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Abstract: We develop a two-stage approach to estimate the treatment effects of dummy endogenous variables
using high-dimensional instrumental variables (IVs). In the first stage, instead of using a conventional
linear reduced-form regression to approximate the optimal instrument, we propose a penalized logistic
reduced-form model to accommodate both the binary nature of the endogenous treatment variable and
the high dimensionality of the IVs. In the second stage, we replace the original treatment variable with
its estimated propensity score and run a least-squares regression to obtain a penalized logistic regression
instrumental variables estimator (LIVE). We show theoretically that the proposed LIVE is root-n consistent
with the true treatment effect and asymptotically normal. Monte Carlo simulations demonstrate that LIVE
is more efficient than existing IV estimators for endogenous treatment effects. In applications, we use LIVE
to investigate whether the Olympic Games facilitate the host nation’s economic growth and whether home
visits from teachers enhance students’ academic performance. In addition, the R functions for the proposed
algorithms have been developed in an R package naivereg. The Canadian Journal of Statistics 50: 795–819;
2022 © 2021 Statistical Society of Canada
Résumé: de traitment de variables endogènes factices, les auteurs de ce travail élaborent une approche
en deux étapes qui fait usage de variables instrumentales (IV) de grandes dimensions. En effet, afin
d’accommoder le caractère dichotomique de la variable de traitement endogène et le fait que les variables
instrumentales soient de grandes dimensions, la procédure commence par approximer l’instrument optimal
en utilisant la forme réduite d’une régression logistique pénalisée. Ensuite, en remplaçant la variable de
traitement originale par son score de propension, un nouvel estimateur est construit grâce à l’ajustement
par moindres carrés d’un modèle de régression logistique pénalisé à variables instrumentales (LIVE). Les
auteurs montrent que l’estimateur LIVE, ainsi construit, est asymptitquement normal et converge vers le
véritable effet de traitement au taux habituel de racine de n lorsque n →∞. Une étude Monte Carlo leur a,
également, permis de constater que pour estimer les effets d’un traitement endogène, LIVE est plus efficace
que d’autres estimateurs existants. En guise d’applications, les auteurs ont utilisé LIVE pour examiner
l’effet des Jeux Olympiques sur la croissance économique du pays hôte et pour vérifier si les visites à
domicile des enseignants améliorent les résultats scolaires des élèves. Enfin, les algorithmes et procédures
dévélopés dans le cadre de ce travail ont été réunis sous forme d’un package R, appelé ‘naivereg’. La revue
canadienne de statistique 50: 795–819; 2022 © 2021 Société statistique du Canada
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1. INTRODUCTION

This article focuses on regression models with a dummy endogenous variable that takes on binary
values of 1 or 0 to indicate the presence of some treatment effect that may be expected to affect
the outcome. Endogenous treatments are commonly encountered in program evaluations using
observational data for which the selection-on-observables assumption does not hold. Endogeneity
induces unwelcome estimation bias and inconsistency issues, which could generate misguided
policy implications. The instrumental variable (IV) method is a popular technique for addressing
endogeneity problems. Angrist & Imbens (1995) introduced the two-stage least-squares (TSLS)
estimator for average treatment effects (ATEs). Das (2005) considered a nonparametric version
of TSLS in the case of a discrete endogenous regressor. Cai et al. (2006) studied functional
coefficient IV models. Wooldridge (2014) proposed a control function approach for discrete
endogenous explanatory variables. However, we find that the traditional TSLS-based estimators
are no longer efficient and have large variances when estimating the treatment effects of dummy
endogenous variables (see the simulation studies in Section 4). This is because the resulting
predicted value of the dummy endogenous treatment variable using the optimal instrument and
based on a linear reduced-form model could be outside the range [0, 1]. Wooldridge (2010)
suggested using a probit model to estimate the propensity score for treatment assignment but did
not study its theoretical properties. Heckman (1978) proposed estimating the inverse Mill’s ratio
with a probit model for dummy endogenous variables in the Heckman correction model.

In practice, a large set of potential IVs, including their functional transformations and
interactions, may be introduced into the reduced-form model to approximate the optimal
instrument and improve the precision of the IV estimators. However, if many irrelevant
instruments are included in the reduced-form model, the resulting IV estimator becomes less
efficient (Donald & Newey, 2001). The optimal instrument is the conditional expectation of
the endogenous variable, given the valid IVs, that minimizes the asymptotic variance of the IV
estimator (Amemiya, 1974). However, it is often not known a priori which IVs in the model are
truly valid. The researcher cannot identify which instruments are weak using the rule-of-thumb
F-statistic (Hansen & Kozbur, 2014). A desirable approach would be to utilize strong IVs while
discarding irrelevant IVs to improve asymptotic efficiency as well as accuracy of the finite
sample estimation. The early origins of high-dimensional IV models can be traced back to Kloek
& Mennes (1960), who proposed using principal components as a dimension reduction device
in the first stage, and to Newey (1990), who suggested the nonparametric series approach to
estimate the optimal instrument. Of particular interest is the recent seminal work of Belloni
et al. (2012), who proposed a post-LASSO approach to approximate the optimal instruments
using high-dimensional linear IV models. Farrell (2015) studied treatment effects with possibly
more covariates than observations. Fan & Zhong (2018) proposed a nonparametric additive IV
estimator with adaptive group LASSO. Other related studies include Bai & Ng (2010), Carrasco
(2012), Fan & Liao (2014), Caner & Fan (2015), Lin, Feng & Li (2015), Kang et al. (2016),
Gautier & Tsybakov (2018), Windmeijer et al. (2019) and Zhong et al. (2021). In the statistical
literature, in addition to LASSO (Tibshirani, 1996), many other regularization methods with
attractive statistical properties have been introduced to address high-dimensional data, such as
smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001), group LASSO (Yuan & Lin,
2006), adaptive LASSO (Zou, 2006), adaptive group LASSO (Huang, Horowitz & Wei, 2010)
and the Dantzig selector (Candes & Tao, 2007).

In this article, we develop an efficient two-stage estimation method for the treatment effects
of dummy endogenous variables to accommodate both the binary nature of the endogenous
variable and the high dimensionality of the IVs. In the first stage, we propose the use of a logistic
regression reduced-form model for the dummy endogenous treatment variable to estimate the
optimal instrument. In the high-dimensional IV case, a penalized logistic reduced-form model is
considered for the selection of relevant IVs. In the second stage, we replace the original treatment
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variable with its estimated propensity score and run a least-squares regression to obtain the
penalized logistic regression instrumental variables estimator (LIVE). We summarize the main
contributions of LIVE as follows. First, we consider the probabilistic nature of the treatment
effects of dummy endogenous variables by estimating the propensity score function. The better
approximation of the optimal instrument using logistic regression with high-dimensional IVs
produces more efficient IV estimators than the conventional TSLS-based estimators. Simulation
results show that LIVE with the SCAD penalty is more efficient than other IV methods, including
post-LASSO TSLS (Belloni et al., 2012). Second, we demonstrate theoretically that LIVE is
root-n consistent and asymptotically normal. Third, we develop an R function, LIVE, in our
R package naivereg1 for empirical researchers to implement the method easily. Therefore, the
proposed LIVE-based method should be useful for tackling the problem of treatment effect
estimation for dummy endogenous variables with a large number of potential IVs.

The rest of the article is organized as follows. Section 2 describes the methodology and
presents the penalized LIVE. Section 3 presents the theoretical results. In Section 4, we conduct
simulation studies to assess the finite-sample performance. Section 5 demonstrates the use of
the proposed methods in real data studies. Section 6 concludes the article. Technical proofs are
contained in the Appendix.

2. METHODOLOGY

We consider a linear structural equation with an endogenous treatment variable

yi = Di𝛽0 + x′i𝜽0 + 𝜀i, (1)

where yi is the response variable for individual i, Di is a dummy endogenous treatment variable,
𝛽0 denotes the true coefficient on Di, xi is an m × 1 vector of other exogenous control variables,
𝜽0 is an m × 1 vector of the true parameters associated with xi and 𝜀i is the ith random
error term for i = 1, 2,… , n, where n is the sample size. We consider the case in which Di
is endogenous such that E

(
𝜀i|Di

)
≠ 0, which leads to inconsistency in ordinary least-squares

estimators. We focus on the binary treatment case, i.e., Di = 1 when the ith individual belongs
to the treatment group and Di = 0 when it belongs to the control group. Under the assumption
𝔼[𝜀i|Di = 1, xi] = 𝔼[𝜀i|Di = 0, xi], which is weaker than the conventional unconfoundedness
assumption, we have 𝛽0 = 𝔼[yi|Di = 1, xi] − 𝔼[yi|Di = 0, xi], which is the ATE conditional on
the value of xi. It is worth noting that when the assumption 𝔼[𝜀i|Di = 1, xi] = 𝔼[𝜀i|Di = 0, xi]
does not hold, it is also of interest to estimate 𝛽0 as the true regression coefficient for the binary
endogenous regressor in the structural equation. Our main goal is to estimate 𝛽0 consistently
using observational data and study its theoretical properties.

