporal dependence get involved in the variance
expression.

To facilitate statistical inference, we propose a spatiotemporal block bootstrap method to approximate the null distri-
bution of 𝜏. The bootstrap strategy combines the temporal block bootstrap on the meteorological variables with the wild
bootstrap that resamples the residuals of the regression model. The bootstrap simulates the distribution of 𝜏 under the
null hypothesis of no COVID-19 effects, which gives the p-values for testing H0 ∶ 𝜏 = 0 versus H1 ∶ 𝜏 < 0.

To implement the bootstrap, we need to estimate the conditional variance 𝜎2
ij(x) of the residuals 𝜀ijt, which is conducted

by the kernel smoothing method on �̂�
2
ijt = {Yijt − m̂ij(Xijt)}2, so that for x = (z′,w)′

�̂�
2
ij(x) =

∑nij
t=1 KH̃{z − Zijt}�̂�2

ijtI{Wijt = w}∑nij
t=1 KH̃{z − Zijt}I{Wijt = w}

. (10)

The bandwidths vector H̃ is selected by the CV (Härdle, 1990). These lead to the estimated standardized residuals
êijt = �̂�ijt∕�̂�ij(Xijt). As shown in Figure 1, the air-quality monitoring sites in different cities are well separated from each
other with at least 50 km apart from each other, which would imply a weak spatial dependence among {êijt} between
sites in different cities. As shown by the semi-varigrams in Figures 2 and S1 of Zhang et al. (2020), there were little spatial
dependence beyond 20 km among the residuals. Hence, we conducted citywise bootstrap resampling of the residuals
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with respect to the spatial scale. Specifically, suppose there are R air-quality monitoring sites in a city, which are denoted
as s1, … , sR. Let Êijt = {êijt(s1), … , êijt(sR)}′ and

Σ̂ij = n−1
ij

nij∑
t=1

ÊijtÊ
′

ijt −

(
n−1

ij

nij∑
t=1

Êijt

)(
n−1

ij

nij∑
t=1

Ê
′

ijt

)
.

Both �̂�
2
ij(x) and Σ̂ij are used for resampling the residuals later.

Then, we construct the bootstrapped samples of covariates and responses for each period (i, j) except the period
i= 2020, j= 2, which was under COVID-19 control. We combine the meteorological data used for the air-quality monitor-
ing stations in a city to form the time series Xt = {X′

ijt(s1), … ,X′
ijt(sR)}′, t = 1, … ,nij. Consider moving blocks with length

l: B1 = (X1, … ,Xl), … ,Bnij−l+1 = (Xnij−l+1, … ,Xnij), Bnij−l+2 = (Xnij−l+2, … ,Xnij , X1), … , Bnij = (Xnij ,X1, … ,Xl−1). Simi-
lar to Liang et al. (2015) and Zhang et al. (2020), we set l= 12 h. The wrapping at the boundary ensures that each of the
original observations appears with an equal chance in a bootstrapped sample. Then nij/l blocks are randomly selected
from the total of nij blocks with replacement, which are joined together to form the resampled meteorological time series
{X∗

ijt(s)}
nij
t=1.

Based on {X∗b
ijt (s)}

nij
t=1, the resampled covariates from the bth round of resampling at site s among s1, … , sR, we impute

the times series of outcome variable via the estimated regression function m̂ij and resampled residuals �̂�∗b
ijt (s) by

Y∗b
ijt (s) = m̂ij(X∗b

ijt (s)) + �̂�
∗b
ijt (s), (11)

where �̂�
∗b
ijt (s) = �̂�ij(X∗b

ijt (s))ê
∗b
ijt (s) and Ê∗b

ijt = {ê∗b
ijt (s1), … , ê∗b

ijt (sR)}
′ ∼ NR(0, Σ̂ij).

For simplicity of the notation, we omit s in the covariates and response. By using the bth resampled data {X∗b
ijt ,Y∗b

ijt }
nij
t=1,

we refit the model and calculate the regression function to generate the counterfactual

m0∗b
2020,2(x) = m̂∗b

2020,1(x) +
m̂∗b

2020,1(x)

m̂∗b
2019,1(x)

(m̂∗b
2019,2(x) − m̂∗b

2019,1(x)),

which leads to 𝜏
∗b, the bth resample of 𝜏. Let {Xt}T

t=1 be the meteorological baseline (all the February meteorological data
from 2011 to 2020). A similar block bootstrap can be applied to {Xt}T

t=1 to form the bootstrapped meteorological baseline
{X∗b

t }T
t=1. To respect the null hypothesis 𝜏 = 0, that is, no COVID-19 lock-down effects, the bootstrapped counterfactual

data Y (0) for no COVID-19 period (period 2 in 2020) is obtained via

Y∗b
2020,2,t(0) = m0∗b

2020,2(X
∗b
t ) + �̂�

∗b
2020,2,t,

where �̂�∗b
2020,2,t is generated the same way as the residuals in (11). Based on the counterfactual data {X∗b

t ,Y∗b
2020,2,t(0)}

T
t=1, we

obtain the estimated regression function m̂0∗b
2020,2(⋅) by the kernel smoothing and the average treatment effect

𝜏
∗b = 1

T

T∑
t=1

[
m̂0∗b

2020,2(X
∗b
t ) − m0∗b

2020,2(X
∗b
t )

]
.

