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ABSTRACT
Directed acyclic graph (DAG) models are widely used to represent casual relationships among random
variables in many application domains. This article studies a special class of non-Gaussian DAG models,
where the conditional variance of each node given its parents is a quadratic function of its conditional mean.
Such a class of non-Gaussian DAG models are fairly flexible and admit many popular distributions as special
cases, including Poisson, Binomial, Geometric, Exponential, and Gamma. To facilitate learning, we introduce
a novel concept of topological layers, and develop an efficient DAG learning algorithm. It first reconstructs
the topological layers in a hierarchical fashion and then recovers the directed edges between nodes in
different layers, which requires much less computational cost than most existing algorithms in literature.
Its advantage is also demonstrated in a number of simulated examples, as well as its applications to two
real-life datasets, including an NBA player statistics data and a cosmetic sales data collected by Alibaba.
Supplementary materials for this article are available online.
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1. Introduction

A directed acyclic graph (DAG) model plays a crucial role
in causal inference, which is widely used to represent casual
relationships among random variables, and has a wide range
of applications such as genetics, finance, and machine learning
(Sachs et al. 2005; Koller and Friedman 2009; Sanford and
Moosa 2012). Yet, learning a DAG model from observed data is
challenging both methodologically and computationally, largely
due to the identifiability issue and the required acyclicity.

Most of the earlier DAG learning approaches in literature
ignore the identifiability issue and mainly focus on recovering
the Markov equivalent class (Spirtes, Glymour, and Scheines
2000) of the DAG model. For example, the search-and-score
algorithm (Chickering 2003; Nandy, Hauser, and Maathuis
2018; Zheng et al. 2018; Zhu, Ng, and Chen 2020) maximized
the regularized likelihood for a DAG model with the best
score, and the constrained-based method (Spirtes, Glymour,
and Scheines 2000; Tsamardinos, Brown, and Aliferis 2006;
Kalisch and Bühlmann 2007) first conducted local conditional
independence tests to learn the skeleton of the DAG model,
and then determined the edge directions based on acyclicity,
v-structures, and other available structures. These methods are
able to recover the Markov equivalent class of the DAG model
under some assumptions, such as the Markov property and the
faithfulness condition. To fully identify DAG models, a number
of learning algorithms have been developed under various
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assumptions on the underlying probability distribution of the
DAG model, often represented as a structural equation model
(SEM). Particularly, Peters and Bühlmann (2014) established
the identifiability of linear Gaussian SEM models with equal
error variances, and various algorithms have been developed
accordingly (Peters and Bühlmann 2014; Chen, Drton, and
Wang 2019; Yuan et al. 2019). Following this line, Shimizu
et al. (2006, 2011) and Wang and Drton (2020) established the
identifiability of linear non-Gaussian SEM model and developed
the corresponding learning algorithms, and Bühlmann, Peters,
and Ernest (2014) and Peters et al. (2014) established the
identifiability of nonparametric SEM models with additive noise
or nonparametric additive noise models.

More recently, Park and Raskutti (2018) and Park and Park
(2019) studied a general class of non-Gaussian DAG models,
denoted as QVF-DAGs, which require that the conditional vari-
ance of each node given its parents is a quadratic function of its
conditional mean. This assumption provides a natural criterion
for determining the causal ordering of nodes without making
additional distributional assumptions, and contains many non-
Gaussian distributions as its special cases. An over-dispersion
scoring (ODS; Park and Raskutti 2018) algorithm is also devel-
oped for learning QVF-DAG models, which first estimates the
moral graph of the QVF-DAG model and learns the causal
ordering of all nodes sequentially, and then determines the par-
ents of each node through some sparse regression models over
the nodes which are causally ahead of it. Yet the computational
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https://doi.org/10.1080/10618600.2022.2069776
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2069776&domain=pdf&date_stamp=2022-05-20
mailto:j.h.wang@cityu.edu.hk
http://www.tandfonline.com/r/JCGS


2 W. ZHOU ET AL.

cost of the ODS algorithm is usually expensive even for learning
a medium-size QVF-DAG model.

In this article, we propose a computationally efficient learn-
ing algorithm for QVF-DAGs based on a novel concept of
topological layers. The idea is very intuitive and any DAG model
can be reorganized into an equivalent topological structure with
multiple layers, which automatically ensures acyclicity as a node
can only have children and offsprings in its lower layers. More
importantly, QVF-DAGs can be reconstructed via topological
layers based on the proposed ratio-based criterion, which can be
used to hierarchically determine the membership of each layer.
Once the layers are determined, parents of each node can be
recovered by applying some sparse regression methods over all
nodes in its upper layers.

Compared with the ODS algorithm in Park and Raskutti
(2018), the proposed learning algorithm has a number of advan-
tages. First, the topological layers in the proposed algorithm
are unique for any given QVF-DAG model, whereas the ODS
algorithm needs to estimate the indeterministic causal ordering
of nodes. Second, the computational cost of the proposed algo-
rithm is much less than that of the ODS algorithm, especially in
some wide yet shallow QVF-DAG models, such as a hub graph,
which has attracted tremendous interest in network analysis
as it is a main building block for many network architectures.
More precisely, to learn a hub graph with p nodes and n samples
as in Figure 2, the computational complexity of our proposed
algorithm is of order O(np), which is much more efficient than
the ODS algorithm, whose computational complexity is of order
O(np2) (Park and Raskutti 2018).

The rest of this article is organized as follows. Section 2
introduces QVF-DAGs and the concept of topological layers,
and the reconstruction criterion of QVF-DAGs based on
topological layers. Section 3 provides the details of the
proposed learning algorithm for QVF-DAGs. Numerical
experiments on simulated examples are conducted in Section 4
to demonstrate the advantages of the proposed algorithm
compared with some existing competitors. Section 5 applies
the proposed algorithm to analyze two real-life datasets,
including an NBA player statistics data and a cosmetic sales
data from Alibaba company. A summary is given in Section 6.
Some computational details, all the theoretical results, and
the corresponding proofs are provided in supplementary
materials.

2. QVF-DAG and Topological Layers

2.1. QVF-DAG

A DAG model is widely used to encode joint distribution of a
random vector (X1, . . . , Xp). Precisely, let G = (V , E) denote a
DAG, where V = {1, . . . , p} represents a set of nodes associated
with variables X = (Xj)j∈V , and E ⊂ V × V denote a set of
directed edges without directed cycles. A directed edge from
node k to node j is denoted as k → j, and then node k is a parent
of node j, and the set of node j’s parents is denoted as paj. Let
Xpaj := {Xk : k ∈ paj ⊂ V} and XS := {Xk : k ∈ S ⊂ V}
for any subset S of V . We assume that the joint distribution
P(X) satisfies the Markov property with respect to G, and thus

it allows for the following factorization,

P(X) =
∏
j∈V

P(Xj|Xpaj),

where P(Xj|Xpaj) denotes the conditional distribution of Xj
given its parents Xpaj .

