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ABSTRACT
Functional linear regression is an important topic in functional data analysis. It is commonly assumed
that samples of the functional predictor are independent realizations of an underlying stochastic process,
and are observed over a grid of points contaminated by iid measurement errors. In practice, however,
the dynamical dependence across different curves may exist and the parametric assumption on the error
covariance structure could be unrealistic. In this article, we consider functional linear regression with serially
dependent observations of the functional predictor, when the contamination of the predictor by the white
noise is genuinely functional with fully nonparametric covariance structure. Inspired by the fact that the
autocovariance function of observed functional predictors automatically filters out the impact from the
unobservable noise term, we propose a novel autocovariance-based generalized method-of-moments
estimate of the slope function. We also develop a nonparametric smoothing approach to handle the
scenario of partially observed functional predictors. The asymptotic properties of the resulting estimators
under different scenarios are established. Finally, we demonstrate that our proposed method significantly
outperforms possible competing methods through an extensive set of simulations and an analysis of a
public financial dataset.
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1. Introduction

In functional data analysis, the linear regression problem depict-
ing the linear relationship between a functional predictor and
either a scalar or functional response, has recently received
a great deal of attention. See Ramsay and Silverman (2005)
for a thorough discussion of the issues involved with fitting
such data. For examples of recent research on functional linear
models, see Yao, Mueller, and Wang (2005), Hall and Horowitz
(2007), Crambes, Kneip, and Sarda (2009), Cho et al. (2013),
Chakraborty and Panaretos (2017), and the references therein.
We refer to Morris (2015) for an extensive review on recent
developments for functional regression.

In functional regression literature, one typical assump-
tion is to model observed functional predictors, denoted by
X1(¨), . . . , Xn(¨), as independent realizations of an underly-
ing stochastic process. However, curves can also arise from
segments of consecutive measurements over time. Examples
include daily curves of financial transaction data (Horvath,
Kokoszka, and Rice 2014), intraday electricity load curves (Cho
et al. 2013), and daily pollution curves (Aue, Norinho, and
Hormann 2015). Such type of curves, also named as curve time
series, violates the independence assumption, in the sense that
the dynamical dependence across different curves exists. The
other key assumption treats the functional predictor as being
either fully observed (Hall and Horowitz 2007) or incompletely
observed, with measurement error, at a grid of time points
(Crambes, Kneip, and Sarda 2009). In the latter case, errors
associated with distinct observation points are assumed to be
iid, where the corresponding covariance function for the error
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process is diagonal with constant diagonal components. In the
curve time series setting, Xt(¨) are often recorded at discrete
points and are subject to dependent and heteroscedastic errors.
Hence, the resulting error covariance matrix would be more
nonparametric with varying diagonal entries and nonzero off-
diagonal entries.

In this article, we consider the functional linear regression
in a time series context, which involves serially dependent
observations of the functional predictor contaminated by gen-
uinely functional errors corresponding to a fully nonparamet-
ric covariance structure. We assume that the observed erro-
neous predictors, which we denote by W1(¨), . . . , Wn(¨), are
defined on a compact interval U and are subject to errors in the
form of

Wt(u) = Xt(u) + et(u), u P U , (1)

where the error process tet(¨), t = 1, 2, . . .u is a sequence
of white noise such that Etet(u)u = 0 for all t and
covtet(u), es(v)u = 0 for any (u, v) P U2 provided t ‰ s.
We also assume that Xt(¨) and et(¨) are uncorrelated and cor-
respond to unobservable signal and noise components, respec-
tively. The error contamination model in (1) was also consid-
ered in Bathia, Yao, and Ziegelmann (2010). To fit the func-
tional regression model, the conventional least square (LS)
approach (Hall and Horowitz 2007) relies on the sample covari-
ance function of Wt(¨), which is not a consistent estima-
tor for the true covariance function of Xt(¨), thus failing to
account for the contamination that can result in substantial
estimation bias. One can possibly implement the LS method
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in the resulting multiple linear regression after performing
dimension reduction for Wt(¨) to identify the dimensionality
of Xt(¨) (Bathia, Yao, and Ziegelmann 2010). However, this
approach still suffers from unavoidable uncertainty due to et(¨),
while the inconsistency has been demonstrated by our simula-
tions. Inspired from a simple fact that covtWt(u), Wt+k(v)u =
covtXt(u), Xt+k(v)u for any k ‰ 0, which indicates that the
impact from the unobservable noise term can be automatically
eliminated, we develop an autocovariance-based generalized
method-of-moments (AGMM) estimator for the slope function.
This procedure makes the good use of the serial dependence
information, which is the most relevant in the context of time
series modeling.