With a total number of B= 300 replications, we obtain the bootstrap estimate of the null distribution of 𝜏 via the empirical
distribution of {𝜏∗b}B

b=1 and calculate the p-value as
∑B

b=1 I(𝜏∗b
< 𝜏)∕B. We reject the null hypothesis if the p-value is

smaller than a significant level.

5 RESULTS AND DISCUSSION

We report results on the COVID-19 effects on the air quality using the proposed 𝜏, and compare with the sim-
ple methods without undergoing the causal inference and meteorological adjustment by directly comparing raw
averages.
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T A B L E 2 The COVID-19 lock-down effects 𝜏, with the associated levels of statistical significance and 90% confidence intervals on
PM2.5 (μg/m3), PM10 (μg/m3), NO2 (μg/m3), CO (mg/m3), SO2 (μg/m3), O3 (μg/m3) over the treatment period January 31 to February 29,
2020, where * * *, **, *, and . mean the effect is significant less than 0 at levels .001, .01, .05, and .1, respectively. (Part of the cities are shown,
the complete version is in the SM)

City PM2.5 PM10 NO2 SO2 O3 CO

Beijing −22.24* * * −8.7* * * −12.88* * * −3.68** −30.38* * * −0.14* * *

(−25.97, −18.51) (−9.91, −7.5) (−14.04, −11.72) (−5.04, −2.31) (−36.81, −23.95) (−0.15, −0.12)

Tianjin −44.28* * * −31.93* * * −29.88* * * −1.3** 4.13 −0.58* * *

(−47.06, −41.49) (−33.22, −30.64) (−30.56, −29.19) (−2.14, −0.45) (−0.7, 8.96) (−0.61, −0.55)

Baoding −12.74* * * −11.96* * * −21.11* * * −1.76* * * −17.04* * * −0.08* * *

(−13.93, −11.54) (−12.95, −10.98) (−21.56, −20.66) (−1.93, −1.59) (−18.87, −15.2) (−0.09, −0.07)

Cangzhou −19.3* * * −19.87* * * −17.2* * * 1.15 1.4 −0.39* * *

(−20.38, −18.22) (−20.88, −18.85) (−17.59, −16.81) (0.98, 1.33) (0.18, 2.62) (−0.4, −0.37)

Chengde 2.28 4.14 −10.84* * * 0.43 −22.48* * * 0.01

(1.82, 2.75) (3.57, 4.71) (−11.33, −10.35) (0.16, 0.71) (−23.69, −21.28) (0, 0.02)

Handan −42.57* * * −36.48* * * −18.98* * * −5.02* * * −27.77* * * −0.2* * *

(−44.05, −41.1) (−37.58, −35.38) (−19.48, −18.48) (−5.22, −4.83) (−30.17, −25.36) (−0.22, −0.19)

Hengshui −38.98* * * −37.64* * * −22.42* * * −1.94* * * −5.89* * * −0.19* * *

(−39.74, −38.23) (−38.95, −36.32) (−22.76, −22.08) (−2.1, −1.78) (−7.31, −4.47) (−0.2, −0.18)

Langfang −5.01* * * 2.94 −11.73* * * −3.55* * * −35.34* * * −0.07* * *

(−6.46, −3.57) (1.54, 4.33) (−12.29, −11.17) (−3.95, −3.16) (−38.38, −32.31) (−0.08, −0.05)

Qinhuangdao −21.95* * * −25.07* * * −23.75* * * −6.31* * * 11.4 −0.22* * *

(−23.68, −20.22) (−26.58, −23.55) (−24.24, −23.25) (−6.51, −6.12) (10.5, 12.3) (−0.24, −0.2)

Shijiazhuang −19.16* * * −18.55* * * −18.7* * * −1.75* * * −22.15* * * −0.27* * *

(−20.78, −17.53) (−20.34, −16.76) (−19.51, −17.88) (−1.92, −1.58) (−25.89, −18.42) (−0.29, −0.24)

5.1 Absolute and relative effects in the 68 cities

The COVID-19 lock-down effects 𝜏 for the 68 cities in North China on the six pollutants are reported in Table 2 along
with their statistical significance levels and confidence intervals by applying the procedure outlined in Section 4. The
relative COVID-19 lock-down effects to the potential air pollution levels without COVID-19 event are 𝜏∕�̂�(0) displayed
geographically in Figure 5.

