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a b s t r a c t

In this paper, higher-order expansions for distributions and densities of powered extremes
of standard normal random sequences are established under an optimal choice of
normalized constants. Our findings refine the related results in Hall (1980). Furthermore,
it is shown that the rate of convergence of distributions/densities of normalized extremes
depends in principle on the power index.
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1. Introduction

Let X1, X2, . . . be independent random variables with common standard normal distribution function (df) Φ(x), and let
Mn = max(X1, X2, . . . , Xn). It is well-known that Φ(x) belongs to the max-domain of attraction of Gumbel extreme value
distribution Λ(x) = exp


−e−x


, i.e., there exist norming constants an > 0 and bn ∈ R such that (see e.g., Leadbetter et al.,

1983)

lim
n→∞

P (Mn ≤ anx + bn) = Λ(x), x ∈ R. (1.1)

Hall (1979) showed that 1/ log n is the best convergence rate of (1.1). Further, motivated by Haldance and Jayakar (1963),
Hall (1980) established the asymptotic distribution behavior of normalized |Mn|

t , the powered extremes for given power
index t > 0. Precisely speaking, with bn > 0 the solution of the following equation

2πb2n exp

b2n


= n2, ∀n ∈ N. (1.2)

Hall (1980) showed that

lim
n→∞

b2+2I{t=2}
n


P

|Mn|

t
≤ cnx + dn


− Λ(x)


= Λ(x)e−xk1(t, x), x ∈ R, (1.3)
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where, with I{·} the indicator function,

cn = tbt−2
n − 2b−2

n I{t = 2}, dn = btn − 2b−2
n I{t = 2}, (1.4)

k1(t, x) =


1 + x +

2 − t
2

x2


I{t ≠ 2} −


7
2

+ 3x + x2


I{t = 2}. (1.5)

Recently, Liao et al. (2013) and Hashorva et al. (2014) studied respectively expansions of asymptotic distributions of
normalized extremes for logarithmic skew-normal distributions and bivariate normal triangular arrays. Liu and Liu (2013)
and Chen and Huang (2014) studied respectively uniform convergence rates of distributions of normalized extremes for
Maxwell samples and asymmetry normal samples. For other related work on extreme value distributions, densities and
moments of given distributions and their associated uniform convergence rates, we refer to Nair (1981), Smith (1982),
Omey (1988), de Haan and Resnick (1996), Cheng (2003), Withers and Nadarajah (2010) and Li and Li (2015), and references
therein.

In this paper, we aim to establish higher-order expansions of distributions and densities of powered extremes for
normal random samples. The motivation is two-folded. One comes from the importance of determining the efficiency of
distribution/density approximations to its Gumbel limit law as shown by the contributions mentioned above. The other is
that the powered normal laws are one challenging alternative to normal ones due to its mathematical properties including
skewness, heavy tails, etc.

The contribution of this paper is to establish the rate of convergence of (1.3). Moreover, we find out that higher-order
expansions of densities of powered extremes display similar asymptotic structures as those for their distributions.

The rest of the paper is organized as follows. Section 2 presents main results. All the proofs are relegated to Section 3.

2. Main results

In this section, we shall establish higher-order expansions of distributions and densities of powered extremes under
normalization (see Theorems 2.1 and 2.2). It shows that the convergence rates are different between the two cases that the
power index t = 2 and 0 < t ≠ 2.

In the sequel, we shall keep the notation given in Section 1 unless stated otherwise. Further, let for x ∈ R and t > 0

k2(t, x) =


43
3

+ 14x + 6x2 +
4
3
x3, t = 2;

−


3 + 3x +

3
2
x2 +

(2 − t)(2t + 1)
6

x3 +
(t − 2)2

8
x4 −

e−x

2


1 + x +

2 − t
2

x2
2


, t ≠ 2
(2.1)

and

ϖ(t, x) =


1
2

+ x + x2 − e−x

7
2

+ 3x + x2


, t = 2;

x

1 − t +

t − 2
2

x


+ e−x

1 + x +

2 − t
2

x2


, t ≠ 2
(2.2)

τ(t, x) = I{t = 2}

e−x


43
3

+ 14x + 6x2 +
4
3
x3


−


1
3

+ 2x + 2x2 +
4
3
x3


+ I{t ≠ 2}

xe−x


1 − t +

t − 2
2

x


1 + x +
2 − t
2

x2


+ x2


(1 − t)(1 − 2t)
2

+
5(1 − t)(t − 2)