To tackle the problem we consider, the conventional LS
approach is not directly applicable in the sense that one cannot
separate Xt(¨) from Wt(¨) in Equation (1). This difficulty was
resolved in Hall and Vial (2006) under the restrictive “low noise”
setting, which assumes that the noise et(¨) goes to zero as n grows
to infinity. The recent work by Chakraborty and Panaretos
(2017) implements the regression calibration approach com-
bined with the low rank matrix completion technique to sep-
arate Xt(¨) from Wt(¨). Their approach relies on the identifia-
bility result that, provided real analytic and banded covariance
functions for Xt(¨) and et(¨), respectively, the corresponding two
covariance functions are identifiable (Descary and Panaretos
2019). However, all the aforementioned methods are developed
under the critical independence assumption, which would be
inappropriate for the setting that W1(¨), . . . , Wn(¨) are serially
dependent.

The proposed AGMM method has four main advantages.
First, it can handle regression with serially dependent obser-
vations of the functional predictor. The existence of dynamical
dependence across different curves makes our problem tractable
and facilitates the development of AGMM. Second, without
placing any parametric assumption on the covariance structure
of the error process, it relies on the autocovariance function
to get rid of the effect from the genuinely functional error.
Interestingly, it turns out that the operator in AGMM defined
based on the autocovariance function of the curve process is
identical to the nonnegative operator in Bathia, Yao, and Ziegel-
mann (2010), which is used to assess the dimensionality of Xt(¨)
in Equation (1). Third, the proposed method can be applied
to both scalar and functional responses with either finite or
infinite dimensional functional predictors. To handle a practical
scenario where functional predictors are partially observed, we
also develop a local linear smoothing approach. Theoretically,
we establish relevant convergence rates for our proposed esti-
mators under different model settings. In particular, our asymp-
totic results for partially observed functional predictors reveal
interesting phase transition phenomena. Fourth, empirically we
illustrate the superiority of AGMM relative to the potential
competitors.

The rest of the article is organized as follows. In Section 2,
we present the model for regression with dependent functional
errors-in-predictors and develop AGMM fitting procedures for
both scalar and functional responses. We also propose the regu-
larized estimator by imposing some form of smoothness into the
estimation procedure and discuss the selection of relevant tun-
ing parameters. In Section 3, we present convergence results for

our proposed estimators for the slope function under different
functional scenarios. In Section 4, we develop a nonparametric
smoothing approach for partially observed curve time series
and investigate its asymptotic properties. Section 5 illustrates
the finite sample performance of AGMM through a series of
simulation studies and a public financial dataset. All technical
proofs are relegated to Appendix A and the supplementary
materials.

2. Methodology

2.1. Model Setup

In this section, we describe the model setup for the func-
tional linear regression with dependent errors-in-predictors we
consider. Let L2(U) denote a Hilbert space of square inte-
grable functions defined on U equipped with the inner product
xf , gy = ş

U f (u)g(u)du for f , g P L2(U). Given a scalar response
Yt , a functional predictor Xt(¨) in L2(U), and, without loss of
generality, assuming that tYt , Xt(¨)u have been centered to have
mean zero, the classical scalar-on-function linear regression
model is of the form

Yt =
ż

U
Xt(u)β0(u)du + εt , t = 1, . . . , n, (2)

where the errors εt , independent of Xt+k(¨) for any integer k,
are generated according to a white noise process and β0(¨) is
the unknown slope function. Generally, β0 may not be uniquely
determined. We will discuss how to identify β0 we wish to
estimate later.