Table 2 shows that the COVID-19 control measures significantly decreased concentrations of all six pollutants in the
majority of the cities. The effects were the most significant on NO2 with 67 out of 68 cities having significant reductions
at the 5% level, followed by PM2.5 (60 cities) and PM10 (48 cities), and then CO and O3 in 51 and 47 cities, respectively.
SO2 exhibited significant COVID-19 effects in 40 cities, which was the least among the six species.

While the reduction in NO2 and PM2.5 were widely spread, Figure 5 shows that the north and east of Shandong
province, southwest Hebei and north-central of Henan provinces, and east of Shaanxi had the highest percentages of NO2
reduction. The high reduction region for PM2.5 had some overlap with that of NO2, which was largely in north Henan,
east Shandong, and the city of Tianjin. The effects among different regions show strong heterogeneity, which is related to
different air pollution situations. For example, the COVID-19 lock-down effects on PM2.5 and NO2 were much less obvi-
ous in the north of Hebei province in comparison to that in the south of Hebei. This is because the concentrations of air
pollutants in the cities located in the north of Hebei are much lower than the southern area due to lower industrial emis-
sion and more favorable geographical conditions for dispersion of pollutants (Yan et al., 2018), and hence there is less
room for further reduction.

The regions with less significant effects on SO2 were largely located in Shaanxi and Shanxi provinces plus the city
Tianjin, and the northwest corner of Hebei province. The coal-firing power plants and domestic heating are major sources
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F I G U R E 5 Relative changes caused by COVID-19 control measures for the six pollutants, that is, the proportion of effects 𝜏 to the
potential concentration �̂�(0) in the absence of COVID-19, shown on maps of the five North China provinces (Hebei, Shandong, Henan,
Shanxi and Shaanxi) plus Beijing and Tianjin
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T A B L E 3 The average COVID-19 effects of the six pollutants: the absolute effects and the relative effects averaged
over the cities with significant decreasing effects (middle panel) and all 68 cities (right panel)

Aggregated on significant cities Aggregated on all cities

Pollutant Average effects Effects in percentage Average effects Effects in percentage

PM2.5 −34.2 (0.98) −35.9% (0.70%) −29.8 (0.87) −30.9% (0.68%)

PM10 −29.2 (0.96) −27.6% (0.97%) −17.8 (0.90) −14.3% (1.02%)

NO2 −17.2 (0.39) −40.3% (0.57%) −16.9 (0.36) −39.6% (0.54%)

SO2 −4.1 (0.16) −25.0% (0.85%) −1.7 (0.18) −10.0% (0.91%)

CO −0.26 (0.01) −20.4% (0.69%) −0.19 (0.01) −13.9% (0.62%)

O3 −18.2 (0.94) −22.9% (1.05%) −13.3 (0.85) −16.3% (0.93%)

Note: The units for CO is mg/m3 and μg/m3 for other pollutants. The numbers in the parentheses are the standard errors of the effects
calculated via the bootstrap resampling of all the 68 cities.

of SO2 and CO, which had to be operational during the wintry COVID-19 pandemic period under study. As CO is also
a by-product of vehicle emissions, the COVID-19’s reducing effect on vehicle travel offers some reduction in CO, which
made CO being more significant than SO2.

Table 3 reports the average amount of absolute and relative reductions for the six pollutants for the 68 cities and those
significant cities, with the standard errors calculated via bootstrap resampling after we engage on the temporal block
bootstrap to capture the temporal dependence. That NO2 was the most responsive to the COVID-19 control measures was
also reflected in its registering 39.6% reduction relative to the non-COVID-19 baseline �̂�0 among the 68 cities, followed by
PM2.5 (30.9%), O3 (16.3%), PM10 (14.3%), CO (13.9%), and SO2 (10.0%). SO2 had the least percentages of reductions among
the 68 cities.

That NO2 having the most COVID-19 reductions reflects the fact that the enforced home quarantine in the population
had significantly cut down vehicle travel and the related emissions. It is noted that most of the air quality monitoring
sites are located in city centers which largely measure NO2 emissions from the domestic vehicle traffic. The results are
consistent with the satellite image data by NASA and the European Space Agency, which showed a dramatic drop in
nitrogen dioxide emissions in major Chinese cities compared with the same periods a year earlier (National Aeronautics
and Space Administration, 2020).