In this article, we focus on the non-Gaussian DAG models
with the quadratic variance function (QVF) property (Park and
Raskutti 2018). Specifically, we assume that P(Xj|Xpaj) satisfies
the QVF property that there exist some constants βj1 and βj2
such that

var(Xj|Xpaj) = βj1E[Xj|Xpaj] + βj2
(
E[Xj|Xpaj]

)2. (1)

In literature, the natural exponential family with the QVF prop-
erty has been extensively studied (Morris 1982; Brown, Cai, and
Zhou 2010), which further assumes that P(Xj|Xpaj) belongs to
the exponential family,

P(Xj|Xpaj) = exp
(
θjXj +

∑
k∈paj

θjkXkXj − Bj(Xj)

−Aj
(
θj +

∑
k∈paj

θjkXk
))

, (2)

where Aj(·) is a log-partition function, Bj(·) is determined by a
given distribution in the exponential family, and the parameter
θjk ∈ R represents the effect from node k to node j. As
pointed out in Park and Raskutti (2018), the QVF-DAG model
is identifiable and both assumptions (1) and (2) are satisfied by
many popular non-Gaussian distributions, including Poisson,
Binomial, Geometric, Exponential, Gamma, and so on.

2.2. Topological Layers

We introduce a novel concept of topological layers, to reformu-
late a QVF-DAG model into an equivalent topological structure
with multiple layers. Particularly, all root nodes in the QVF-
DAG model are assigned to the top layer, and other nodes are
assigned to different layers according to their longest distances
to a root node. It is also important to point out that the induced
topological layers are unique for the given QVF-DAG model,
and the parents of each node must belong to its upper layers,
thus, automatically assuring acyclicity.

Suppose there are a total of T layers, where T denotes the
longest possible distance from some node in the QVF-DAG
model to a root node. Let A0 denote the set of root nodes and
isolated nodes in the top layer, At denote the set of nodes in
the (t + 1)th topological layer, and St = ∪t−1

d=0Ad denote all
the nodes in the layers above the (t + 1)th layer. For any node
k ∈ At , its parent nodes are denoted as pak, and thus pak ⊆ St .

Figure 1 provides a toy QVF-DAG model with three topo-
logical layers. Note that node 1 is a root node and node 4 is
an isolated node, and thus both nodes belong to A0. Node 2
belongs to A1 as its longest distance to the root node is 1, but
node 3 belongs to A2 instead of A1 since its longest path to the
root node is 1 → 2 → 3. Note that the topological layers is
closely related with the key ideas of the depth-first search (DFS)
and breadth-first search (BFS) algorithms (Cormen et al. 2009).

https://doi.org/10.1080/10618600.2022.2069776
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Figure 1. A toy QVF-DAG model in the left panel, and its equivalent topological
structure with three layers in the right panel.

Specifically, the number of topological layer for a DAG is defined
by the longest distance to a root node, which is similar to the DFS
algorithm exploring as far as possible starting from a root node.
The idea that nodes with the same distance to a root node are
in the same layer is similar to that of the BFS algorithm, which
explores all of the neighbor nodes of the current depth before
moving to the next depth level.

2.3. Reconstruction of Topological Layers

Let ndj denote all the non-descendant nodes of node j excluding
itself, then the topological layers of a QVF-DAG model can be
reconstructed under some mild technical conditions.

Condition 1. For any node j ∈ V and any set S satisfying that
paj � S ⊂ ndj, we have E

[
ω2

j (S) var(E[Xj|Xpaj ]|XS)
]

> 0, and
ωj(S) = (βj1 + βj2E[Xj|XS ])−1 exists.

Condition 1 is quite general and can be verified for many
popular distributions, including Poisson, Binomial, Exponen-
tial, Gamma, Geometric, Negative Binomial and so on. The first
part of Condition 1 requires all the parents of node j should
contribute to its variability, which is more general than that
in Park and Raskutti (2018) assuming var(E[Xj|Xpaj]|XS) >

0 for all XS , and can reduce to the identifiability condition
in Park and Park (2019) when the underlying distribution is
indeed Poisson. For illustration, we consider a toy example with
X1 ∼ Poisson(λ), X2|X1 ∼ Poisson(λ + X1) and X3|X1, X2 ∼
Poisson(λ + X21{X1 	=1}), where 1{·} is an indicator function. It
can be verified that var(E[X3|X1, X2]|X1 = 1) = 0 and thus the
identifiability condition in Park and Raskutti (2018) is violated,
but this toy example still satisfies the first part of Condition 1.
The second part of Condition 1 requires that βj1 and βj2 should
satisfy βj1 + βj2E[Xj|XS ] 	= 0, which ensures that ωj(S) =
(βj1 + βj2E[Xj|XS ])−1 is well-defined. Moreover, βj2 > −1 is
required to rule out some distributions, including Bernoulli and
multinomial distributions, which are known to be unidentifiable
in literature (Heckerman, Geiger, and Chickering 1995).

Lemma 1. Suppose that X ∈ Rp is generated by a QVF-DAG
model and Condition 1 is satisfied. For any node j ∈ V and any
set S ⊆ ndj, we have

E
[

var(ωj(S)Xj|XS)
] ≥ E[ωj(S)Xj],

provided that βj2 > −1. The equality holds if and only if
paj ⊆ S .

Lemma 1 provides a crucial criterion to reconstruct the
topological layers of a QVF-DAG model in a top-down fashion,
and its proof is provided in Appendix B. Specifically, if paj ⊆ S ,
the conditional ratio

R(j,S) := E
[

var(ωj(S)Xj|XS)
]

E[ωj(S)Xj] (3)

should be exactly 1. Motivated by this fact, Theorem 1 shows
that the topological layers {At}T−1

t=0 of a QVF-DAG model,
defined in Section 2.2, can be exactly reconstructed.

Theorem 1. Suppose that all the conditions of Lemma 1 are
satisfied and A0, . . . ,At−1 have been identified with S0 = ∅
and St = ∪t−1

d=0Ad. It then holds true that

R(j,St)

{
= 1, for any j ∈ At ;
	= 1, for any j ∈ V\{St ∪ At},

(4)

for t = 0, . . . , T − 1, and thus the topological layers can be
exactly reconstructed.