IV techniques are commonly used to obtain a consistent estimator for the regression
coefficients of endogenous variables. We assume that there is a pn × 1 vector of IVs, denoted
by zi = (zi1,… , zipn

)′, which are exogenous, i.e., E
(
𝜀i|zi

)
= 0 for all i = 1,… , n, and correlated

with the endogenous treatment variable. The optimal instrument is the conditional expectation
of the endogenous variable, given the valid IVs, that minimizes the asymptotic variance of the
IV estimator (Amemiya, 1974; Newey, 1990). Since the endogenous treatment variable in (1) is
Di ∈ {0, 1}, the optimal instrument is E(Di|zi) = P(Di = 1|zi), which is the propensity score for
treatment assignment given zi. However, the conventional TSLS estimator uses the first-stage
linear reduced-form model of Di against zi to approximate the optimal instrument. The resulting
predicted value of Di could be outside the range of the optimal instrument, [0, 1]. As a result, the
traditional TSLS estimator is no longer efficient and has large variances (refer to the simulation

1https://cran.r-project.org/web/packages/naivereg/index.html
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studies in Section 4). To produce a better approximation of the optimal instrument, we consider
a logistic regression as the reduced-form model used to estimate the propensity score in the first
stage of the IV estimation. The resulting IV estimator is expected to be more efficient than the
linear TSLS estimator. This conjecture is confirmed in later sections.

Without loss of generality, we include all exogenous explanatory variables xi as IVs in the
vector zi in this section. We assume that the logistic regression reduced-form model estimates
the relationship between the dummy endogenous treatment variable Di and IVs zi, i.e.

logit(p(zi, 𝜸n)) = log
(

p(zi, 𝜸n)
1 − p(zi, 𝜸n)

)
= 𝛾n0 +

pn∑

𝑗=1

𝛾n𝑗zi𝑗 , (2)

where we denote the optimal instrument as p(zi, 𝜸n) = P(Di = 1|zi), i = 1,… , n. We further
denote z̃i = (1, z′i)

′. Model (2) can also be represented as

p(zi, 𝜸n) =
exp(𝛾n0 +

∑pn
𝑗=1 𝛾n𝑗zi𝑗)

1 + exp(𝛾n0 +
∑pn

𝑗=1 𝛾n𝑗zi𝑗)
=∶

exp(𝜸′nz̃i)
1 + exp(𝜸′nz̃i)

. (3)

The motivation behind the high-dimensional IV method is natural: when the ignorability
assumption is violated, we need to search for valid IVs from a large pool of potential IVs.
As mentioned in Belloni et al. (2012), it is necessary to consider many candidate IVs zi such
that we have either a large set of original instruments or many constructed polynomials and
interactions of original instruments to substantially improve the precision of the IV estimators.
However, irrelevant instruments in the reduced-form model could lead to finite sample bias
and asymptotic inefficiency of the IV estimator. Regularization methods are commonly used to
select relevant instruments and construct parsimonious predictive reduced-form models that can
achieve better approximations of the optimal instruments. For example, Belloni et al. (2012)
considered the post-LASSO method for estimating the first-stage linear reduced-form model with
high-dimensional instruments and their series. The LASSO-based IV estimator is demonstrated
to be root-n consistent and asymptotically normal under the approximate sparsity assumption.
Here, approximate sparsity means that the conditional expectation of the endogenous variables,
given many instruments, can be approximated well by a relatively small set of instruments.

To accommodate the binary nature of the dummy endogenous treatment variable, we propose
a penalized logistic regression reduced-form model to select instruments and approximate the
optimal instrument. The penalized likelihood function for the logistic regression reduced-form
model is

Qn1(Di, zi; 𝜸n, 𝜆n1) =
n∑

i=1

log 𝑓n(Di, zi; 𝜸n) − n
pn∑

𝑗=0

p
𝜆n1
(|𝛾n𝑗|),

=
n∑

i=1

[
Di𝜸

′
nz̃i − log

(
1 + e𝜸

′
n z̃i

)]
− n

pn∑

𝑗=0

p
𝜆n1
(|𝛾n𝑗|), (4)

where 𝑓n(Di, zi; 𝜸n) is the probability density function of the logistic distribution, and p
𝜆n1
(⋅) is

the penalty function. We consider the SCAD penalty (Fan & Li, 2001), the first derivative of
which satisfies

p′
𝜆n1
(𝛾) = 𝜆n1

[
𝟙(𝛾 ≤ 𝜆n1) +

(a𝜆n1 − 𝛾)+
(a − 1)𝜆n1

𝟙(𝛾 > 𝜆n1)
]

(5)
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for 𝛾 > 0, where a > 2 is a pre-specified constant, 𝟙(⋅) is the indicator function, and 𝜆n1 is the
tuning parameter to control the selected model size. In practice, Fan & Li (2001) suggested
that a = 3.7 and 𝜆n1 can be chosen with the cross-validation (CV) method or the Bayesian
information criterion (Wang, Li & Tsai, 2007). The penalized likelihood estimator �̂�n is obtained
by maximizing the objective function in (4). That is

�̂�n = (�̂�n0, �̂�n1,… , �̂�npn
)′ = argmax

𝜸n

Qn1(Di, zi; 𝜸n, 𝜆n1). (6)

It implies that the conditional probability p(zi, 𝜸n) can be estimated accordingly by p̂(zi, �̂�n).
For ease of notation, we denote the optimal instrument as D∗

i = P(Di = 1|zi) = p(zi, 𝜸
∗), where

𝜸
∗ = (𝛾∗0 , 𝛾

∗
1 ,… , 𝛾

∗
pn
)′ is the underlying true parameter in (2), and ̂D∗

i = p̂(zi, �̂�n) is the estimator
of D∗

i . Without loss of generality, suppose that the first qn elements of the true parameter vector
𝜸
∗ are nonzero and the remaining pn − qn elements are zero.

Next, we illustrate how to estimate the true endogenous treatment effect 𝛽0. By taking the
conditional expectation of both sides of (1), given IVs zi, we have

E(yi|zi) = D∗
i 𝛽0 + x′i𝜽0, (7)

where we note that E(xi|zi) = xi because all exogenous variables xi are included in the IVs.
Adding 𝜈i = yi − E(yi|zi) to both sides of (7) implies that

yi = D∗
i 𝛽0 + x′i𝜽0 + 𝜈i. (8)

It is straightforward to show that E(𝜈i) = E[E(𝜈i|zi)] = 0 and cov(D∗
i , 𝜈i) = E(D∗

i 𝜈i) =
E[D∗

i E(𝜈i|zi)] = 0. Thus, 𝜈i can be regarded as the independent random error with mean
zero in the linear model (8), and D∗

i is an exogenous variable. It is worth noting that the coeffi-
cient on the optimal instrument D∗

i in the model (8) remains the same as that in the structural
equation (1). If D∗

i is known, the treatment effect 𝛽0 can be easily obtained through ordinary least
squares. However, the optimal instrument D∗

i is unobservable. In practice, we replace D∗
i with its

estimator ̂D∗
i = p̂(zi, �̂�n) and run a simple linear regression to obtain the final IV estimator for 𝛽0.

In particular, let Y = (y1,… , yn)′, D = (D1,… ,Dn)′, D∗ = (D∗
1,… ,D∗

n)
′, ̂D∗ = (̂D∗

1,… ,
̂D∗

n)
′,

X = (x1,… , xn)′ and 𝝂 = (𝜈1,… , 𝜈n)′. Let X = X(X′X)−1X′ and Q = In − X. The resulting
IV estimator for 𝛽0 takes the form

̂
𝛽 =

(
̂D∗′Q̂D∗

)−1 (
̂D∗′QY

)
. (9)

We call ̂𝛽 the penalized LIVE. In summary, we provide the following algorithm to obtain LIVE
for 𝛽0.

Algorithm 1 Penalized logistic regression instrumental variable estimation (LIVE)

Step 1. Obtain the penalized likelihood estimator �̂�n by maximizing Qn1(Di, zi; 𝜸n, 𝜆n1) in (4),
employing the cross-validation method to choose 𝜆n1.
Step 2. Estimate the conditional expectation of the endogenous treatment effect ̂D∗

i = p̂(zi, �̂�n)
for i = 1,… , n according to (3).