We assume that the observed functional predictors
W1(¨), . . . , Wn(¨) satisfy the error contamination model in
Equation (1). The existence of the unobservable noise term
et(¨) indicates that the curves of interest, Xt(¨), are not directly
observed. Instead, they are recorded on a grid of points and
are contaminated by the error process, et(¨), without assuming
any parametric structure on its covariance function, denoted
by Ce(u, v) = covtet(u), et(v)u. This model guarantees that
all the dynamic elements of Wt(¨) are included in the signal
term Xt(¨) and all the white noise elements are absorbed into
the noise term et(¨). Furthermore, we assume that predictor
errors et(¨) are uncorrelated with both Xt+k(¨) and εt+k, for all
integer k.

Here, we turn to discuss the identification of β0. Assume that
t
(
Yt , Xt(¨)

)
u is strictly stationary and C0(u, v) is the covariance

function of Xt(¨), which admits the Karhunen–Loève expansion,
Xt(u) = ř8

j=1 ξtjφj(u), where ξtj = ş

U Xt(u)φj(u)du and
cov(ξtj, ξtj1) = λjI(j = j1) with I(¨) denoting the indicator
function. Then the eigenpairs tλj, φj(¨)ujě1 satisfy the eigen-
decomposition

ş

U C0(u, v)φj(v)dv = λjφj(u) with λ1 ě λ2 ě

¨ ¨ ¨ ě 0. Define S0(u) = EtYtXt(u)u, d = supiě1 ti : λi ą

0u and assume
řd

j=1 λ
´2
j tcov(Y1, ξ1j)u2 ă 8. Obviously, β0

satisfies the following equation

S0(u) =
ż

U
C0(u, v)β(v)dv, u P U . (3)

If the span of eigenfunctions tφ1, . . . , φdu is dense in the L2
space, it is clear that β0 is the unique solution to (3) and hence
can be uniquely identified. In a general scenario, β0 can also be
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well defined. To make β0 identifiable, we consider the following
minimization problem

min
βPL2(U)

ż

U
β2(u)du,

s.t. S0(u) =
ż

U
C0(u, v)β(v)dv, u P U .

(4)

Noting that the solution to (4) exists and is unique, we define the
true slope function β0 to be this unique minimizer in a closed
form of β0 = řd

j=1 λ
´1
j cov(Y1, ξ1j)φj, which holds for both d ă

8 and d = 8. See also Cardot, Ferraty, and Sarda (2003) and
He et al. (2010).

2.2. Main Idea

In this section, we describe the main idea to facilitate the devel-
opment of AGMM to estimate β0(¨) in (2). We choose Xt+k(¨)
for k = 0, 1, . . . , as functional instrumental variables, which are
assumed to be uncorrelated with the error εt in (2). Let

gX
k (β , u) = covtYt , Xt+k(u)u ´

ż

U
covtXt(v), Xt+k(u)uβ(v)dv.

(5)
The population moment conditions, EtεtXt+k(u)u = 0 for any
u P U , and Equation (2) implies that

gX
k (β0, u) ” 0 for any u P U and k = 1, . . . . (6)

In particular, the conventional LS approach is based on (6)
with k = 0. However, this approach is inappropriate when
Xt(¨) are replaced by the surrogates Wt(¨) given the fact that
CW(u, v) = covtWt(u), Wt(v)u = C0(u, v) + Ce(u, v), and
hence the sample version of CW(u, v) is not a consistent estima-
tor for C0(u, v). See Hall and Vial (2006) for the identifiability of
C0(u, v) and Ce(u, v) under the assumption that the observed
curves W1(¨), . . . , Wn(¨) are independent and et(¨) decays to
zero as n goes to infinity.

To separate Xt(¨) from Wt(¨) under the serial dependence
scenario, we develop a different approach without requiring
the “low noise” condition. For an integer k ě 1, denote
the lag-k autocovariance function of Xt(¨), by Ck(u, v) =
covtXt(u), Xt+k(v)u, which does not depend on t. Our method
is based on the simple fact that

covtYt , Wt+k(u)u = covtYt , Xt+k(u)u and
covtWt(u), Wt+k(v)u

= Ck(u, v) for any k ‰ 0.

Then after substituting Xt(¨) by Wt(¨) in (5), we can also
represent

gk(β , u) = covtYt , Wt+k(u)u´

ż

U
covtWt(v), Wt+k(u)uβ(v)dv

= gX
k (β , u),

and the moment conditions in (6) become

gk(β0, u) ” 0 for any u P U and k = 1 . . . , L,

where L is some prescribed positive integer.