Theorem 1 provides a constructive result for the reconstruc-
tion of a general class of non-Gaussian DAG models with the
QVF property. Its proof follows from Lemma 1, the criterion
in (4), and the assumption that a node’s parents should all
contribute to its variability. Particularly, for any root or isolated
node j ∈ V with paj = ∅, Theorem 1 shows that the topological
layer A0 can be exactly reconstructed by the fact that

R(j, ∅) = E
[

var(ωj(∅)Xj)
]

E[ωj(∅)Xj] = var(Xj)

(βj1 + βj2E[Xj])E[Xj] = 1,

for any root or isolated node j ∈ V , and R(j, ∅) 	= 1 otherwise.
Further, if the longest distance of a node j to a root node is t ≥
1, then j ∈ At by definition, and Theorem 1 guarantees that
R(j,St) = 1 and R(l,St) 	= 1 for any node l contained in lower
layers.

3. Proposed Algorithm

In this section, we illustrate the proposed algorithm with natural
exponential family assumption in (2), but the algorithm can be
adapted to learn a general QVF-DAG model as well. Motivated
by Lemma 1 and Theorem 1, learning a QVF-DAG model
from the observed data can be decomposed into a two-step
procedure, where the topological layers can be reconstructed in
a top-down fashion at the first step, and then the directed edges
can be recovered by using sparse regression models in a parallel
fashion.

3.1. Two-Step Learning Algorithm

Given a training sample Xn = (Xn
i )n

i=1 with Xn
i = (Xn

i,1, . . . ,
Xn

i,p)
T , we first attempt to estimate the top layer A0. Specifically,

for each node j ∈ V , we compute the estimated unconditional
ratio,

R̂(j, ∅) = v̂ar(Xj)

(βj1 + βj2Ê[Xj])̂E[Xj]
, (5)
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where v̂ar(Xj) = Ê[X2
j ] − (̂E[Xj])2, Ê[Xj] = 1

n
∑n

i=1 Xn
i,j and

Ê[X2
j ] = 1

n
∑n

i=1(Xn
i,j)

2. By Theorem 1, A0 can be estimated as
Â0 = {

j, |R̂(j, ∅) − 1| ≤ ε0
}

for some small constant ε0 > 0.
Suppose that the topological layers Â0, . . . , Ât−1 have been

estimated and Ŝt = ∪t−1
d=0Âd, we now proceed to estimate At .

For each node j ∈ V\Ŝt , we compute the estimated conditional
ratio,

R̂(j, Ŝt) = Ê
[
v̂ar(ω̂j(Ŝt)Xj|XŜt

)
]

Ê[ω̂j(Ŝt)Xj]
, (6)

where Ê
[
v̂ar(ω̂j(Ŝt)Xj|XŜt

)
] = Ê

[
ω̂2

j (Ŝt)
(̂
E[X2

j |XŜt
] −

(̂E[Xj|XŜt
])2)] with ω̂j(Ŝt) = (βj1 + βj2Ê[Xj|XŜt

])−1. By
Theorem 1,At can be estimated as Ât = {

j, |R̂(j, Ŝt)−1| ≤ εt
}

for some small positive constant εt . This procedure is repeated
until there are no remaining nodes, and then the topological
layers of the DAG model are reconstructed.

Once all the topological layers are reconstructed, the directed
edges between nodes can be recovered via standard sparse
regression models (Meinshausen and Bühlmann 2006; Yang
et al. 2015) in a parallel fashion. Specifically, for each node
j ∈ Ât , we conduct a sparse regression of Xj against XŜt

, and any
nonzero coefficient leads to a directed edge pointing from the
corresponding node in Ŝt to the node j. This sparse regression
procedure can be done for all nodes simultaneously to expedite
the computation.

The proposed two-step learning algorithm for a QVF-DAG
via topological layer is summarized in Algorithm 1, denoted as
the TLDAG algorithm.

Note that the ratio estimation R̂(j, Ŝt) in Step 2 varies from
one distribution to another, and we provide the computational
details for Poisson and Binomial DAGs with generalized lin-
ear model (GLM) in Appendix A, supplementary materials. A
conditional variance estimation procedure for a general QVF-
DAG is also provided in Appendix D, supplementary materials.
Furthermore, multiple sparse regressions are fitted in Step 4
to recover the parent–child relations, and the choice of the
tuning parameters can be guided by Theorem S2 in Appendix
C, supplementary materials or via cross-validation. In all the

Algorithm 1 TLDAG algorithm
1: Input: sample matrix Xn ∈ Rn×p, Ŝ = ∅, and t = 0;
2: Until Ŝ = V :

a. For any j ∈ V\Ŝ , compute the ratio R̂(j, Ŝt) =
Ê
[

v̂ar(ω̂j(Ŝt)Xj|XŜt )
]

Ê[ω̂j(Ŝt)Xj] ;

b. Define Ât =
{

j, |R̂(j, Ŝt)−1| ≤ εt
}

and let Ŝ = Ŝ∪Ât ;
c. t ← t + 1.

3: Let T̂ = t.
4: For any node j ∈ Ât , fit a sparse regression model of Xj

against XŜt
to obtain the estimated directed edges pointing

to node j, denoted as Êt = {(k, j)|k ∈ Ŝt , j ∈ Ât}
5: Return: {Ât}T̂−1

t=0 and {Êt}T̂−1
t=1 .

numerical experiments in Section 4, we employ the 5-fold cross-
validation to select the optimal values of tuning parameters for
the �1-penalized regressions by using R package “glmnet,” which
leads to satisfactory numerical performance.

More importantly, we have established the consistency of the
TLDAG algorithm for a Poisson DAG via GLM estimation in
Appendix C, supplementary materials and a general QVF-DAG
via the conditional variance estimation procedure in Appendix
D, supplementary materials, respectively. The theoretical results
indicate that the proposed algorithm can exactly recover the true
DAG with high probability, with some regularity conditions and
properly chosen εt . Due to the space limit, all the theoretical
results, including the consistency of the TLDAG algorithm and
its technical proof, as well as the detailed discussion on the
suggested tuning method for εt in Section 3.3 are provided in
Appendices C and D, supplementary materials.