Step 3. Compute the penalized LIVE for 𝛽0, ̂𝛽 =
(
̂D∗′Q̂D∗

)−1 (
̂D∗′QY

)
, in (9).
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3. THEORETICAL RESULTS

In this section, we study the theoretical properties of LIVE with the SCAD penalty. We show
that it is root-n consistent and asymptotically normal. Throughout the article, ‖ ⋅ ‖0, ‖ ⋅ ‖ and
‖ ⋅ ‖∞ denote the 𝓁0-norm, the 𝓁2-norm and the infinity norm, respectively.

First, we assume the following regularity conditions:

(A) max0≤𝑗≤pn
{p′

𝜆n
(|𝛾∗n𝑗|), 𝛾

∗
n𝑗 ≠ 0} = O(n−1∕2) and max0≤𝑗≤pn

{p′′
𝜆n
|𝛾∗n𝑗|, 𝛾

∗
n𝑗 ≠ 0} → 0 hold as

n → ∞.
(B) There are constants a and b such that |||p

′′
𝜆n1
(c1) − p′′

𝜆n1
(c2)

||| ≤ b ||c1 − c2
|| for c1, c2 > a𝜆n1.

(C)
{

zi
}n

i=1 are i.i.d., mean-zero, and bounded random vectors.
(D) There exists a constant c4 > 0 such that 𝜆min

(
X′X

)
∕n ≥ c3, where 𝜆min(A) denotes the

smallest eigenvalues of a matrix A.
(E) The second moment for 𝜈i exists, i.e., E(𝜈2

i ) < ∞.

Conditions (A) and (B) are imposed on the penalty function proposed by Fan & Peng
(2004), which guarantee Lemma 1. Condition (C) is a special case of condition SE(P) in Belloni,
Chernozhukov & Hansen (2014). Condition (D) is a mild condition derived from Zhang & Huang
(2008). Condition (E) imposes the existence of a second moment for the error term 𝜈i.

Lemma 1. Under conditions (A) and (B) and (A1)–(C1) in the Appendix, if p4
n∕n → 0 as

n → ∞, then there exists a local maximizer �̂�n for Qn(Di, zi; 𝜸n, 𝜆n1) such that

‖p̂(zi, �̂�n) − p(zi, 𝜸
∗
n)‖ = Op(

√
p2

n∕n). (10)

It is worth noting that Fan & Peng (2004) proved that �̂�n is the root-n∕pn-consistent estimator
in Theorem 1 if conditions (A) and (B) and (A1)–(C1) in the Appendix hold as n → ∞, that is,
if ‖�̂�n − 𝜸∗n‖ = Op(

√
pn∕n) when p4

n∕n → 0. Based on this seminal work, Lemma 1 establishes
the consistency of the estimated propensity score of the dummy endogenous treatment variable
given the IVs. In practice, if the dimension of the IVs pn is much larger than n, one might apply
certain screening methods (Fan & Song, 2010; Mai & Zou, 2013) to reduce the dimensionality
before applying the regularization methods.

Next, we establish the asymptotic properties of the proposed LIVE in the following theorem.

Theorem 1. Suppose conditions (A)–(E) hold; then, LIVE with the SCAD penalty is root-n
consistent and asymptotically normal. That is

𝜎

−1
n

√
n(̂𝛽 − 𝛽0)

d
→ N(0, 1), (11)

where 𝜎

2
n = (E(D

∗′QD∗))−1 E(D∗′QD∗
𝜈

2
i )(E(D

∗′QD∗))−1. If E(𝜈2
i ) = 𝜎

2
𝜈

almost surely for all
1 ≤ i ≤ n, then 𝜎

2
n = (E(D

∗′QD∗))−1
𝜎

2
𝜈

.

Theorem 1 demonstrates that the proposed LIVE with the SCAD penalty is root-n consistent
and asymptotically normal. This result is analogous to that in Theorem 3 in Belloni et al.
(2012) and Theorem 3.1 in Fan & Zhong (2018). For the purposes of statistical inference,
the asymptotic variance can be estimated with the plug-in method, and the corresponding
asymptotic confidence interval for the true dummy treatment effect 𝛽0 can be obtained by
(̂𝛽 − z

𝜏∕2𝜎n∕
√

n, ̂𝛽 + z
𝜏∕2𝜎n∕

√
n), where z

𝜏∕2 denotes the 𝜏∕2 upper-tailed critical value of the
standard normal distribution.
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4. SIMULATIONS

In this section, we study the finite-sample performance of LIVE in both low-dimensional and
high-dimensional IV cases.

Example 1. We first consider a simple structural equation with a dummy endogenous treatment
variable only:

yi = Di𝛽0 + 𝜀i,

where we set the true treatment effect 𝛽0 = 1. The dummy endogenous variable Di is generated
by the Bernoulli distribution with probability exp(𝜂i)∕(1 + exp(𝜂i)), where 𝜂i = 0.6zi1 + 0.8zi2 +
zi3 + zi4 + 𝜉i and zi = {zi𝑗} is randomly generated from a multivariate normal distribution N(0,Σ)
with Σ = (𝜌

𝑗1𝑗2
)p×p, 𝜌

𝑗1𝑗2
= 0.5|𝑗1−𝑗2| for 𝑗1, 𝑗2 = 1,… , p, where p is specified in the following

discussion. Furthermore, we generate the error terms (𝜀i, 𝜉i)′ in both the structural model and the
reduced-form model from a bivariate normal distribution with mean zero and covariance matrix
Σ
𝜀,𝜉

. To study the endogeneity of the treatment variable Di, we let

(𝜀i, 𝜉i) ∼ N(0,Σ
𝜀,𝜉

), with Σ
𝜀,𝜉

=
(

1 0.9
0.9 1

)
.

Example 2. In this example, we consider a structural equation with both an endogenous
treatment variable and m exogenous control variables,

yi = Di𝛽0 + x′i𝜽0 + 𝜀i.

We set 𝛽0 = 1, and the endogenous treatment variable Di is generated by the Bernoulli distribu-
tion with probability exp(𝜂i)∕(1 + exp(𝜂i)), where 𝜂i = 0.5zi1 + 0.4zi3 + 0.9zi4 + 0.8zi5 + 𝜉i. The
data generating processes for zi and the two random errors (𝜀i, 𝜉i)′ are the same as in Example
1. Since xi are assumed to be exogenous, without loss of generality, we set the first m columns
of zi as xi; here, m = 2 and 𝜽0 = (0.1, 0.2)′.

To study the finite sample performance of the estimators, we set the sample size
n = {100, 200, 500, 1000} and consider two cases for the number of potential instruments:
p = 5 and p = 200. For the low-dimensional instrument case where p = 5, we include all five
instruments in the reduced-form model and compare only LIVE without any penalty (denoted
by “LIVE”) with the conventional OLS and TSLS estimators for 𝛽0. For the high-dimensional
instrument case where p = 200, regularization methods are used to select the relevant instru-
ments for estimating the endogenous effect. Then, we estimate the logistic reduced-form models
based on the selected set of instruments by LASSO or SCAD (denoted by “LIVE-LASSO” and
“LIVE-SCAD,” respectively). The default 10-fold CV method is employed to find the optimal
tuning parameter 𝜆n1 for both LASSO and SCAD. The proposed methods are implemented
with the R function LIVE in the R function package naivereg that we developed. We compare
two existing methods: OLS and TSLS with LASSO (denoted by “TSLS-LASSO”). To evaluate
the finite sample performance of each IV estimation method, we compute the average of the
estimated bias (denoted as “Bias”), N−1 ∑N

k=1(̂𝛽k − 𝛽0), with its empirical standard deviation and
the estimated mean-squared errors (denoted as “MSE”), N−1 ∑N

k=1(̂𝛽k − 𝛽0)2, where ̂
𝛽k denotes

the IV estimator of the true treatment effect 𝛽0 in the kth simulation. All simulation results are
based on 1000 repetitions. We summarize the results in Tables 1–4. Figure 1 also shows the
boxplots of the different estimators for 𝛽0.