Under the over-identification setting, where the number of
moment conditions exceeds the number of parameters, we bor-
row the idea of generalized methods-of-moments (GMM) based
on minimizing the distance from g1(β , ¨), . . . , gL(β , ¨) to zero.
This distance is defined by the quadratic form of

Q(β) =
L

ÿ

k=1

L
ÿ

l=1

ż

U

ż

U
gk(β , u)�k,l(u, v)gl(β , v)dudv,

where �(u, v) = t�k,l(u, v)u1ďk,lďL is an L by L weight
matrix whose (k, l)th element is �k,l(u, v). A suitable choice of
�(u, v) must satisfy the properties of symmetry and positive-
definiteness (Guhaniyogi et al. 2013), which are, to be spe-
cific, (i) �kl(u, v) = �lk(v, u) for each k, l = 1, . . . , L
and (u, v) P U2; (ii) for any finite collection of time points
u1, . . . , uT ,

řT
t=1

řT
t1=1 a(ut)T�(ut , ut1)a(ut1) must be positive

for any a(¨) = (
a1(¨), . . . , aL(¨)

)T . In general, one can choose
the optimal weight matrix � and implement a two-step GMM.
However, this would give a very slight improvement in our
simulations. To simplify our derivation and accelerate the com-
putation, we choose the identity weight matrix as �k,l(u, v) =
I(k = l)I(u = v) and then minimize the resulting distance of

Q(β) =
L

ÿ

k=1

ż

U
gk(β , u)2du,

over β(¨) P L2(U). The minimizer of Q(β), β0(¨), can be
achieved by solving BQ(β){Bβ = 0, that is, for any u P U ,

L
ÿ

k=1

„
ż

U
Ck(u, z)covtYt , Wt+k(z)udz

´

ż

U

!

ż

U
Ck(u, z)Ck(v, z)dz

)

β(v)dv
j

= 0. (7)

To ease our presentation, we define

R(u) =
L

ÿ

k=1

ż

U
Ck(u, z)covtYt , Wt+k(z)udz (8)

and

K(u, v) =
L

ÿ

k=1

ż

U
Ck(u, z)Ck(v, z)dz. (9)

Note that K can be viewed as the kernel of a linear operator
acting on L2(U), that is, for any f P L2(U), K maps f (u)

to rf (u) ”
ş

U K(u, v)f (v)dv. For notational economy, we will
use K to denote both the kernel and the operator. Indeed, the
nonnegative definite operator K was proposed in Bathia, Yao,
and Ziegelmann (2010) to identify the dimensionality of Xt(¨)
based on Wt(¨) in (1). Substituting the relevant terms in (7),
β0(¨) satisfies the following equation

R(u) =
ż

U
K(u, v)β(v)dv for any u P U . (10)

See also functional extension of the LSs type of normal equation
in (3).

Provided that Xt(¨) is d-dimensional, it follows from Propo-
sition 1 of Bathia, Yao, and Ziegelmann (2010) that, under reg-
ularity conditions, K has the spectral decomposition, K(u, v) =
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řd
j=1 θjψj(u)ψj(v), with d nonzero eigenvalues θ1 ě θ2 ě ¨ ¨ ¨ ě

θd and spantψ1, . . . , ψdu is the linear space spanned by the d
eigenfunctions tφ1, . . . , φdu. This assertion still holds even for
d = 8.

Denote the null space of K and its orthogonal complement
by ker(K) = tx P L2(U) : Kx = 0u and ker(K)K =
tx P L2(U) : xx, yy = 0, @y P ker(K)u, respectively. The
inverse operator K´1 corresponds to the inverse of the restricted
operator K̆ = K| ker(K)K, which restricts the domain of K to
ker(K)K. See Section 3.5 of Hsing and Eubank (2015) for details.
When d ă 8, β0(¨) is indeed the unique solution to (10) in
ker(K)K in the form of

β0(u) =
ż

U
K´1(u, v)R(v)dv =

d
ÿ

j=1
θ

´1
j xψj, Ryψj(u). (11)