3.2. Computational Complexity

In literature, the ODS algorithm (Park and Raskutti 2018) is
developed for learning the QVF-DAG models, and the moments
ratio scoring algorithm (MRS; Park and Park 2019) extends
the ODS algorithm for a special type of QVF-DAGs, yet the
computational complexities of both algorithms are of order
O(np2) and O(np3), respectively, which are still relatively high
and difficult to scale up for large-scale QVF-DAGs.

By contrast, the computational complexity of the TLDAG
algorithm can be much less than that of ODS and MRS, espe-
cially when dealing with shallow QVF-DAGs with T � p.
For example, to learn a hub graph with T = 2 as in Figure 2,
TLDAG needs to first identify A0 and A1, and then reconstruct
the parent–child relationship. More precisely, identifying A0
requires estimation of the unconditional ratio for p nodes, which
amounts to the complexity of order O(np), and identifying A1
requires estimation of the conditional ratio for the remaining
p − 1 nodes via GLM with only one predictor in A0, which
also amounts to the complexity of order O(np). For parent-child
reconstruction, we just need to fit the GLM model for each
node in A1 against the only predictor in A0, which amounts
to the complexity of order O(np). Therefore, the computational
complexity of TLDAG is only of order O(np), which is much
more efficient than both ODS and MRS algorithms.

In terms of computational complexity of a random graph
with T layers, the TLDAG algorithm involves O(p(T − 1))

calculations of ratios in Step 2, which is more efficient than ODS
and MRS as they both need to calculate O(p2) ratios to learn the
causal ordering. Furthermore, the directed parent-child struc-
ture can be recovered in a parallel fashion, and for each node, �1-
regularized GLM regression is fitted using coordinate descent

Figure 2. The hub graph for Examples 1 and 2.

https://doi.org/10.1080/10618600.2022.2069776
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(Friedman, Hastie, and Tibshirani 2010; Park and Park 2019),
with all the nodes in the upper layers as predictors, leading
to the total complexity of order O

(∑T−1
t=1 n(

∑t−1
k=0 ak)at

)
with

at denoted as the number of nodes in At . It is clear that the
computational complexity of TLDAG is the same as that of ODS
when T = p, and it can be significantly better than ODS when
the QVF-DAG has a shallow structure with T < p. The detailed
numerical comparisons of TLDAG, ODS, and MRS are given in
Section 4.3.

3.3. Tuning

The numerical performance of the TLDAG algorithm depends
on the layer reconstruction parameter εt and the tuning param-
eter in the sparse regression algorithm. Whereas the latter can be
determined via cross-validation, we need to modify the stability-
based criterion in Sun, Wang, and Fang (2013) to select the
optimal parameter εt for each layer.

The key idea is to measure the reconstruction stability by
randomly splitting the training sample into two parts and com-
paring the disagreement between the two estimated active sets.
Specifically, given a value εt , we randomly split the training sam-
ple ZM into two parts ZM

1 and ZM
2 . Then the proposed method

is applied toZM
1 andZM

2 and we obtain two estimated active sets
Â1,εt and Â2,εt , respectively. The disagreement between Â1,εt
and Â2,εt is measured by Cohen’s kappa coefficient

κ(Â1,εt , Â2,εt ) = Pr(a) − Pr(e)
1 − Pr(e)

,

where Pr(a) = n11+n22
pt

and Pr(e) = (n11+n12)(n11+n21)
p2

t
+

(n12+n22)(n21+n22)
p2

t
with n11 = |Â1,εt ∩ Â2,εt |, n12 = |Â1,εt ∩

Âc
2,εt |, n21 = |Âc

1,εt ∩ Â2,εt |, n22 = |Âc
1,εt ∩ Âc

2,εt |, pt = p−|St|,
and | · | denotes the set cardinality. The procedure is repeated for
B times and the estimated reconstruction stability is measured
as

ŝ(	εt ) = 1
B

B∑
b=1

κ(Âb
1,εt , Â

b
2,εt ),

where Âb
1,εt and Âb

2,εt are the estimated active sets in the bth
splitting. Finally, we set ε̂t = min

{
εt : ŝ(	εt )

maxεt ŝ(	εt )
≥ c

}
,

where c ∈ (0, 1) is some given percentage. For illustration,
c = 0.9 and B = 5 are used in all the numerical examples,
and yield satisfactory performance. Note that it can be shown
that Assumptions 1 and 2 in Sun, Wang, and Fang (2013) can
be verified by setting λ = 1/εt , and thus the selection guarantee
of the suggested tuning method established in Sun, Wang, and
Fang (2013) still holds. More detailed discussion on the stability
selection method is provided in Appendix C.1, supplementary
materials.

4. Simulated Experiments

In this section, we examine the numerical performance of the
TLDAG algorithm, and compare it against some state-of-the-
art methods in terms of estimation accuracy of directed edges
and computational efficiency. Specifically, five competitors are

considered, including the ODS algorithm, the MRS algorithm,
a direct linear non-Gaussian DAG method (DLiNGAM;
Shimizu et al. 2011), the greedy equivalence search method
(GES; Chickering 2003), and the max-min hill climbing
method (MMHC; Tsamardinos, Brown, and Aliferis 2006).
We implement TLDAG, ODS and MRS in R and the source
codes are available in https://github.com/WeiZHOU23/TLDAG,
implementation of DLiNGAM is available on the author’s
website https://github.com/cdt15/lingam, and GES and MMHC
are implemented in the R packages “pcalg” (Kalisch et al. 2012)
and “bnlearn” (Scutari 2010), respectively. For GES, the output is
a partial DAG, and we follow the treatment in Yuan et al. (2019)
and extend the output to DAG for fair comparison. For TLDAG,
the tuning parameter εt ’s are adaptively chosen for each layer
via the stability selection procedure in Section 3.3, where the
grid search is conducted over grids {10−2+0.15s; s = 0,…, 60}.

For comparison metrics, we use Recall, Precision, F1-score
and the normalized hamming distance (HM) to evaluate the
estimation accuracy. Whereas the first three metrics are stan-
dard and popularly used in literature, HM measures the num-
ber of edge insertions, deletions or flips needed to transform
one graph to another (Tsamardinos, Brown, and Aliferis 2006).
Large values of Recall, Precision, and F1-score and small values
of HM indicate good estimation accuracy.

In all simulated examples, we generate data for the QVF-
DAG model with both hub graphs and random graphs. The
conditional distribution of each node given its parents follows
either a Poisson distribution Pois(exp(θj + ∑

k∈paj
θjkXk)) or a

Binomial distribution Bin(Nj, logit−1(θj + ∑
k∈paj

θjkXk))). A
nonzero coefficient θjk indicates a directed edge from node k
to node j, and θjk = 0 otherwise. Therefore, the conditional
distribution of each node given its parents indeed belongs to the
natural exponential family, and satisfies the required assump-
tions in (1) and (2).