Part of the CO and O3 reduction can be attributed to the reduced vehicle travel, as CO and NOx are con-
current discharge from vehicles, and both NO2 and O3 are derivatives of NOx. The reduction in PM2.5 and PM10
can be partly attributed to the reductions in NO2, CO, and SO2, as the secondary inorganic aerosol is among
the highest contributing sources for particulate matters in China (Zhu et al., 2018). That SO2 being the least
significant species is due to that the essential domestic winter heating and power generation had to be opera-
tional, and more analyses on SO2 are given in Supplementary based on data of coal consumption and industrial
output.

5.2 Comparison with the results of raw differences

Existing studies in evaluating the COVID-19’s effects on air quality tend to estimate the effects by directly comparing dif-
ferent periods across years or before/during the lock-down, among which the study region of Shi and Brasseur (2020)
covers the northern China and shares the most overlap with us. Shi and Brasseur (2020) compared the average concen-
trations of PM2.5, NO2, O3 between the period before lockdown (1–22 January) and during the lockdown (23 January
to 29 February). They concluded that PM2.5 and NO2 have decreased by 35% and 60%, respectively, and the O3 has
increased by a factor 1.5–2. Our results show that the decrease of PM2.5 and NO2 are at a smaller range 30.9% and
39.6%, and O3 was also decreased by 16.3% on average. The prominent divergence on the conclusion for O3 is because
Shi and Brasseur (2020) mixed the COVID-19 lock-down effect and the temperature/radiation effect on O3 as higher
temperature and more solar radiation in the lock-down period makes O3 generation more efficient. We replicate the
same calculation for the 68 cities in 2019 over the same temporal design and found there was also an average fac-
tor 1.92 of increase over the same two periods in 2019 although there were no policy interventions back then (more
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T A B L E 4 Comparison between our proposed method and the method of comparing raw averages using
(2019, 2) period as contrast (“contrast 2019”) and (2020, 1) period as contrast (“contrast prelockdown”)

Effect Effect in percentage

Pollutant
Our
method

Contrast
2019

Contrast
prelockdown

Our
method

Contrast
2019

Contrast
prelockdown

PM2.5 −29.82 −47.72 −29.32 −30.9% −39.5% −29.8%

PM10 −17.80 −58.34 −39.69 −14.3% −37.0% −29.8%

NO2 −16.93 −22.89 −28.92 −39.6% −46.9% −53.7%

SO2 −1.74 −8.04 −6.05 −10.0% −32.6% −29.7%

CO −0.19 −0.42 −0.43 −13.9% −27.4% −28.5%

O3 −13.27 9.02 33.49 −16.3% 18.7% 125.5%

F I G U R E 6 The estimated COVID-19 effects 𝜏 for PM2.5 and O3 by using the proposed method and differences of the raw averages in
Period 2 (shown in Table 1) between 2019 and 2020 for all the cities

details in the SM), which suggests that such an increase tend to be a seasonal variation instead of the effect of the
policy.

To display more comparable results calculated on the same dataset, we implemented the direct comparison
method on our data of 68 cities. Table 4 compared the results of our method and two simple methods by using
the prelockdown period in 2020 and the same period in 2019 as contrast, respectively, where both of the naive
methods tend to overestimate the decreasing effects on PM2.5, PM10, NO2, SO2, CO while lead to increasing effect
on O3.

Figure 6 displays the estimated COVID-19 effects 𝜏 for PM2.5 and O3 by using 2019 as contrast. The figures for the other
pollutants are provided in the SM. We observed that, for PM2.5, the naive method tends to overestimate the decreasing
effects, which is partly due to the meteorological confounding as shown in Section 2. And for the evaluation of O3, the
simple method would suggest that the control measures for COVID-19 will increase the concentration of O3 for most
cities. Note that the average temperature in 2020 (3.84◦C) was much higher than the average 1.56◦C in 2019. This indicates
that the increase of O3 was likely due to the increase of temperature rather than the COVID-19 control measures. The
added value of our approach is that the proposed method can neutralize the meteorological confounding and offer an
objective measure of the COVID-19 effect on the air quality.



ZHENG et al. 15 of 16

5.3 Conclusions

The COVID-19 control measures have substantially decreased anthropogenic emissions which lead to effects on the air
quality. We analyzed the treatment effects caused by COVID-19 control measures by the Difference in Relative-Difference
method on the six major air pollutants, which accounts for both the yearly trends and the meteorological confounders.
Significant COVID-19 lock-down effects on air pollution associated with all six pollutants were found in a majority of
the cities, and with the most profound decreasing effects on NO2 and PM2.5. In contrast to the would-be outcomes with-
out COVID-19 control, the average concentrations of NO2 and PM2.5 were reduced by 39.6% and 30.9%, respectively. Our
quantitative evaluation for the effects on six air pollutants provide an insight into the achievability of air quality improve-
ment caused by significant restrictions in emissions characterized by much-reduced vehicle transportation and industrial
outputs of key sections.
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