Provided K is a bounded operator when d = 8, K´1

becomes an unbounded operator, which means it is discontin-
uous and cannot be estimated in a meaningful way. However,
K´1 is usually associated with another function/operator, the
composite function/operator can be reasonably assumed to be
bounded, for example, the regression operator (Li 2018). If we
further assume that the composite function

ş

U K´1(u, v)R(v)dv
is bounded, or equivalently

ř8
j=1 θ

´2
j xψj, Ry2 ă 8, β0(¨) is still

the unique solution to (10) in ker(K)K and is of the form

β0(u) =
ż

U
K´1(u, v)R(v)dv =

8
ÿ

j=1
θ

´1
j xψj, Ryψj(u). (12)

Both (11) and (12) motivate us to develop the estimation proce-
dure for β0 in Section 2.3.

2.3. Estimation Procedure

In this section, we present the AGMM estimator for β0(¨) based
on the main idea described in Section 2.2.

We first provide the estimates of Ck(u, v) and
covtYt , Wt+k(u)u for k = 1, . . . , L, that is,

pCk(u, v) = 1
n ´ L

n´L
ÿ

t=1
Wt(u)Wt+k(v) and

xcovtYt , Wt+k(u)u = 1
n ´ L

n´L
ÿ

t=1
YtWt+k(u). (13)

Combing (8), (9), and (13) gives the natural estimators for
K(u, v) and R(u) as

pK(u, v) =
L

ÿ

k=1

ż

U
pCk(u, z)pCk(v, z)dz (14)

= 1
(n ´ L)2

L
ÿ

k=1

n´L
ÿ

t=1

n´L
ÿ

s=1
Wt(u)Ws(v)xWt+k, Ws+ky

and

pR(u) =
L

ÿ

k=1

ż

U
pCk(u, z) xcovtYt , Wt+k(z)udz (15)

= 1
(n ´ L)2

L
ÿ

k=1

n´L
ÿ

t=1

n´L
ÿ

s=1
Wt(u)YsxWt+k, Ws+ky,

respectively. Note we choose a fixed integer L ą 1, as K pulls
together the information at different lags, while L = 1 may lead
to spurious estimation results. See Section 2.5 for the discussion
on the selection of L.

We next perform an eigenanalysis on pK and thus obtain the
estimated eigenpairs tpθj, pψj(¨)u for j = 1, 2, . . . . When the
number of functional observations n is large, the accumulated
errors in (14), (15) and the eigenanalysis on pK are relatively
small, thus resulting in smooth estimates of ψj(¨) and β0(¨). We
refer to this implementation of our method as base AGMM for
the remainder of the article. However, in the setting without
a sufficiently large n this version of AGMM suffers from a
potential under-smoothing problem that the resulting estimate
of β0(¨) wiggles quite a bit. To overcome this disadvantage,
we can impose some level of smoothing in the eigenanalysis
through the basis expansion approach, which converts the con-
tinuous functional eigenanalysis problem for pK to an approx-
imately equivalent matrix eigenanalysis task. We explore this
basis expansion based AGMM, simply referred to as AGMM
from here on. To be specific, let B(u) be the J-dimensional
orthonormal basis function, that is,

ş

U B(u)BT(u)du = IJ , such
that for each j = 1, . . . , J, ψj(¨) can be well approximated by
δT

j B(¨), where δj is the basis coefficients vector. Let

pK =
ż

U

ż

U
B(u)BT(v)pK(u, v)dudv.

Performing an eigen-decomposition on pK leads to the estimated
eigenpairs t(pθj, pδj)u

J
j=1. Then the jth estimated principal com-

ponent function is given by pψj(¨) = pδ
T
j B(¨). See Section 2.5

for the selection of J. A similar basis expansion technique
can be applied to produce a smooth estimate pR(¨). Note that
pK, pθj, pψj, j = 1, . . . , d, all depend on J, but for simplicity of
notation, we will omit the corresponding superscripts where the
context is clear.