The simulation results show that the OLS estimators are seriously biased and have large
MSE values because of the endogeneity problem. In the low-dimensional IV case without
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TABLE 1: Average biases with standard errors (in parentheses) and the mean-squared errors (MSEs) of
OLS and the different instrumental variables estimators for the endogenous treatment effect (𝛽0 = 1) for

p = 5 from Example 1.

n Method OLS TSLS LIVE

n = 100
Bias 0.2688 (0.0886) 0.0423 (0.0731) 0.0301 (0.1679)

MSE 0.1280 0.2671 0.1509

n = 200
Bias 0.2690 (0.0799) 0.0254 (0.0358) 0.0159 (0.0115)

MSE 0.0867 0.1876 0.1060

n = 500
Bias 0.2699 (0.0760) 0.0132 (0.0146) 0.0079 (0.0049)

MSE 0.0564 0.1202 0.0699

n = 1000
Bias 0.2703 (0.0746) 0.0066 (0.0076) 0.0031 (0.0022)

MSE 0.0388 0.0869 0.0469

TABLE 2: Average biases with standard errors (in parentheses) and the mean-squared errors (MSEs) of
OLS and the different instrumental variables estimators for the endogenous treatment effect (𝛽0 = 1) for

p = 5 from Example 2.

n Method OLS TSLS LIVE

n = 100
Bias 0.3624 (0.1502) 0.0172 (0.1021) 0.0250 (0.0266)

MSE 0.1374 0.3193 0.1611

n = 200
Bias 0.3664 (0.1440) 0.0168 (0.0596) 0.0139 (0.0140)

MSE 0.0989 0.2437 0.1177

n = 500
Bias 0.3670 (0.1388) 0.0049 (0.0215) 0.0058 (0.0056)

MSE 0.0639 0.1466 0.0749

n = 1000
Bias 0.3667 (0.1363) 0.0076 (0.0117) 0.0038 (0.0026)

MSE 0.0434 0.1079 0.0510

selecting IVs, the conventional TSLS approach reduces the bias and produces a consistent
estimator, but the MSEs are substantially larger than those of the proposed LIVE. This is
because the predicted value of the dummy treatment variable in the linear reduced-form model
could be outside the range [0, 1]. Because logistic regression is able to capture the relationship
between the dummy endogenous variable and the IVs and because of the probabilistic nature of
the optimal instrument, it can provide better predictions of the dummy endogenous treatment
variable. Tables 1 and 2 show that our proposed LIVE performs significantly better with a much
smaller bias and MSE in the low-dimensional IV setting. In the high-dimensional instrument
case, shown in Tables 3 and 4, LIVE-based estimators are significantly more efficient than
the other estimators. The advantage of LIVE-LASSO over TSLS-LASSO shows that it is
necessary to consider the logistic regression reduced-form model instead of the linear model
for dummy endogenous treatment variables. The LIVE-SCAD estimator is slightly better than
LIVE-LASSO because LASSO generally tends to select more irrelevant instruments than
SCAD. As the sample size n increases, the biases and the MSEs of the proposed LIVE
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TABLE 3: Average biases with standard errors (in parentheses) and the mean-squared errors (MSEs) of
OLS and the different instrumental variables estimators for the endogenous treatment effect (𝛽0 = 1) for

p = 200 from Example 1.

n Method OLS TSLS-LASSO LIVE-LASSO LIVE-SCAD

n = 100
Bias 0.2679 (0.0942) 0.2455 (0.1166) 0.2172 (0.0709) 0.1292 (0.0459)

MSE 0.1324 0.2375 0.1541 0.1712

n = 200
Bias 0.2691 (0.0822) 0.1669 (0.0632) 0.1355 (0.0342) 0.0754 (0.0185)

MSE 0.0989 0.1882 0.1258 0.1134

n = 500
Bias 0.2698 (0.0766) 0.0859 (0.0226) 0.0606 (0.0096) 0.0221 (0.0058)

MSE 0.0617 0.1235 0.0773 0.0730

n = 1000
Bias 0.2686 (0.0740) 0.0423 (0.0095) 0.0278 (0.0035) 0.0046 (0.0025)

MSE 0.0437 0.0878 0.0524 0.0503

TABLE 4: Average biases with standard errors (in parentheses) and the mean-squared errors (MSEs) of
OLS and the different instrumental variables estimators for the endogenous treatment effect (𝛽0 = 1) for

p = 200 from Example 2.

n Method OLS TSLS-LASSO LIVE-LASSO LIVE-SCAD

n = 100
Bias 0.2748 (0.0932) 0.2436 (0.1168) 0.2130 (0.0708) 0.1170 (0.0416)

MSE 0.1331 0.2399 0.1596 0.1670

n = 200
Bias 0.2712 (0.0831) 0.1699 (0.0655) 0.1440 (0.0370) 0.0803 (0.0208)

MSE 0.0976 0.1916 0.1319 0.1197

n = 500
Bias 0.2708 (0.0771) 0.0843 (0.0211) 0.0627 (0.0098) 0.0265 (0.0059)

MSE 0.0610 0.1184 0.0767 0.0721

n = 1000
Bias 0.2664 (0.0729) 0.0446 (0.0101) 0.0275 (0.0034) 0.0046 (0.0025)

MSE 0.0434 0.0899 0.0519 0.0497

estimators shrink, which validates its consistency in Theorem 3.1. Overall, the simulation
results demonstrate that our proposed LIVE with a SCAD penalty is necessarily useful in
estimating binary endogenous treatment effects, especially when many potential instruments are
considered.

5. APPLICATIONS

5.1. Application to the Olympics
The Olympic Games are the world’s largest sports event. On one hand, hosting mega-events
such as the Olympics might boost the host country’s economic development through broad-
casting and ticket revenue, commercial sponsorships, tourism, enhanced public infrastructure,
new job creation, and increased exports and foreign investment. On the other hand, the
positive impact of hosting these sports extravaganzas on economic growth is challenged
by many in both academia and the general public. Zimbalist (2015) laid out the economic

DOI: 10.1002/cjs.11648 The Canadian Journal of Statistics / La revue canadienne de statistique



804 ZHONG, ZHOU, FAN AND GAO Vol. 50, No. 3

FIGURE 1: Boxplots of OLS and IV estimators for the endogenous treatment effect (𝛽0 = 1)
using low-dimensional (p = 5) and high-dimensional (p = 200) IVs when n = 100 in Examples

1 and 2.

case against hosting mega sports events. Critiques often cite the extreme costs and lingering
local taxes, overshooting of the government budget, unjust welfare distribution, and small
foreseeable income (Owen, 2005; Coates, 2007), among other negative effects. Whether the
Games have a positive or negative impact on the economy is still a hot topic in public
debates.

In the literature, Rose & Spiegel (2011) found that hosting the Olympic Games has a positive
effect on the economy through export channels. Furthermore, they argued that the act of bidding
itself, regardless of whether it is eventually successful or not, has a similar economic impact.
Bruckner & Pappa (2015) argued that bidding for the Olympics represents a news shock that
predicts increases in future government investment. It is the anticipation effect that could induce
positive output, investment, consumption, etc. However, the aforementioned empirical studies
do not consider the endogeneity of the treatment variable (Baade & Matheson, 2016). One
should take into account the fact that host cities are by no means randomly chosen by the
International Olympic Committee; rather, only cities with bright prospects for the future are
considered.

Specifically, we consider the following benchmark cross-sectional regression model:

yi = 𝛼 + 𝛽Olyi + 𝛾

′Xi + 𝜖i,
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where yi is the output variable, which we consider to be GDP per capita2 in 2010. Olyi is the
dummy variable indicating whether country i has ever hosted the summer Olympics post World
War II. 𝛽 captures the marginal effect of hosting mega-events, conditional on the cross-country
heterogeneity in factors of production. We also use the winter Olympics as a robustness check
(as an alternative event study). Moreover, we use a dummy variable for summer Olympics
bidding to evaluate the signalling effect of bidding, as discussed in Rose & Spiegel (2011). Xi
is a vector of explanatory variables, including the capital stock, employment, and total factor
production (TFP), which are employed to control for production frontier elements. Granted that
a panel data model that explores the dynamic effects of hosting the Olympics would also be
useful, the simple form of the model we use in this article provides a benchmark result for
whether hosting the Olympic Games makes any difference to the output variables. We collected
data from 186 countries/regions, of which a final sample of 163 was used in the regressions. The
summary statistics and data source are presented in Table 5.

The ideal instruments here would be those that determine the likelihood of a city hosting the
Olympics but are uncorrelated with the unobserved factors in the structural equation. For those
reasons, we consider the host city’s geographic variables, including the area of the host city
(the capital city if the country has never hosted), its elevation, and its meteorological variables
(precipitation, temperature, etc.). Since the Olympics often involve the resources of the whole
country instead of just those of the host city, we also consider country-level IVs such as total land
area, total water area, land boundaries, coastline, a dummy for being landlocked (landlocked = 1),
elevation, arable land as a percentage of total land.3 In total, we include 14 original IVs. These
geographic variables satisfy the exogeneity condition for IVs because they are pre-determined
and exogenous to the economic variables. However, it is not clear to practitioners which of those
variables are truly important in determining eventual Olympic host cities.

First, the OLS regression results are reported in Table 6. For the mega-events, we consider the
summer Olympics, winter Olympics and summer Olympics bidders that did not receive the right
to host the games.4 The summer Olympics seem to be associated with higher GDP per capita,
conditional on the logarithm of the capital stock and TFP, while other mega-events do not seem
to have strong impacts. However, as we discussed, the OLS results are prone to bias as a result of
the endogeneity of the dummy variable. Hence, we now turn to the proposed LIVE with SCAD.