4.1. Hub Graphs

The hub graph is a special type of DAGs, which consists of a
hub node and a number of other nodes, and directed edges only
points from the hub node to other nodes. In this section, we
consider the following hub graphs, and similar examples have
also been considered in Park and Park (2019) and Yuan et al.
(2019).

Example 1 (Poisson hub graph). The generated DAG model
is depicted in Figure 2. We first generate the hub node X1 in
A0 from Pois(exp(θ1)), and then Xj in A1 from Pois(exp(θj +
θj1X1)) for j = 2, . . . , p. The parameters θj and θj1 are generated
uniformly from [1, 3] and [0.1, 0.5] for j = 1, . . . , p, respectively.

Example 2 (Mixed hub graph). The generated DAG is the same
as that in Example 1, but the conditional distribution of each
node given its parents may be different. Particularly, we first
generate distribution labels Zj independently from Bern(0.5) for
j = 1 . . . , p. Then the hub node X1 in A0 is generated from
Z1Pois(exp(θ1))+ (1 − Z1)Bin(4, θ1), and Xj in A1 is generated
from ZjPois(exp(θj +θj1X1))+(1−Zj)Bin(4, θj +θj1X1) for j =
2, . . . , p. For those Xj’s from the Poisson distribution, the param-

https://doi.org/10.1080/10618600.2022.2069776
https://github.com/WeiZHOU23/TLDAG
https://github.com/cdt15/lingam
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eters θj and θjk are generated uniformly from [1, 3] and [0.1, 0.3],
[0.1, 0.2] and [0.05, 0.2] for p = 5, 20, 100, respectively; and for
those Xj’s from the Binomial distribution, the parameters θj and
θjk are both generated uniformly from [0.1, 0.2] for p = 5 and
20, and [0.05, 0.2] for p = 100. Note that the shrunk interval for
large p is used to avoid large values of θj + θj1X1, which leads to
a contradiction with Condition 1.

In each example, the averaged performance metrics of all
the competing methods over 50 independent replications as
well as their standard errors are summarized in Tables 1–2. It
is evident that TLDAG yields superior numerical performance
and outperforms the other five competitors in almost all the
scenarios. In Table 1 with the Poisson hub graph, TLDAG yields
a small HM and the largest Precision and F1-score, and the
Recall of TLDAG, ODS and MRS are all close to 1, but the other
three methods have much smaller Recall. In Table 2 with the
mixed hub graph, TLDAG yields the best performance in terms
of Precision and F1-score, and comparable performance to the
best performer in terms of HM and Recall.

4.2. Random Graphs

We now consider two commonly used models for the random
graphs, including the Erdös and Rényi (ER) model (Erdös and

Table 1. The averaged performance metrics of various methods as well as their
standard errors in parentheses in Example 1.

p n Methods HM Recall Precision F1-score

5 200 TLDAG 0.13(0.01) 1.00(0.00) 0.63(0.01) 0.76(0.01)
ODS 0.17(0.01) 1.00(0.01) 0.56(0.01) 0.71(0.01)
MRS 0.14(0.01) 0.99(0.01) 0.58(0.01) 0.73(0.01)

DLiNGAM 0.28(0.02) 0.56(0.04) 0.39(0.03) 0.45(0.03)
GES 0.43(0.02) 0.34(0.03) 0.19(0.02) 0.25(0.02)

MMHC 0.25(0.02) 0.54(0.05) 0.41(0.04) 0.46(0.04)

500 TLDAG 0.14(0.01) 1.00(0.00) 0.62(0.02) 0.76(0.01)
ODS 0.17(0.01) 1.00(0.00) 0.56(0.01) 0.71(0.01)
MRS 0.13(0.01) 1.00(0.01) 0.59(0.01) 0.73(0.01)

DLiNGAM 0.25(0.02) 0.59(0.04) 0.43(0.03) 0.49(0.03)
GES 0.46(0.02) 0.31(0.03) 0.17(0.02) 0.22(0.02)

MMHC 0.28(0.02) 0.56(0.04) 0.40(0.03) 0.44(0.03)

20 200 TLDAG 0.05(0.00) 1.00(0.00) 0.56(0.03) 0.70(0.02)
ODS 0.11(0.00) 0.99(0.01) 0.32(0.01) 0.48(0.01)
MRS 0.06(0.00) 1.00(0.00) 0.41(0.01) 0.58(0.01)

DLiNGAM 0.29(0.01) 0.61(0.05) 0.10(0.01) 0.17(0.01)
GES 0.18(0.00) 0.32(0.02) 0.11(0.01) 0.16(0.01)

MMHC 0.09(0.00) 0.12(0.01) 0.12(0.01) 0.12(0.01)

500 TLDAG 0.05(0.00) 1.00(0.00) 0.55(0.03) 0.69(0.02)
ODS 0.11(0.00) 1.00(0.00) 0.32(0.01) 0.48(0.01)
MRS 0.06(0.00) 0.99(0.00) 0.43(0.01) 0.60(0.01)

DLiNGAM 0.25(0.01) 0.63(0.05) 0.12(0.01) 0.20(0.02)
GES 0.19(0.01) 0.42(0.03) 0.12(0.01) 0.18(0.02)

MMHC 0.10(0.00) 0.18(0.01) 0.13(0.01) 0.15(0.01)

100 200 TLDAG 0.02(0.00) 0.99(0.00) 0.44(0.03) 0.59(0.02)
ODS 0.05(0.00) 0.94(0.01) 0.16(0.00) 0.28(0.01)
MRS 0.02(0.00) 0.94(0.01) 0.30(0.01) 0.46(0.01)

DLiNGAM 0.28(0.00) 0.54(0.04) 0.02(0.00) 0.04(0.00)
GES 0.05(0.00) 0.09(0.01) 0.02(0.00) 0.03(0.00)

MMHC 0.02(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00)

500 TLDAG 0.02(0.00) 1.00(0.00) 0.45(0.03) 0.60(0.02)
ODS 0.05(0.00) 0.97(0.00) 0.17(0.00) 0.29(0.00)
MRS 0.02(0.00) 0.98(0.00) 0.33(0.01) 0.49(0.01)

DLiNGAM 0.26(0.00) 0.59(0.03) 0.02(0.00) 0.04(0.00)
GES 0.07(0.00) 0.17(0.01) 0.03(0.00) 0.05(0.00)

MMHC 0.02(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00)

Rényi 1960) and the Barabási-Albert (BA) model (Barabási
and Albert 1999). It is interesting to note that the BA model
generates scale-free graphs, which commonly appears in many
science problems, such as the gene networks.