Finally, we substitute the relevant terms in (11) and (12) by
their estimated values. We discuss two situations corresponding
to d ă 8 and d = 8 as follows. (i) When Xt(¨) is d-
dimensional (d ă 8), we need to select the estimate pd of d in the
sense that pθ1, . . . , pθ

pd are large eigenvalues of pK and pθ
pd+1 drops

dramatically. The estimate pβ of β0 is then given by

pβ(u) =
pd

ÿ

j=1

pθ
´1
j x pψj, pRy pψj(u). (16)

(ii) When Xt(¨) is an infinite dimensional functional object, we
take the standard truncation approach by using the leading M
eigenpairs of pK to approximate β0 in (12). Specifically, we obtain
the estimated slope function as

pβ(u) =
M
ÿ

j=1

pθ
´1
j x pψj, pRy pψj(u). (17)

Section 2.5 presents details to select pd and M. However, when
d = 8, the empirical performance of pβ(¨) may be sensitive
to the selected value of M. To improve the numerical stability,
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we suggest an alternative ridge-type method to estimate β0.
Specifically, we propose

pβridge(u) =
�M

ÿ

j=1
(pθj + ρn)

´1
x pψj, pRy pψj(u), (18)

where �M is chosen to be reasonably larger than M and ρn ě 0
is a ridge parameter. See also Hall and Horowitz (2007) for the
ridge-type estimator in classical functional linear regression.

2.4. Generalization to Functional Response

In this section, we consider the case when the response is also
functional. Given a functional response Yt(¨) and a functional
predictor Xt(¨), both of which are in L2(U) and have mean zero,
the function-on-function linear regression takes the form of

Yt(u) =
ż

U
Xt(v)γ0(u, v)dv+εt(u), u P U , t = 1, . . . , n, (19)

where γ0(u, v) is the slope function of interest and εt(¨), inde-
pendent of Xt+k(¨) for any integer k, are random elements in
the underlying separable Hilbert space. We still observe the
erroneous version Wt(¨) rather than the signal Xt(¨) itself in
Equation (1).

To estimate the slope function in (19), we develop an AGMM
approach analogous to that for the scalar case in Section 2 by
solving the normal equation of

H(u, v) =
ż

U
K(u, w)γ (w, v)dw for any v P U , (20)

where H(u, v) = řL
k=1

ş

U Ck(u, z)covtYt(v), Wt+k(z)udz with
its natural estimator

pH(u, v) = 1
(n ´ L)2

L
ÿ

k=1

n´L
ÿ

t=1

n´L
ÿ

s=1
Wt(u)Ys(v)xWt+k, Ws+ky.

(21)
Accordingly, we can provide the estimate pγ of γ0 under two

functional scenarios including d ă 8 and d = 8. (i) When
d ă 8, γ0(u, v) is the unique solution of (20) in ker(K)K and
can be represented as

γ0(u, v) =
ż

U
K´1(u, w)H(w, v)dw

=
d

ÿ

j=1
θ

´1
j xψj, H(¨, v)yψj(u). (22)

The estimate of γ0(u, v) is then given by

pγ (u, v) =
pd

ÿ

j=1

pθ
´1
j

pψj(u)x pψj, pH(¨, v)y. (23)

(ii) Under the infinite dimensional setting (d = 8,
if we assume the boundedness of the composite function
ş

U K´1(u, w)H(w, v)dw in the L2 sense, the solution to (20)
uniquely exists. Approximating the infinite dimensional γ0(u, v)
in (22) by the first M components and substituting the relevant
terms by their estimated values, we can obtain

pγ (u, v) =
M
ÿ

j=1

pθ
´1
j

pψj(u)x pψj, pH(¨, v)y. (24)

2.5. Selection of Tuning Parameters

Implementing AGMM requires choosing L (selected lag length
in (7)), M (truncated dimension in (17) when d = 8), pd
(number of identified nonzero eigenvalues of pK when d ă 8),
and J (dimension of the basis function B(u)). First, we tend to
select a small value of L, as the strongest autocorrelations usually
appear at the small time lags and adding more terms will make
pK less accurate. Our simulated results suggest that the proposed
estimators are not sensitive to the choice of L, therefore, we
set L = 5 in our empirical studies. See also Bathia, Yao, and
Ziegelmann (2010) and Lam, Yao, and Bathia (2011) for relevant
discussions.