6
x +

(t − 2)2

8
x2


− e−x


3 + 3x

+
3
2
x2 +

(2 − t)(2t + 1)
6

x3 +
(t − 2)2

8
x4 −

e−x

2


1 + x +

2 − t
2

x2
2


. (2.3)

Theorem 2.1. Let Mn = max(X1, . . . , Xn)with {Xn, n ≥ 1} a sequence of independent random variables with common df Φ(x).
Let further bn, cn and dn are those given by (1.2) and (1.4), respectively. We have for any t > 0 and as n → ∞

P

|Mn|

t
≤ cnx + dn


= Λ(x) + b−2−2I{t=2}

n Λ′(x)

k1(t, x) + b−2

n k2(t, x) + O(b−4
n )

, x ∈ R,

where Λ′(x) = Λ(x)e−x, and k1(t, x) and k2(t, x) are those given by (1.5) and (2.1), respectively.

Remark 2.1. Theorem 2.1 gives the accurate convergence rate of (1.3), which is proportional to 1/ log n for all t > 0 since
b2n ∼ 2 log n as n → ∞ due to (1.2).
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Next, we shall establish the rate of convergence of density approximation of (|Mn|
t
− dn)/cn to Gumbel extreme value

density function.

Theorem 2.2. Under the assumptions of Theorem 2.1, we have as n → ∞

d
dx

P

|Mn|

t
≤ cnx + dn


= Λ′(x)


1 + b−2−2I{t=2}

n


ϖ(t, x) + b−2

n τ(t, x) + O(b−4
n )


, x ∈ R,

where ϖ(t, x) and τ(t, x) are those given by (2.2) and (2.3), respectively.

Remark 2.2. (1) We see that higher-order approximations of densities of (|Mn|
t
− dn)/cn to Gumbel extreme value density

function possess the same structure as those for their distributions, i.e., the second-order convergence rate is rather
faster for t = 2 than that for the other cases, while the third-order one is the same 1/ log n for all t > 0.

(2) It might be possible to investigate the expansions under consideration for powered kth extremes of normal distributions
following the similar arguments, see Theorem 1 by Hall (1980).

3. Proofs

In this section, we shall present the proofs of Theorems 2.1 and 2.2. To this end, we first establish Lemmas 3.1 and 3.2
specifying the expansions of the two terms of densities of (|Mn|

t
−dn)/cn (see (3.10) below). Hereafter, all the limit relations

are for n → ∞ unless otherwise stated.

Lemma 3.1. Let νn(x, t) = Φn−1

(cnx + dn)1/t


−

1 − Φ


(cnx + dn)1/t

n−1
, x ∈ R, t > 0 with cn and dn given by (1.4).

(1) For 0 < t ≠ 2, we have as n → ∞

νn(x, t) = Λ(x)

1 +

e−x

b2n


1 + x +

2 − t
2

x2


−
e−x

b4n


3 + 3x +

3
2
x2

+
(2 − t)(2t + 1)

6
x3 +

(t − 2)2

8
x4 −

e−x

2


1 + x +

2 − t
2

x2
2


+ O(b−6
n )


. (3.1)

(2) For t = 2, we have as n → ∞

νn(x, t) = Λ(x)

1 −

e−x

b4n


7
2

+ 3x + x2


+
e−x

b6n


43
3

+ 14x + 6x2 +
4
3
x3


+ O(b−8
n )


. (3.2)

Proof. Note for fixed x ∈ R and large n that cnx + dn > 0. Set below gn(t) = (cnx + dn)1/t .
(1) For 0 < t ≠ 2. Using the following Taylor’s expansion

(1 + x)α = 1 + αx +
α(α − 1)

2
x2 +

α(α − 1)(α − 2)
6

x3(1 + O(x)), x → 0, α ∈ R

and the fact by (1.2) that b2n ∼ 2 log n for large n, we have by (1.4)

gα
n (t) = bα

n


1 +

αx
b2n

+
α(α − t)

2b4n
x2 +

α(α − t)(α − 2t)
6b6n

x3(1 + O(b−2
n ))


. (3.3)

Applying (3.3) with α = −1 and α = 2, we have

φ(gn(t))
gn(t)

= b−1
n


1 −

x
b2n

+
1 + t
2b4n

x2 + O(b−6
n )


×

1
√
2π

exp


−
b2n
2


1 +

2
b2n

x +
2 − t
b4n

x2 +
2(t − 1)(t − 2)

3b6n
x3 + O(b−8

n )