The IV regression results are reported in Table 7. We can see that the magnitude of the
estimated effect of hosting the summer Olympics is almost three times larger (and more
statistically significant) than that of the OLS estimate, which implies that the OLS bias is large
and tends to underestimate the effect of hosting the Olympics. One possible source of bias comes
from underestimating the spillover effects to other cities that are not directly captured by the
Olympic event variable itself. The winter Olympics LIVE estimate is almost twice as large in
its effects as the OLS result and is significant at the 5% level. The effect of hosting the summer
Olympics is much stronger than that of hosting the winter Olympics. Contrary to the studies of
Rose & Spiegel (2011) and Bruckner & Pappa (2015), we find that the bidding signal effect is
not strong. Cities that won the bid are put in the spotlight for 7–8 years before the game starts,

2As a robustness check, we also consider other outcome variables, such as private consumption, investment, government
expenditures, consumer price level, nominal exchange rate, and openness to trade. The results are available upon request
to the authors.
3In Bazzi & Clemens (2013), the validity of some common IVs (such as legal origin, population size, etc.) used in the
growth literature is discussed. We did not use any of those instruments, which could possibly be invalid. Instead, we use
only geographic and meteorological variables, which yield a P-value of 0.1567 (for the summer Olympics) and 0.2217
(for the winter Olympics) for Hansen’s J-test.
4In our sample, there are 30 bidding countries, including 12 developing countries and 18 developed countries, according
to the International Monetary Fund’s World Economic Outlook Report in April 2015.
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TABLE 5: Summary statistics.

Mean SD Median Min. Max. Sample size

Outcome variable

GDP per capita 1.3E4 1.7E4 7.2E3 321.60 1.4E5 186

Treatment variable

Olympics 0.08 0.26 0 0 1 186

Other controls

Population 3.6E4 1.3E5 7.3E3 20.88 1.3E6 186

Consumption 2.0E11 8.4E11 1.6E10 1.1E8 1.0E13 186

Government expenditure 6.0E10 2.3E11 3.5E9 2.9E7 2.5E12 186

Investment 8.4E10 3.2E11 6.1E9 3.2E7 2.9E12 186

Capital stock 1.7E12 5.5E12 1.6E11 1.6E9 4.9E13 169

Labour 16.80 70.24 3.73 0.01 781.38 179

TFP 0.57 0.30 0.57 0.07 1.81 165

Openness 92.08 47.68 85.32 1.98 392.09 186

IV

Area_city 1.0E3 3.0E3 239.65 0.7 2.5E4 186

Elevation_city 392.12 646.24 61.5 −28 3.6E3 186

Max_temp_city 83.14 10.35 84.36 50.61 115.59 186

Min_temp_city 65.47 11.26 66.34 32.88 85.75 186

Ave_temp_city 74.34 10.45 76.023 45.76 103.34 186

Precipitation_city 4.472 6.33 2.48 0 42.2 186

Land 6.8E5 1.9E6 1.3E5 54 1.6E7 186

Water 3.6E4 1.9E5 1.5E3 0 2.3E6 186

Land boundaries 2.8E3 3.5E3 1.8E3 0 2.2E4 186

Coastline 3.9E3 1.6E4 500 0 2.0E5 186

Landlocked 0.21 0.41 0 0 1 186

Elevation 2.7E3 2.0E3 12.5E3 2.4 8.9E3 186

% Arable land 14.43 13.21 10.20 0.02 57.99 186

% Permanent crops 4.01 7.01 1.15 0 44.44 186

Note: GDP and the national account variables are in USD, the population is in thousands, trade openness is in percentages,
and the labour force is in millions of persons. The geographic variables of the host city (or capital city if the country
never bid for the Olympics) have the subscript “_city”; otherwise, all variables are country-level variables. Area is in
km2, the coastline and land boundaries are measured in kilometres, elevation is in metres, temperature is in degrees
Fahrenheit and precipitation is in inches. Source: Penn World Table 9.0, the World Bank, United Nations Industrial
Development Organization, OECD National Accounts, Demographic Yearbook of United Nations Statistics Division,
National Oceanic and Atmospheric Administration, International Olympic Committee and the World Factbook. Year of
the sample: 2010.
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TABLE 6: Results based on OLS.

Summer Olympics Winter Olympics Summer bidding

Constant 5.303 5.048 5.003

(0.431) (0.402) (0.389)

Mega-event 0.466∗ 0.253 0.153

(0.269) (0.325) (0.206)

Capital 0.142∗∗∗ 0.168∗∗∗ 0.171∗∗∗

(0.038) (0.035) (0.034)

TFP 2.866∗∗∗ 2.811∗∗∗ 2.817∗∗∗

(0.244) (0.248) (0.247)

Sample size 163 163 163

R2 0.626 0.621 0.621

Note: Standard errors are reported in parentheses. Significance levels of 0.1, 0.05 and 0.01 are noted with *, ** and ***,
respectively. Intercept significance levels are not reported. The final sample size of 163 includes all countries with no
missing observations.

TABLE 7: Results based on the penalized logistic regression instrumental variables estimator with
smoothly clipped absolute deviation.

Summer Olympics Winter Olympics Summer bidding

Constant 7.697 5.326 5.103

(1.165) (0.408) (0.426)

Mega-event 1.332∗∗ 0.535∗∗ 0.523

(0.674) (0.263) (0.595)

Capital 0.108∗∗∗ 0.149∗∗∗ 0.167∗∗∗

(0.010) (0.040) (0.039)

TFP 3.926∗∗∗ 2.633∗∗∗ 2.767∗∗∗

(0.718) (0.260) (0.258)

Sample size 163 163 163

R2 0.622 0.632 0.621

Note: Standard errors are reported in parentheses. Significance levels of 0.1, 0.05 and 0.01 are noted with *, ** and ***,
respectively. Intercept significance levels are not reported.

and there are frequent news updates about the progress of venues, preparations and the new
events to be included in the Olympic Games.

5.2. Application to the Effect of Teachers’ Home Visits
In this case study, we demonstrate the estimation of the treatment effect of teachers’ home
visits on students’ academic performance. It is important to understand the influence of family
on children’s performance at school (Castro et al., 2015; Zhong et al., 2021). Unlike previous
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studies that mainly focus on income factors (Dohl & Lochner, 2012), we evaluate the interactions
of teachers and parents on students’ academic performance while controlling for a rich set of
factors, including income. We use comprehensive survey data from the China Education Panel
Survey to investigate the treatment effects of class advisers’ home visits on student performance
as measured by standardized exam grades.

The basic econometric model we consider is

scorei = 𝛼0Di + x′i𝜷0 + 𝜀i,

where scorei is the mathematics/Chinese/English score of the student; Di is the treatment variable
of receiving a home visit, for which Di = 1 if the class adviser visited the student at home during
that school year; xi is a set of covariates that include the student’s gender, his/her cognitive ability
test score, his/her health status, his/her total hours of study after school, the mother’s education,
family income, the number of siblings, whether the student lives with his/her grandparents and
the characteristics of the student’s teacher for the subject in the response variable including age,
gender and total teaching hours.

The decision to make a home visit is affected by certain common unobserved factors deter-
mining academic performance. For example, unobserved common factors such as “the student’s
real interest in the subject” could affect both the decision to make a home visit and the student’s
grades. Thus, endogeneity is an issue that is embedded in this study. We consider the exogenous
variables of the non-adviser and of teachers of different subjects as instruments. Specifically, the
candidate instruments include the age (of the non-adviser teacher of a different subject from that of
the response variable, which is the same for the rest of the instruments), marital status, gender, the
number of other classes being taught outside the sample class, total teaching hours last week, total
teaching preparation hours last week, the number of hours spent grading homework last week and
the number of minutes spent communicating with students after class. We also include the polyno-
mial terms for the discrete and continuous variables up to order 3 and the interactions of all these
variables. The total number of IVs is 210. To reduce the influence of outliers and potential endoge-
nous IV concerns, we further trim the sample by deleting the lower 5th percentile and upper 95th
percentile of the score data and instruments such as hours spent preparing lessons last week. The
final sample size of our study is 7617. The percentage of observations with home visits is 42.93%.

The regression results are presented in Table 8. The OLS estimation in general reports
no significant effect of home visits on any of the three subjects. It is well known that the
OLS estimator is severely biased when there is endogeneity in the treatment variable. TSLS
estimates show that for all three subjects, home visits can improve standardized exam grades
by approximately 0.5 points (on a 100-point scale) on average, holding other factors constant.

TABLE 8: Estimated effects of home visit on school performance.

Math Chinese English

Effect Std. err. Effect Std. err. Effect Std. err.