Second, to select M when d = 8, the typical approach is to
find the largest M eigenvalues of pK such that the correspond-
ing cumulative percentage of variation exceeds the prespecified
threshold value, for example, 90% or 95%. Other available meth-
ods include the bootstrap test (Bathia, Yao, and Ziegelmann
2010) and the eigen-ratio-based estimator (Lam, Yao, and Bathia
2011). Third, to determine pd when d ă 8, we take the bootstrap
approach proposed in Bathia, Yao, and Ziegelmann (2010). Our
task is to test the null hypothesis H0 : θd+1 = 0. We reject
H0 if pθd+1 ą cα , where cα is the critical value corresponding
to the significant level α P (0, 1). We summarize the bootstrap
procedure as follows.

1. Define xWt(¨) = ř

pd
j=1 pηtj pψj(¨), where pηtj = ş

U Wt(u) pψj(u)du
for j = 1, . . . , pd. Let pet(¨) = Wt(¨) ´ xWt(¨).

2. Generate a bootstrap sample using W˚
t (¨) = xWt(¨) + e˚

t (¨),
where e˚

t are drawn with replacement from tpe1, . . . ,penu.
3. In an analogy to pK defined in (14), form an estimator pK˚

by replacing tWtu with tW˚
t u. Then calculate the (d + 1)th

largest eigenvalue θ˚
d+1 of pK˚.

We repeat Steps 2 and 3 B-times and reject H0 if the event of
tpθd+1 ą θ˚

d+1u occurs more than [(1´α)B] times. Starting with
pd = 1, we sequentially test θ

pd+1 = 0 and increase pd by one until
the resulting null hypothesis fails to be rejected.

Fourth, to select J, we propose the following G-fold cross-
validation (CV) approach.

1. Sequentially divide the set t1, . . . , nu into G blockwise
groups, D1, . . . ,DG, of approximately equal size.

2. Treat the gth group as a validation set. Implement the regu-
larized eigenanalysis in Section 2.3 on the remaining G ´ 1
groups, compute pK(´g) and let pδ

(´g)

1 , . . . , pδ
(´g)

d be the top d
eigenvectors of pK(´g).

3. Compute pK(g)(u, v) and pK(g) based on the validation set. Let
pθ
(g)

l = (pδ
(´g)

l )T
pK(g)

pδ
(´g)

l for l = 1, . . . , d.

We repeat Steps 2 and 3 G times and choose J as the value that
minimize the following mean CV error

CV(J) = 1
G

G
ÿ

g=1

ż

U

ż

U

!

pK(g)(u, v) ´

d
ÿ

j=1

pθ
(g)

j (pδ
(´g)

j )T

B(u)B(v)T
pδ

(´g)

j

)2
dudv.

Given the time break on the training observations, the autoco-
variance assumption is jeopardized by L = 5 misutilized lagged
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terms. However, this effect on pK is negligible especially when n
is sufficiently large, hence our proposed CV approach can still
be practically applied. See also Bergmeir, Hyndman, and Koo
(2018) for various CV methods for time dependent data.

3. Theoretical Properties

In this section, we investigate the theoretical properties of our
proposed estimators for both scalar-on-function and function-
on-function linear regressions.

To present the asymptotic results, we need the following
regularity conditions.

Condition 1. tWt(¨), t = 1, 2, . . . u is strictly stationary curve
time series. Define the ψ-mixing with the mixing coefficients

ψ(l) = sup
APF0

´8,BPF8
l ,P(A)P(B)ą0

|1´P(B|A){P(B)|, l = 1, 2, . . . ,

whereF j
i denotes the σ -algebra generated by tWt(¨), i ď t ď ju.

Moreover, it holds that
ř8

l=1 lψ1{2(l) ă 8.

Condition 2. E(}Wt}4) ă 8 and E(ε2
t ) ă 8.

The presentation of the ψ-mixing condition in Condition 1 is
mainly for technical convenience. See Section 2.4 of Bosq (2000)
on the mixing properties of curve time series. Condition 2 is the
standard moment assumption in functional regression literature
(Hall and Horowitz 2007; Chakraborty and Panaretos 2017).

Condition 3. (i) When d is fixed, θ1 ą ¨ ¨ ¨ ą θd ą 0 = θd+1; (ii)
When d = 8, θ1 ą θ2 ą ¨ ¨ ¨ ą 0, and there exist some positive
constants c and α ą 1 such that θj ´ θj+1 ě cj´α´1 for j ě 1;
(iii) spantφ1, . . . , φdu = spantψ1, . . . , ψdu.