=

e−x

n


1 +

x
b2n


t − 2
2

x − 1


+
x2

b4n


t + 1
2

−
(t − 2)(2t + 1)

6
x +

(t − 2)2

8
x2


+ O(b−6
n )


, (3.4)

where the last step follows by (1.2) and ex = 1 + x + x2/2(1 + O(x)), x → 0. Further, it follows by (3.3) with α = −2 and
α = −4 that

1 − g−2
n (t) + 3g−4

n (t) + O(g−6
n (t)) = 1 − b−2

n + b−4
n (2x + 3) + O(b−6

n ).
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Therefore, it follows further by Lemma 3.1 in Zhou and Ling (2015) with L = 2 that

1 − Φ (gn(t)) =
φ(gn(t))
gn(t)


1 − g−2

n (t) + 3g−4
n (t) + O(g−6

n (t))


=
e−x

n


1 −

1
b2n


1 + x +

2 − t
2

x2


+
1
b4n


3 + 3x +

3
2
x2 +

(2 − t)(2t + 1)
6

x3 +
(t − 2)2

8
x4


+ O(b−6
n )


=: n−1e−x 1 − ϑ1b−2

n + ϑ2b−4
n + O(b−6

n )

, (3.5)

which together with the fact that b2n ∼ 2 log n and log(1 − x) = −x(1 + O(x)), x → 0 implies that

Φn−1 (gn(t)) = exp

(n − 1) log (1 − (1 − Φ (gn(t))))


= exp


−e−x 1 − ϑ1b−2

n + ϑ2b−4
n + O(b−6

n )


= Λ(x)

1 +

ϑ1e−x

b2n
+

e−x

b4n


ϑ2
1

2
e−x

− ϑ2


+ O(b−6

n )


(3.6)

and

(1 − Φ (gn(t)))n−1
= (n−1e−x(1 + O(b−2

n )))n−1
= o(b−α

n ), α ≥ 6. (3.7)

Hence (3.1) follows by recalling ϑ1 and ϑ2 given by (3.5).
(2) For t = 2.We shall verify (3.2) by similar arguments to those for the case 0 < t ≠ 2. Recall by (1.4) that cn = 2(1−b−2

n ),

dn = b2n − 2b−2
n for t = 2. Hence, for α ∈ R

gα
n (2) = bα

n


1 +

αx
b2n

−
α

b4n


1 + x +

2 − α

2
x2


+
α(2 − α)x

b6n


1 + x +

4 − α

6
x2


+ O(b−8
n )


.

Using ex = 1 + x + x2/2 + x3/6 + O(x4), x → 0 and the above equality with α = −1, we have

φ(gn(2))
gn(2)

=
φ(bn)
bn

e−x

1 +

1 + x
b2n

+
(1 + x)2

2b4n
+

(1 + x)3

6b6n
+ O(b−8

n )


×


1 −

x
b2n

+
1
b4n


1 + x +

3
2
x2


−
3x
b6n


1 + x +

5
6
x2


+ O(b−8
n )


=

e−x

n


1 +

1
b2n

+
1
b4n


x2 + x +

3
2


−

1
b6n


4
3
x3 + x2 + x −

7
6


+ O(b−8

n )


. (3.8)

Additionally,

1 −
1

g2
n (2)

+
3

g4
n (2)

−
15

g4
n (2)

+ O(b−8
n ) = 1 −

1
b2n

+
2x + 3

b4n
−

17 + 14x + 4x2

b6n
+ O(b−8

n ).

Consequently, a straightforward application of Lemma 3.1 with L = 3 in Zhou and Ling (2015) yields that

1 − Φ(gn(2)) =
e−x

n


1 +

1
b4n


7
2

+ 3x + x2


−
1
b6n


43
3

+ 14x + 6x2 +
4
3
x3


+ O(b−8
n )


.

The rest proof follows by the same arguments of (3.6) and (3.7) for gn(2). We complete the proof of Lemma 3.1. �

Lemma 3.2. Let cn and dn be given by (1.4). We have as n → ∞

n
d
dx

Φ((cnx + dn)1/t)

=



e−x

1 +

x
b2n


1 − t +

t − 2
2

x


+
x2

b4n


(1 − t)(1 − 2t)

2
+

5(1 − t)(t − 2)
6

x +
(t − 2)2

8
x2


+ O(b−6
n )


, t ≠ 2;

e−x

1 + b−4

n


1
2

+ x + x2


− b−6
n


1
3

+ 2x + 2x2 +
4
3
x3


+ O(b−8
n )


, t = 2.