OLS (univariate) −0.150 0.198 −0.159 0.198 −0.379∗ 0.198
OLS (multivariate) 0.003 0.212 0.052 0.199 −0.055 0.201
TSLS 0.624∗∗ 0.297 0.556∗ 0.290 0.497∗ 0.292
TSLS-LASSO 0.730∗∗ 0.317 0.646∗ 0.355 0.538∗ 0.322
LIVE-SCAD 0.814∗∗∗ 0.306 0.805∗∗ 0.327 0.769∗∗ 0.318

Note: OLS (univariate) is the univariate OLS with only the treatment variable. OLS (multivariate) is the multivariate
regression. Significance levels of 0.1, 0.05 and 0.01 are noted by *, ** and ***, respectively.
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Compared to the IV method, it seems that OLS underestimates the effect of home visits.
TSLS-LASSO results show a slightly larger treatment effect than the standard TSLS results for
all three subjects. The proposed LIVE with SCAD provides the strongest evidence that home
visits are able to improve students’ performance in all three subjects.

6. EXTENSION TO HIGH-DIMENSIONAL CONTROLS

In empirical applications, it is often not clear which control variables to include in the structural
equation when using a rich micro-dataset with many variables that could potentially affect the
outcome variable. To estimate the treatment effect accurately, we are inclined to include as
many confounding control covariates as possible in the model (1). That is, we now allow the
dimensionality of xi, m, to be large and even to be greater than n. To reduce the omitted variable
bias caused by high-dimensional control variables, we develop a double selection plus logistic
regression IV estimator (DS-LIVE) for the dummy endogenous treatment effect parameter 𝛽0
with both high-dimensional control variables and IVs. The DS-LIVE method can be considered
a hybrid between the double selection (DS) method in Belloni, Chernozhukov & Hansen (2014)
and our LIVE method.

For a better presentation of the new method, we separately write the IVs as two parts: the
exogenous control variables xi and the additional IVs z̃i. Then, the logistic reduced-form model
(3) can be rewritten as

p(zi, xi; 𝜸n,𝝎n) =∶
exp(𝜸′nz̃i + 𝝎′nxi)

1 + exp(𝜸′nz̃i + 𝝎′nxi)
. (12)

Our proposed DS-LIVE algorithm proceeds with the following three steps.
In the first step, we select the relevant control variables that are helpful in predicting the

outcome variable using regularization methods for the data (yi, xi). Specifically, we consider the
penalized objective function as follows:

Ln1(yi, xi;𝜽, 𝜆n2) =
n∑

i=1

(yi − x′i𝜽)
2 +

p∑

𝑗=1

p
𝜆n2
(|𝜃n𝑗|), (13)

where 𝜆n2 is a tuning parameter controlling model complexity. The penalized estimator ̂𝜽 is
obtained by minimizing the objective function Ln1(yi, xi;𝜽, 𝜆n2) in (13).

̂𝜽 = (̂𝜃1,
̂
𝜃2,… ,

̂
𝜃p)′ = argmin

𝜽

Ln1(yi, xi;𝜽, 𝜆n2), (14)

and we denote the selected set of the control variables using the data (yi, xi) as ̂I1 = {𝑗 ∶ ̂
𝜃
𝑗

≠

0, 𝑗 = 1, 2,… , p}.
In the second step, we select both relevant control variables and the IVs for the endogenous

treatment in the reduced-form equation (12). This step is crucial in the algorithm because it
can estimate the optimal instrument using high-dimensional IVs and select additional relevant
control variables that might be missed in the first step but are nonetheless important to the
treatment variable. This step helps to mitigate omitted variable bias and enhance IV validity. The
objective function is

Qn2(Di, zi, xi; 𝜸n,𝝎n, 𝜆n3)

=
n∑

i=1

log 𝑓n(Di, zi, xi; 𝜸n,𝝎n) − n
p∑

𝑗=1

p
𝜆n3
(|||𝛾n𝑗

|||) − n
m∑

k=1

p
𝜆n3
(||𝜔nk

||), (15)
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where the estimator �̂�n and �̂�n can be obtained by maximizing the objective function

(�̂�′n, �̂�
′
n)
′ = argmax

𝜸n,𝝎n

Qn2(Di, zi, xi; 𝜸n,𝝎n, 𝜆n3). (16)

We denote ̂I2={𝑗 ∶ �̂�
𝑗

≠ 0, 𝑗 = 1, 2,… ,m} as the set of the selected confounders xi using data
(Di, zi, xi). The optimal instrument is estimated by p̂(zi, xi; �̂�n, �̂�n) by (12), which is denoted as
̂D∗

i = p̂(zi, xi; �̂�n, �̂�n), as in Section 2 with a slight abuse of notation.
In the third step, we define the post-double-selection LIVE ̂

𝛽DS for the dummy endogenous
treatment effect based on the predicted treatment variable ̂D∗

i and the union of the control
variables selected in the first two variable selection steps denoted by ̂I = ̂I1 ∪̂I2. Specifically,
the DS-LIVE for 𝛽0 is defined by

̂
𝛽DS =

(
̂D∗′Q

̂I
̂D∗

)−1 (
̂D∗′Q

̂IY
)
, (17)

where Q
̂I = In − ̂I , ̂I = X

̂I(X
′
̂I
X
̂I)
−1X′

̂I
, X

̂I denotes the design matrix X corresponding to the
selected control variables.

For illustration, we examine the finite-sample performance of the proposed DS-LIVE to show
the importance of double selection when there are too many control variables in the structural
equation. We consider the following structural model:

yi = Di𝛽0 + x′i𝜽0 + 𝜀i, (18)

where we set the true treatment effect parameter 𝛽0 = 0.75, 𝜽0 = (3, 0.15, 0.18, 1.5, 2, 0m−5)′.
Note that some true coefficients of key control variables are relatively small, which means they
could be missed in the single-variable selection.

We randomly generate control variables xi from a multivariate normal distribution N(0,ΣX)
with ΣX = (𝜌i𝑗)m×m with 𝜌i𝑗 = 0.5|i−𝑗| for i, 𝑗 = 1, 2,… ,m. We fix the sample size as n = 100
and the dimension of the control variables as m = 200, which is greater than n. The
dummy endogenous treatment variable is generated by the Bernoulli distribution with exp(𝜂i)∕
(1 + exp(𝜂i)) for which 𝜂i = 0.8xi1 + 1.96xi2 + 1.85xi3 + 0.9xi4 + 0.7xi5 + 1.16zi1 + 0.7zi2
+ 0.95zi3 + 𝜉i, and the IVs zi are generated from another multivariate normal distribution
N(0,ΣZ) with ΣZ = (𝜌i𝑗)p×p, 𝜌i𝑗 = 0.5|i−𝑗| for i, 𝑗 = 1, 2,… , p with p = 20. The generation of
the two random errors (𝜀i, 𝜉i)′ is the same as that in Section 4 to guarantee endogeneity. We
obtain the DS-LIVE estimators with two different penalties (LASSO and SCAD), denoted
by “DS-LIVE-LASSO” and “DS-LIVE-SCAD,” respectively. For comparison purposes, the
following estimators are also considered. First, if we ignore the endogeneity in the treatment
variable, we can consider the single-variable selection methods (“LASSO” and “SCAD”) in the
structural equation and the traditional double selection estimators (Belloni, Chernozhukov &
Hansen, 2014) with LASSO and SCAD penalties (“DS-LASSO,” “DS-SCAD,” respectively).
Second, if we ignore the binary nature of the treatment variable, we can consider the hybrid
estimators combining the TSLS methods based on linear reduced-form models and those based
on double selection, denoted by “DS-TSLS-LASSO” and “DS-TSLS-SCAD,” respectively. Note
that DS-TSLS-LASSO can also be considered a hybrid of two methods in Belloni et al. (2012)
and Belloni, Chernozhukov & Hansen (2014).

Table 9 summarizes the average of the estimated biases (Bias) with standard deviations in
parentheses and MSE based on 1000 simulations. Figure 2 displays the boxplots of different
estimators for the endogenous treatment effect. Without considering the endogeneity of the
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TABLE 9: Average biases (standard deviations) and mean-squared errors (MSEs) of different estimators
for the endogenous treatment effect 𝛽0 = 0.75 from Equation (18).

Method Bias MSE Method Bias MSE

LASSO 0.1630 (0.1704) 0.0556 SCAD 0.1986 (0.1658) 0.0669

DS-LASSO 0.1248 (0.1717) 0.0450 DS-SCAD 0.1405 (0.1586) 0.0448

DS-TSLS-LASSO 0.0846 (1.3356) 1.7894 DS-TSLS-SCAD 0.0491 (0.6760) 0.4589

DS-LIVE-LASSO 0.0244 (0.1869) 0.0355 DS-LIVE-SCAD 0.0100 (0.1897) 0.0360

FIGURE 2: Boxplots of different estimators for the endogenous treatment effect (𝛽0 = 0.75) in
the high-dimensional controls case.

treatment variable, the ordinary penalized methods (LASSO and SCAD) and the double
selection methods (DS-LASSO and DS-SCAD) result in large biases in the estimators for the
treatment effect. The latter DS estimators have smaller biases than the former penalized methods
(LASSO or SCAD) because double selection can reduce omitted variable bias. Compared with
the DS-TSLS-LASSO and DS-TSLS-SCAD estimators, DS-LIVE-LASSO and DS-LIVE-SCAD
have smaller biases and much smaller MSEs. This is again because LIVE considers the binary
nature of the dummy endogenous treatment variable and produces more efficient estimators.