Example 3 (Mixed ER graph). The generated DAG model is
depicted in Figure 3. We set the probability of connecting an
edge as PE = 0.35 for p = 5 and 20, and PE = 0.1 for
p = 100 and generate a random DAG. Then, we convert the
generated random DAG into topological structure, obtain the
distribution labels Zj, j = 1, . . . , p as the same treatment in
Example 2, and generate the data for the root nodes Xj’s from
ZjPois(exp(θj)) + (1 − Zj)Bin(4, θj), and the remaining nodes
Xk’s from ZkPois(exp(θk +∑

l∈pak
θklXl))+ (1 − Zk)Bin(4, θk +

Table 2. The averaged performance metrics of various methods as well as their
standard errors in parentheses in Example 2.

p n Methods HM Recall Precision F1-score

5 200 TLDAG 0.23(0.02) 0.57(0.04) 0.46(0.03) 0.50(0.03)
ODS 0.33(0.01) 0.36(0.04) 0.26(0.03) 0.29(0.03)

DLiNGAM 0.37(0.02) 0.47(0.05) 0.27(0.03) 0.34(0.03)
GES 0.31(0.01) 0.41(0.03) 0.30(0.02) 0.34(0.02)

MMHC 0.22(0.02) 0.55(0.04) 0.45(0.03) 0.49(0.03)

500 TLDAG 0.24(0.02) 0.58(0.04) 0.47(0.04) 0.50(0.04)
ODS 0.33(0.01) 0.39(0.04) 0.26(0.03) 0.31(0.03)

DLiNGAM 0.34(0.02) 0.55(0.05) 0.32(0.03) 0.40(0.03)
GES 0.31(0.01) 0.45(0.03) 0.31(0.02) 0.37(0.03)

MMHC 0.23(0.02) 0.60(0.04) 0.45(0.03) 0.51(0.03)

20 200 TLDAG 0.12(0.01) 0.27(0.03) 0.18(0.02) 0.21(0.02)
ODS 0.12(0.01) 0.23(0.03) 0.10(0.01) 0.13(0.02)

DLiNGAM 0.24(0.01) 0.27(0.03) 0.06(0.01) 0.10(0.01)
GES 0.11(0.00) 0.29(0.01) 0.17(0.01) 0.21(0.01)

MMHC 0.09(0.00) 0.12(0.01) 0.11(0.01) 0.11(0.01)

500 TLDAG 0.12(0.01) 0.31(0.03) 0.20(0.03) 0.23(0.02)
ODS 0.14(0.01) 0.27(0.03) 0.11(0.01) 0.14(0.02)

DLiNGAM 0.25(0.01) 0.33(0.03) 0.08(0.01) 0.13(0.01)
GES 0.10(0.00) 0.37(0.02) 0.20(0.01) 0.26(0.01)

MMHC 0.09(0.00) 0.22(0.01) 0.17(0.01) 0.19(0.01)

100 200 TLDAG 0.05(0.00) 0.22(0.02) 0.09(0.02) 0.12(0.02)
ODS 0.06(0.00) 0.21(0.02) 0.04(0.01) 0.07(0.01)

DLiNGAM 0.18(0.01) 0.40(0.02) 0.02(0.00) 0.04(0.00)
GES 0.03(0.00) 0.12(0.01) 0.05(0.00) 0.07(0.01)

MMHC 0.02(0.00) 0.02(0.00) 0.01(0.00) 0.02(0.00)

500 TLDAG 0.05(0.00) 0.29(0.03) 0.10(0.02) 0.14(0.02)
ODS 0.07(0.00) 0.26(0.02) 0.05(0.01) 0.07(0.01)

DLiNGAM 0.15(0.01) 0.31(0.02) 0.02(0.00) 0.04(0.00)
GES 0.04(0.00) 0.19(0.02) 0.06(0.01) 0.10(0.01)

MMHC 0.02(0.00) 0.03(0.00) 0.02(0.00) 0.03(0.00)

Figure 3. The random graph for Examples 3 and 4.
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∑
l∈pak

θklXl). Precisely, the parameter θk for the Poisson distri-
bution is generated uniformly from [1, 3], and θkl are generated
uniformly from [0.01, 0.05], [0.005, 0.015], and [0.001, 0.01] for
p = 5, 20, and 100, respectively. The parameter θk and θkl
for the Binomial distribution are all generated uniformly from
[0.01, 0.05], [0.005, 0.015], and [0.005, 0.01] for p = 5, 20, and
100, respectively.

Example 4 (Mixed BA graph). The generated DAG is a BA
graph with the number of edges to be added for each node
as 2. The generated data mechanism is the same as that in
Example 3 except that the parameter θk for the Poisson distri-
bution is generated uniformly from [1, 3], and θkl are generated
uniformly from [0.01, 0.03], [0.005, 0.02], and [0.001, 0.01] for
p = 5, 20, and 100, respectively. The parameter θk and θkl
for the Binomial distribution are all generated uniformly from
[0.01, 0.05], [0.005, 0.02], and [0.001, 0.01] for p = 5, 20, and
100, respectively.

In each example, the averaged performance metrics of all the
competing methods over 50 independent replications as well as
their standard errors are summarized in Tables 3 and 4. Note
that the averaged number of topological layers considered in
Examples 3 and 4 for the case p = 100 are as large as 18 and
9, respectively.