Proof. Clearly, we have

n
d
dx

Φ((cnx + dn)1/t) = t−1ncn (cnx + dn)1/t−1 φ

(cnx + dn)1/t


.
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For 0 < t ≠ 2, we have by (1.4) that cn = tbt−2
n . It follows by (3.3) with α = 1 − t , and (3.4) for the expansion of φ(gn(t))

with gn(t) = (cnx + dn)1/t that

n
d
dx

Φ(gn(t)) = e−x

1 +

(1 − t)x
b2n

+
(1 − t)(1 − 2t)

2b4n
x2 + O(b−6

n )


×


1 +

t − 2
2b2n

x2 −
(t − 1)(t − 2)

3b4n
x3 +

(t − 2)2

8b4n
x4 + O(b−6

n )


= e−x


1 +

x
b2n


1 − t +

t − 2
2

x


+
x2

b4n


(1 − t)(1 − 2t)

2
+

5(1 − t)(t − 2)
6

x +
(t − 2)2

8
x2


+ O(b−6
n )


.

For t = 2, recalling that cn = 2(1 − b−2
n ), the claim follows by (3.8). The proof is complete. �

Proof of Theorem 2.1. Note that for fixed x ∈ R and large n, cnx + dn > 0 and the distribution function of (|Mn|
t
− dn)/cn

is as follows.

P

|Mn|

t
≤ cnx + dn


= Φn (cnx + dn)1/t


−

1 − Φ


(cnx + dn)1/t

n
. (3.9)

For 0 < t ≠ 2, it follows by (3.5) and similar arguments as for (3.6) and (3.7) that

Φn (gn(t)) = Λ(x)

1 +

ϑ1e−x

b2n
+

e−x

b4n


ϑ2
1

2
e−x

− ϑ2


+ O(b−6

n )


,

where ϑ1 and ϑ2 are given by (3.5), and

(1 − Φ (gn(t)))n = o(b−α
n ), α ≥ 6.

Therefore, (3.1) holds with νn(x, t) replaced by the distribution of (|Mn|
t
− dn)/cn (see (3.9)).

Similarly, for the case t = 2, we have (3.2) holds with νn(x, t) replaced by the distribution of (|Mn|
t

− dn)/cn.
Consequently, the desired results in Theorem 2.1 are obtained for all t > 0. �

Proof of Theorem 2.2. Recalling that Φ(−x) = 1 − Φ(x), we have

d
dx

P

|Mn|

t
≤ cnx + dn


= nΦ ′((cnx + dn)1/t)


Φn−1 (cnx + dn)1/t


−

1 − Φ


(cnx + dn)1/t

n−1

. (3.10)

Hence, for 0 < t ≠ 2, it follows by Lemmas 3.1 and 3.2 that

1
Λ′(x)

d
dx

P

|Mn|

t
≤ cnx + dn


− 1

=


1 +

x
b2n


1 − t +

t − 2
2

x


+
x2

b4n


(1 − t)(1 − 2t)

2
+

5(1 − t)(t − 2)
6

x +
(t − 2)2

8
x2


+ O(b−6
n )


×


1 +

e−x

b2n


1 + x +

2 − t
2

x2


−
e−x

b4n


3 + 3x +

3
2
x2

+
(2 − t)(2t + 1)

6
x3 +

(t − 2)2

8
x4 −

e−x

2


1 + x +

2 − t
2

x2
2


+ O(b−6
n )


− 1

=
1
b2n


x

1 − t +

t − 2
2

x


+ e−x

1 + x +

2 − t
2

x2


+
1
b4n


xe−x


1 − t +

t − 2
2

x


1 + x +
2 − t
2

x2


+ x2


(1 − t)(1 − 2t)
2

+
5(1 − t)(t − 2)

6
x +

(t − 2)2

8
x2


− e−x

×


3 + 3x +

3
2
x2 +

(2 − t)(2t + 1)
6

x3 +
(t − 2)2

8
x4 −

e−x

2


1 + x +

2 − t
2

x2
2


+ O(b−6
n )

= b−2
n ϖ(t, x) + b−4

n τ(t, x) + O(b−6
n ),

deriving the claim for t ≠ 2. Here ϖ(t, x) and τ(t, x) are given by (2.2) and (2.3), respectively.
Similarly, for t = 2, the claim follows by Lemmas 3.1 and 3.2 together with (3.10). We complete the proof of

Theorem 2.2. �
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