Overall, our simulation results demonstrate that the proposed DS-LIVE is very useful in
estimating dummy endogenous treatment effects, especially when there are many potential
instruments and high-dimensional control variables.

7. CONCLUSION

In this article, we studied the dummy endogenous variable problem. We considered the penalized
logistic regression reduced-form model to estimate the optimal instruments. The proposed
penalized LIVE with the SCAD penalty for estimating a binary endogenous treatment effect was
found to be root-n consistent and asymptotically normal. Simulation studies have demonstrated
that the LIVE-based method performs better than TSLS with a post-LASSO estimator. Empirical
studies have shown that the LIVE method can be applied to deal with the dummy endogenous
variables problem with many potential instruments, without knowing which ones are significant.
We also developed a DS-LIVE for cases when there are many control variables. The proposed
methods can be extended to nonparametric models in future studies.
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APPENDIX: PROOFS

We first need to clarify that the probability density function 𝑓n(Di, zi; 𝜸n) in (4), denoted for
notational simplicity as 𝑓n(zi, 𝜸

∗
n) when the true underlying parameter 𝜸∗n is considered, satisfies

the following regularity conditions (A1)–(C1):

(A1) The instrumental variables zi, i = 1,… , n are independent and identically distributed
with the probability density function 𝑓n(zi, 𝜸

∗
n), which has a common support, and the

usual identification condition holds. Furthermore, the first and second derivatives of the
likelihood function satisfy the following equations:

E𝜸∗n

{
𝜕 log 𝑓n(zi, 𝜸

∗
n)

𝜕𝛾n𝑗

}
= 0, 𝑗 = 0, 1,… , p,

and

E𝜸∗n

{
𝜕 log 𝑓n(zi, 𝜸

∗
n)

𝜕𝛾n𝑗

𝜕 log 𝑓n(zi, 𝜸
∗
n)

𝜕𝛾nk

}
= −E𝜸∗n

{
𝜕

2 log 𝑓n(zi, 𝜸
∗
n)

𝜕𝛾n𝑗𝜕𝛾nk

}

for 𝑗, k = 0, 1,… , p.
(B1) The first qn × qn submatix I(1)n (𝜸∗n) of the Fisher information matrix is

I(1)n (𝜸
∗
n) = E𝜸∗n

[(
𝜕 log 𝑓n(zi, 𝜸

∗
n)

𝜕𝜸n

)(
𝜕 log 𝑓n(zi, 𝜸

∗
n)

𝜕𝜸n

)′]

.

Then there exist C1,C2,C3,C4 > 0 such that

0 < C1 < 𝜆min
(
I(1)n (𝜸

∗
n)
)
≤ 𝜆max

(
I(1)n (𝜸

∗
n)
)
< C2 <∞.

There also exist C3,C4 > 0, and 𝑗, k = 0, 1,… , p such that

E𝜸∗n

{
𝜕 log 𝑓n(zi, 𝜸

∗
n)

𝜕𝛾n𝑗

𝜕 log 𝑓n(zi, 𝜸
∗
n)

𝜕𝛾nk

}2

< C3 <∞

and

E𝜸∗n

{
𝜕

2 log 𝑓n(zi, 𝜸
∗
n)

𝜕𝛾n𝑗𝜕𝛾nk

}2

< C4 < ∞,

where 𝜆min(A) and 𝜆max(A) are the smallest and largest eigenvalues of the given matrix A,
respectively.

(C1) There is an open subset 𝜔n ∈ Ωn ∈ Rp which contains the true parameter value of 𝜸∗n, such
that for almost all zi the density function admits all third derivatives 𝜕3

𝑓n(zi, 𝜸n)∕𝜕𝛾n𝑗𝜕𝛾nk𝜕𝛾nl
for all 𝜸n ∈ 𝜔n. Furthermore, there are functions Mn𝑗kl such that

|||||

𝜕

3
𝑓n(zi, 𝜸n)

𝜕𝛾n𝑗𝜕𝛾nk𝜕𝛾nl

|||||
≤ Mn𝑗kl(zi)

for all 𝜸n ∈ 𝜔n and E𝜸n
(Mn𝑗kl(zi))2 < C5 < ∞ for all p, n and 𝑗, k, l and k ≥ 1.
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These regularity conditions (A1)–(C1) are the conditions imposed in Fan & Peng (2004).
In particular, conditions (B1) and (C1) impose the second and fourth moments of the likelihood
function. The information matrix of the likelihood function is assumed to be positive definite,
and its eigenvalues are uniformly bounded. Considering that the density function 𝑓n(Di, zi; 𝜸n) =

exp(Di𝜸
′
n z̃i)

1+exp
(

1+e𝜸
′
n z̃i

) given in (4) satisfies the regularity conditions (A1)–(C1) automatically as condition

(C) holds.

Proof of Lemma 1. According to (3), it follows from the Taylor expansion that

p̂(zi, �̂�n) − p(zi, 𝜸
∗
n)

=
exp(�̂�′nz̃i)

1 + exp(�̂�′nz̃i)
−

exp(𝜸∗n z̃i)
1 + exp(𝜸∗n z̃i)

=
exp(𝜸∗n z̃i)

(1 + exp(𝜸∗n z̃i))2
(�̂�′nz̃i − 𝜸∗n z̃i) +

e𝜸
∗
n z̃i(1 − e2𝜸∗n z̃i )

2(1 + exp(𝜸∗n z̃i))4
(�̂�′nz̃i − 𝜸∗n z̃i)2(1 + o(1))

≤ (�̂�n − 𝜸∗n)
′z̃i + ((�̂�n − 𝜸∗n)

′z̃i)2(1 + o(1)) = Op(
√

p2
n∕n)

as (�̂�n − 𝜸∗n)
′z̃i ≤ ‖�̂�n − 𝜸∗n‖ ⋅ ‖z̃i‖ = Op(

√
pn∕n)Op(

√
pn) = Op(

√
p2

n∕n) holds by applying
the Cauchy–Schwarz inequality and condition (C). The proof of Lemma 1 is completed. ◼

Lemma A1. Let X1,… ,Xn be the triangular array of i.i.d. zero-mean random variable.
Suppose that Mn = (EX2

1)
1∕2∕(E |X1|3)1∕3

> 0 and that for some bn → ∞ slowly, n1∕6Mn ∕bn ≥

1. Then, uniformly on 0 ≤ x ≤ n1∕6Mn ∕bn − 1, we have

||||

P(|Sn∕Vn ≥ x| ≥ x)
2(1 − Φ(x))

− 1
||||
≤

A
b3

n

→ 0,

where Sn =
∑n

i=1 Xi, Vn =
∑n

i=1 X2
i , Φ(⋅) is the cumulative distribution function of the standard

normal distribution, and A is a positive constant.

The moderate deviation inequality for self-normalized sums was originally from Jing, Shao
& Wang (2003), and used later in De la Pẽna, Lai & Shao (2009), Belloni et al. (2012), Belloni,
Chernozhukov & Hansen (2014) and Fan & Zhong (2018).