From Tables 3 and 4, it is clear that TLDAG still performs
well on the random graphs. Precisely, in the both two examples,
TLDAG is the best performer in terms of HM and Precision,

Table 3. The averaged performance metrics of various methods as well as their
standard errors in parentheses in Example 3.

p n Methods HM Recall Precision F1-score

5 200 TLDAG 0.27(0.02) 0.34(0.04) 0.34(0.05) 0.31(0.04)
ODS 0.32(0.01) 0.25(0.03) 0.22(0.04) 0.22(0.03)

DLiNGAM 0.41(0.02) 0.39(0.05) 0.19(0.02) 0.24(0.03)
GES 0.31(0.01) 0.37(0.04) 0.25(0.03) 0.28(0.03)

MMHC 0.29(0.01) 0.28(0.03) 0.26(0.03) 0.25(0.03)

500 TLDAG 0.24(0.02) 0.39(0.04) 0.41(0.05) 0.37(0.04)
ODS 0.32(0.01) 0.29(0.03) 0.24(0.03) 0.25(0.03)

DLiNGAM 0.39(0.02) 0.40(0.05) 0.20(0.02) 0.25(0.03)
GES 0.31(0.01) 0.38(0.05) 0.25(0.03) 0.28(0.03)

MMHC 0.29(0.01) 0.33(0.04) 0.26(0.03) 0.27(0.03)

20 200 TLDAG 0.20(0.01) 0.12(0.01) 0.37(0.03) 0.16(0.01)
ODS 0.23(0.00) 0.12(0.01) 0.22(0.01) 0.15(0.01)

DLiNGAM 0.31(0.01) 0.27(0.02) 0.20(0.01) 0.22(0.01)
GES 0.23(0.00) 0.17(0.01) 0.26(0.01) 0.20(0.01)

MMHC 0.21(0.00) 0.07(0.01) 0.20(0.01) 0.11(0.01)

500 TLDAG 0.21(0.01) 0.14(0.01) 0.36(0.03) 0.17(0.02)
ODS 0.23(0.01) 0.13(0.01) 0.22(0.02) 0.15(0.01)

DLiNGAM 0.31(0.01) 0.27(0.02) 0.21(0.01) 0.22(0.01)
GES 0.23(0.00) 0.22(0.02) 0.27(0.01) 0.24(0.01)

MMHC 0.21(0.00) 0.11(0.01) 0.24(0.01) 0.15(0.01)

100 200 TLDAG 0.07(0.00) 0.03(0.00) 0.15(0.02) 0.04(0.00)
ODS 0.10(0.00) 0.05(0.01) 0.05(0.00) 0.05(0.00)

DLiNGAM 0.24(0.01) 0.24(0.01) 0.06(0.00) 0.08(0.00)
GES 0.08(0.00) 0.09(0.00) 0.11(0.00) 0.10(0.00)

MMHC 0.06(0.00) 0.02(0.00) 0.08(0.00) 0.03(0.00)

500 TLDAG 0.08(0.00) 0.06(0.01) 0.10(0.01) 0.06(0.00)
ODS 0.12(0.00) 0.08(0.01) 0.05(0.00) 0.06(0.00)

DLiNGAM 0.18(0.00) 0.18(0.01) 0.06(0.00) 0.09(0.00)
GES 0.09(0.00) 0.14(0.00) 0.13(0.00) 0.14(0.00)

MMHC 0.07(0.00) 0.04(0.00) 0.10(0.00) 0.05(0.00)

and yields comparable performance to the other competitors in
terms of F1-score in almost all the scenarios. Note that TLDAG
achieves the highest Precision in all scenarios, largely due to
the fact that TLDAG can obtain high layer-recovery accuracy,
leading to better DAG estimation accuracy. It is worthy pointing
out that DLiNGAM achieves the highest Recall in some cases,
due to the fact that it tends to produce a very dense graph
with many false edges, leading to small Precision. Note that the
MMHC method does not return any result after running for
more than 24 hr for the cases with p = 100 in Example 4, and
thus is omitted in Table 4 correspondingly.

4.3. Computational Comparison

We now turn to investigate the computational efficiency of
TLDAG and compare it with ODS and MRS. Specifically,
their running time is measured with varying n and p under
two cases that: (1) n ∈ {100, 500, 1000, 1500, 2000, 2500}
with p = 50 in the hub Poisson and mixed BA graphs; (2)
p ∈ {10, 20, 40, 60, 80, 100} with n = 500 in the hub and
Poisson BA graphs. The data-generating scheme is the same as
that in Sections 4.1 and 4.2 and the running time is reported in
Figure 4. We also evaluate the running time of these algorithms
in a Poisson graph with different cardinality of each layer that
at ∈ {5, 10, 15, 20, 25} under the case (n, p) = (500, 50), and the
number of parent of each node to be one. Figure 5 illustrates the
obtained results.

It is evident that TLDAG is much more efficient than other
methods in terms of computational cost, where all the tuning

Table 4. The averaged performance metrics of various methods as well as their
standard errors in parentheses in Example 4.

p n Methods HM Recall Precision F1-score

5 200 TLDAG 0.28(0.02) 0.40(0.03) 0.73(0.05) 0.49(0.04)
ODS 0.35(0.02) 0.36(0.03) 0.49(0.04) 0.41(0.03)

DLiNGAM 0.47(0.02) 0.38(0.03) 0.35(0.03) 0.36(0.03)
GES 0.39(0.01) 0.33(0.03) 0.44(0.05) 0.37(0.04)

MMHC 0.42(0.01) 0.23(0.02) 0.35(0.05) 0.27(0.03)

500 TLDAG 0.28(0.01) 0.47(0.03) 0.70(0.04) 0.54(0.03)
ODS 0.37(0.02) 0.35(0.03) 0.47(0.03) 0.39(0.03)

DLiNGAM 0.45(0.02) 0.39(0.04) 0.37(0.04) 0.37(0.03)
GES 0.40(0.02) 0.36(0.04) 0.42(0.05) 0.38(0.04)

MMHC 0.43(0.01) 0.25(0.03) 0.34(0.04) 0.29(0.03)

20 200 TLDAG 0.12(0.01) 0.15(0.01) 0.49(0.05) 0.21(0.02)
ODS 0.18(0.00) 0.08(0.02) 0.09(0.02) 0.08(0.02)

DLiNGAM 0.25(0.01) 0.27(0.02) 0.12(0.01) 0.17(0.01)
GES 0.17(0.00) 0.17(0.01) 0.16(0.02) 0.17(0.01)

MMHC 0.15(0.00) 0.08(0.01) 0.12(0.01) 0.10(0.01)

500 TLDAG 0.13(0.01) 0.18(0.03) 0.48(0.05) 0.24(0.02)
ODS 0.19(0.01) 0.08(0.02) 0.08(0.02) 0.08(0.02)

DLiNGAM 0.25(0.01) 0.28(0.03) 0.13(0.01) 0.18(0.01)
GES 0.17(0.00) 0.21(0.02) 0.18(0.02) 0.20(0.02)

MMHC 0.15(0.00) 0.10(0.01) 0.14(0.02) 0.12(0.01)

100 200 TLDAG 0.03(0.00) 0.04(0.01) 0.33(0.05) 0.06(0.01)
ODS 0.10(0.01) 0.05(0.01) 0.01(0.01) 0.02(0.01)

DLiNGAM 0.13(0.00) 0.19(0.01) 0.03(0.00) 0.05(0.00)
GES 0.05(0.00) 0.08(0.00) 0.05(0.00) 0.06(0.00)

MMHC – – – –

500 TLDAG 0.04(0.01) 0.06(0.01) 0.29(0.04) 0.08(0.01)
ODS 0.13(0.01) 0.07(0.01) 0.01(0.00) 0.02(0.00)

DLiNGAM 0.12(0.00) 0.17(0.02) 0.03(0.01) 0.05(0.01)
GES 0.05(0.00) 0.11(0.00) 0.06(0.01) 0.08(0.00)

MMHC – – – –
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Figure 4. Comparisons of the TLDAG algorithm with the ODS and MRS algorithms in terms of the running time with respect to varying (a) the sample size in a hub Poisson
graph, (b) the sample size in a mixed BA graph, (c) the node size in a hub Poisson graph, (d) the node size in a Poisson BA graph.

procedures are taken into consideration. Specifically, the com-
putational cost of TLDAG is roughly linearly proportional to the
sample size and the node size. It is also interesting to point out
that the computational cost of these algorithms is not sensitive to
the cardinality of each layer in Figure 5. This is reasonable as the
nodes in each layer can be simultaneously identified by TLDAG,
whereas both ODS and MRS are only designed to estimate
the causal ordering. The computational efficiencies reported
in Figures 4 and 5 also support the computational complexity
analysis in Section 3.2.

5. Real Applications

We now apply the TLDAG algorithm to analyze two real exam-
ples, including an NBA player statistics data and a cosmetic
sales data. The NBA player statistics data is publicly available
in the R package “SportsAnalytics,” and the cosmetic sales data
is collected by Alibaba, one of the largest online stores in China.

Figure 5. Comparisons of the TLDAG algorithm with the ODS and MRS algorithms
in terms of the running time with the number of nodes in each layer.
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5.1. NBA Player Data

The NBA player statistics data consists of a number of statistics
for 441 NBA players in the season 2009/2010. For illustration,
we focus on 18 informative statistics, including TotalMinute-
sPlayed, FieldGoalsMade, FieldGoalsAttempted, ThreesMade,
ThreesAttempted, FreeThrowsMade, FreeThrowsAttempted,
OffensiveRebounds, TotalRebounds, Assists, Steals, Turnovers,
Blocks, PersonalFouls, Disqualifications, TotalPoints, Techni-
cals, and GamesStarted.

Following the same treatment as in Park and Raskutti (2018),
we assume the conditional distribution of each node given its
parents follows a Poisson distribution. We then apply TLDAG
to estimate the directed structures among the 18 statistics, as
shown in Figure 6.

The estimated DAG in Figure 6 has four topological layers
and twenty directed edges. Compared with the estimated DAG
by ODS, it contains six more directed edges and reverses six
directed edges, and the difference is summarized in Figure 7.

It is evident that TLDAG produces a much more reasonable
DAG compared with ODS. The added edges appear reasonable
and agree with common sense. The more GamesStarted and
the less Turnovers a player has, the more FieldGoalsMade and
TotalRebounds he may obtain by controlling and dribbling more
balls; if a player has competitive ability in Steals and Assists and
makes more three point shots, he is more likely to be a key
player in the team and thus plays more minutes in the game.
For the reversed edges, it is reasonable that a larger number
of FieldGoalMade implies more total points, but the reverse is
not necessarily true; if a player is in center or Power Forward
position, he is likely to have more PersonalFouls, also more

OffensiveRebounds, and thus more TotalRebouds. Note that the
position variable is seen as a latent variable and excluded in
this graph. Furthermore, strong ability of taking more TotalRe-
bounds for a player leads to his more minutes to play, and more
FieldGoalsAttempted and less PersonalFouls show the player’s
offensive and defensive abilities, which results in more minutes
he plays in the game.

5.2. Alibaba Cosmetic Sales Data

The cosmetic sales dataset consists of 35,102 samples and six
features of liquid essences of some anonymous brands, including
the number of orders in one month (NO), the level of brand
(LB), the star level of the seller (SLS), the place of origin (PO),
the effect (EF) and the ingredient (IND). Note that NO is a con-
tinuous variable and the other five variables are discrete. Specif-
ically, LB and SLS take values in {0, 1, 2, 3, 4, 5} and {0, 1, 2, 3},
where a larger value indicates higher reputation for the brand
and seller. PO takes value in {0, 1, 2, . . . , 21} representing 22
different countries of origin, EF takes value in {0, 1, 2, . . . , 31}
for effects including moisurization, skin whitening, despeckle
and so on, and IND takes value in {0, 1, 2, . . . , 122} for different
ingredients such as water, polyois, essence, solubilizer and so on.

As suggested by the descriptive statistics, it is reasonable to
assume that the conditional distribution of NO given its parents
follows an exponential distribution, and the conditional distri-
butions of the other five discrete variables given their parents are
Binomial. We then apply the TLDAG algorithm to the dataset
and the estimated DAG is shown in the left panel of Figure 8,
which has four topological layers and 10 directed edges.

Figure 6. The estimated DAG among 18 statistics in the NBA player data.

Figure 7. The difference between the estimated DAGs by TLDAG and ODS.
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Figure 8. The estimated DAGs in the cosmetic sales data by TLDAG (left) and ODS (right).

In Figure 8 , some of estimated directed edges are highly
interpretable. For example, a higher star level of the seller indi-
cates a better reputation and higher customer loyalty, which
leads to a larger number of orders; different origins have their
unique materials and ingredients for the specific effect; the
higher the brand level is, the more various and advanced effects
the liquid essence has. The last two directed edges, however, are
missed in the estimated DAG by ODS, shown in the right panel
of Figure 8. It is also interesting to point out that the imposed
conditional distribution assumptions may not be satisfied by
the cosmetic sales data, and thus some of estimated edges are
not easy to interpret, such as the seller level → the brand
level/origin.

6. Summary

In this article, we propose a computationally efficient learning
algorithm for a large class of non-Gaussian DAGs, denoted as
QVF-DAGs. The proposed algorithm is based on a novel con-
cept of topological layers, and consists of two steps of learnings.
It first reconstructs the topological layers in a hierarchical fash-
ion, and then reconstructs the directed edges between nodes in
different layers. The computational complexity of the proposed
algorithm is much less than the existing learning algorithms
in literature. The computational efficiency and the estimation
accuracy of the proposed method are also supported by a num-
ber of simulated examples and two real applications.

Supplementary Materials

The supplementary files include computational details, all the theoretical
results, and the corresponding proofs.
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