Proof of Theorem 1. We present the matrix form of (8)

Y = D∗
𝛽0 + X𝜽0 + 𝝂. (A1)

Substituting (A1) into (9), we have

̂
𝛽 =

(
̂D∗′Q̂D∗

)−1
̂D∗′Q

(
D∗

𝛽0 + X𝜽0 + 𝝂
)

=
(
̂D∗′Q̂D∗

)−1
̂D∗′Q

(
(̂D∗ + D∗ − ̂D∗)𝛽0 + X𝜽0 + 𝝂

)

=
(
̂D∗′Q̂D∗

)−1 (
̂D∗′Q̂D∗

)
𝛽0 +

(
̂D∗′Q̂D∗

)−1
̂D∗′Q

[
(D∗ − ̂D∗)𝛽0 + 𝝂

]

= 𝛽0 +
(
̂D∗′Q̂D∗

)−1
̂D∗′Q

[
(D∗ − ̂D∗)𝛽0 + 𝝂

]
, (A2)
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where the third equality follows that QX = (In − X)X = X − X(X′X)−1X′X = 0, which
yields

√
n(̂𝛽 − 𝛽0) =

(
̂D∗′Q̂D∗∕n

)−1
̂D∗′Q

[
(D∗ − ̂D∗)𝛽0 + 𝝂

]
∕
√

n

=∶ T−1
2 ⋅ T1. (A3)

For notational simplicity, denote 𝜁 = ̂D∗ − D∗, and for a vector W ∈ ℝn, let 𝛼W(X) ∶=
argminb∈ℝm ||W − Xb||2. First we consider the T2 term in (A3),

T2 = ̂D∗′Q̂D∗∕n

=
(
̂D∗ − D∗ + D∗

)′
Q

(
̂D∗ − D∗ + D∗

)
∕n

= D∗′QD∗

n
+ 𝜁

′Q𝜁

n
+ 2𝜁 ′QD∗

n

=∶ D∗′QD∗

n
+ T21 + T22. (A4)

Note that we decompose T21 into two parts as follows:

T21 =
𝜁

′
𝜁

n
−

𝜁

′X𝜁

n
= T21,a − T21,b. (A5)

Combining with Lemma 1, we have

|T21,a| =
|||
𝜁

′
𝜁

n
||| =

‖‖̂D
∗ − D∗‖‖

2
2

n
= Op

(
p2

n

n2

)

. (A6)

Similar to the treatment in Belloni, Chernozhukov & Hansen (2014), we deal with T21,b:

|T21,b| =
||||

𝜁

′X𝜁

n

||||
=

||||
𝜁

′X(X′X)−1X′
𝜁

n

||||
= |||

𝛼

′
𝜁

(X)X′
𝜁

n
|||

≤
‖‖‖𝛼

′
𝜁

(X)‖‖‖1

‖‖‖
X′

𝜁

n
‖‖‖∞, (A7)

where it follows from condition (D) that

‖‖‖𝛼
′
𝜁

(X)‖‖‖1
≤

√
m‖‖‖𝛼

′
𝜁

(X)‖‖‖ =
√

m
‖‖‖‖

(
X′X

n

)−1 X′
𝜁

n

‖‖‖‖

≤
√

mc−1
3

‖‖‖‖
X′

𝜁

n

‖‖‖‖∞
. (A8)

To derive the bound of ‖X′
𝜁‖∞, we apply Lemma A1 on the tail bound for self-normalized

deviations:

P
⎛
⎜
⎜
⎜
⎝

max
1≤𝑗≤m

||||||||

∑n
i=1 xi𝑗𝜁i

√∑n
i=1 x2

i𝑗𝜁
2
i

||||||||

>

√
log n

⎞
⎟
⎟
⎟
⎠
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≤ max
1≤𝑗≤m

P

⎛
⎜
⎜
⎜
⎝

||||||||

∑n
i=1 xi𝑗𝜁i

√∑n
i=1 x2

i𝑗𝜁
2
i

||||||||

>

√
log n

⎞
⎟
⎟
⎟
⎠

≤ 2 (1 − Φ(log n)) (1 + o(1)) =
2 exp

(
− log n

2

)

√
2𝜋 log n

(1 + o(1))

= 1
√

n log n
(1 + o(1))→ 0, (A9)

as P(U > u) ≤ exp(−u2∕2)∕(u
√

2𝜋) holds for a standard normal random variable U, which
entails that

max
1≤𝑗≤m

||||||||

∑n
i=1 xi𝑗𝜁i

√∑n
i=1 x2

i𝑗𝜁
2
i

||||||||

= Op(
√

log n). (A10)

Note that by condition (C), there exists a constant c4 such that

max
1≤𝑗≤m

√√√√1
n

n∑

i=1

x2
i𝑗𝜁

2
i ≤ c4

‖‖̂D
∗ − D∗‖‖∕

√
n = Op

(pn

n

)
. (A11)

By combining (A9), (A10) and (A11), we have

‖‖‖‖
X′

𝜁

√
n

‖‖‖‖∞
= Op(

√
log n), (A12)

which is plugged into (A8) to give

‖‖‖𝛼𝜁 (X)
‖‖‖1
= Op

(√
log n

n

)

. (A13)

It follows from (A7), (A8), (A12) and (A13) that

|T21,b| ≤
√

mc−1
3

(‖‖‖‖
X′

𝜁

n

‖‖‖‖∞

)2

= Op

(
log n

n

)
, (A14)

which combines with (A6) to derive that

|T21| = Op

(
p2

n

n2

)

+ Op

(
log n

n

)
. (A15)

Next, we rewrite the term T22 in (A4) as

T22 =
2𝜁 ′D∗

n
−

2𝜁 ′XD∗

n
=∶ T22,a − T22,b. (A16)
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The first term in (A16) follows from Lemma 1:

|T22,a| =
|||
2
∑n

i=1(̂D
∗
i − D∗

i )D
∗
i

n
||| ≤

|||
2
∑n

i=1(̂D
∗
i − D∗

i )
n

||| = Op

⎛
⎜
⎜
⎝

√
p2

n

n

⎞
⎟
⎟
⎠
. (A17)

Combining with (A13), we have

|T22,b| =
||||
𝜁

′X(X′X)−1X′D∗

n

||||
≤

‖‖‖𝛼𝜁 (X)
‖‖‖1

‖‖‖
X′D∗

n
|||
|||∞

= Op

(√
log n

n

)

max
1≤𝑗≤m

||||

∑n
i=1 Xi𝑗D∗

i

n

||||

= Op

(√
log n

n

)

max
1≤𝑗≤m

||||

∑n
i=1 Xi𝑗

n

||||
= Op

(√
log n

n

)

. (A18)

It follows from (A16), (A17) and (A18) that

|T22| = Op

⎛
⎜
⎜
⎝

√
p2

n

n

⎞
⎟
⎟
⎠
+ Op

(√
log n

n

)

. (A19)

Combining with (A4), (A15) and (A19), we derive

T2 =
D∗′QD∗

n
+ op(1). (A20)

Next, we consider the T1 term, which can be rewritten as follows:

T1 = ̂D∗′Q
[
(D∗ − ̂D∗)𝛽0 + 𝝂

]
∕
√

n

=
̂D∗′Q(D∗ − ̂D∗)

√
n

𝛽0 +
̂D∗′Q𝝂
√

n

= D∗′Q𝝂
√

n
− 𝜁

′Q𝜁

√
n
𝛽0 −

D∗′Q𝜁

√
n

𝛽0 +
𝜁

′Q𝝂
√

n

= D∗′Q𝝂
√

n
− T11 − T12 + T13. (A21)

It follows from (A15) and (A19) that

||T11
|| = op(1) and ||T12

|| = op(1). (A22)

Note that

T13 =
𝜁

′
𝝂

√
n
−

𝜁

′X𝝂√
n

=∶ T13,a − T13,b. (A23)
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It follows from Lemma 1, condition (E) and the Cauchy–Schwarz inequality that

|T13,a| =
||||

∑n
i=1(̂D

∗
i − D∗

i )𝜈i
√

n

||||
≤

‖‖̂D
∗ − D∗‖‖‖‖𝝂‖‖√

n
= Op

⎛
⎜
⎜
⎝

√
p2

n

n

⎞
⎟
⎟
⎠
. (A24)

Similar to (A7), it follows from (A13) that

T13,b =
||||
𝜁

′X(X′X)−1X′
𝝂

√
n

||||
=

||||

𝛼

′
𝜁

(X)X′
𝝂

√
n

||||

≤ ‖‖𝛼𝜁 (X)‖‖1

‖‖‖‖
X′
𝝂

√
n

‖‖‖‖∞

= Op

(√
log n

n

)

Op(
√

log n) = Op

(√
log n2

n

)

, (A25)

where the bound for ‖‖X′
𝝂∕

√
n‖‖∞ is the same as (A12). Combining with (A23), (A24) and

(A25), we derive

T1 =
D∗′Q𝝂
√

n
+ op(1),

which yields by (A20)

√
n(̂𝛽 − 𝛽) =

(
D∗′QD∗

n
+ op(1)

)−1 (
D∗′Q𝝂
√

n
+ op(1)

)

. (A26)

Note that D∗′QD∗∕n = 1
n

∑n
i,𝑗=1 D∗

i Qi,𝑗D
∗
𝑗

= E(D∗′QD∗) + op(1) by the weak law of large

numbers. As D∗
i Qi,𝑗𝜈𝑗 are i.i.d. with mean zero and variance 𝜎

2
n = (E(D

∗′QD∗))−1 E(D∗′QD∗
𝜈

2
i )

(E(D∗′QD∗))−1. Applying the central limit theorem and Slutsky’s theorem, we have 𝜎−1
n

√
n(̂𝛽 −

𝛽)→ N(0, 1). If Var(𝜈i) = 𝜎

2
𝜈

satisfies the homoscedastic condition, 𝜎

2
n = (E(D

∗′QD∗))−1
𝜎

2
𝜈

holds.
The proof is completed. ◼
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