Condition 4. When d = 8, β0(u) = ř8
j=1 bjψj(u) and there

exist some positive constants τ ě α+1{2 and C such that |bj| ď

Cj´τ for j ě 1.

Condition 3 restricts the eigen-structure of K and assumes
that all the nonzero eigenvalues of K are distinct from each
other. When d = 8, Condition 3(ii) prevents gaps between
adjacent eigenvalues from being too small. The parameter α

determines the tightness of eigen-gaps with larger values of α

yielding tighter gaps. This condition also indicates that θj ě

cα´1j´α as θj = ř8
k=j(θk ´ θk+1) ě c

ř8
k=j k´α´1, and can

be used to derive the convergence rates of estimated eigenfunc-
tions. See also Hall and Horowitz (2007) and Qiao, Guo, and
James (2019). Condition 4 restricts β0 based on its expansion
using eigenfunctions of K. The parameter τ determines the
decay rate of slope basis coefficients, tbju

8
j=1. The assumption

τ ě α + 1{2 can be interpreted as requiring β0 be suffi-
ciently smooth relative to K, the smoothness of which can be
implied by θj ě cα´1j´α from Condition 3(ii). See Hall and
Horowitz (2007) for an analogous condition in functional linear
regression.

Before presenting Theorem 1 for the asymptotic analysis of
the scalar-on-function linear regression, we first solidify some
notation. For any univariate function f , define }f } = a

xf , f y.
We denote by }A}S the Hilbert–Schmidt norm for any bivariate

function A. The notation an — bn for positive an and bn means
that the ratio an{bn is bounded away from zero and infinity. To
obtain pβ in (16) when d ă 8, we use the consistent estimator
for d defined as pd = #tj : pθj ě εnu, where εn satisfies
the condition in Theorem 1(i). Then by Theorem 3 of Bathia,
Yao, and Ziegelmann (2010), pd converges in probability to d as
n Ñ 8.

Theorem 1. Suppose that Conditions 1–4 hold. The following
assertions hold as n Ñ 8:

(i) Let εn Ñ 0 and ε2
nn Ñ 8 as n Ñ 8. When d is fixed, then

} pβ ´ β0} = OP
(
n´1{2).

(ii) When d = 8, if we further assume that M — n1{(2α+2τ),
then

} pβ ´ β0}
2 = OP

(
M2α+1n´1 + M´2τ+1) = OP

(
n´

2τ´1
2α+2τ

)
.

Remarks.

(a) When d is fixed, the standard parametric root-n rate is
achieved.

(b) When d = 8, the convergence rate is governed by two sets
of parameters (1) dimensionality parameter, sample size (n);
(2) internal parameters, truncated dimension of the curve
time series (M), decay rate of the lower bounds for eigen-
values (α), decay rate of the upper bounds for slope basis
coefficients (τ ). It is easy to see that larger values of α (tighter
eigen-gaps) yield a slower convergence rate, while increas-
ing τ enhances the smoothness of β0(¨), thus resulting in
a faster rate. The convergence rate consists of two terms,
which reflects our familiar variance-bias tradeoff as com-
monly considered in nonparametric statistics. In particular,
the bias is bounded by O(M´τ+1{2) and the variance is of
the order OP(M2α+1n´1). To balance both terms, we choose
the truncated dimension, M — n1{(2α+2τ), while the opti-
mal convergence rate then becomes OPtn´(2τ´1){(2α+2τ)u.
It is also worth noting that this rate is slightly slower than the
minimax rate OPtn´(2τ´1){(α+2τ)u in Hall and Horowitz
(2007), which considers independent observations of the
functional predictor without any error contamination. In
fact, we tackle a more difficult functional linear regression
scenario, where extra complications come from the serial
dependence and functional error contamination. From a
theoretical perspective, whether the rate in part (ii) is opti-
mal in the minimax sense is still of interest and requires
further investigation.

Before presenting the asymptotic results for the function-on-
function linear regression, we list Conditions 5 and 6, which are
substitutes of Conditions 2 and 4, respectively, in the functional
response case.

Condition 5. E(}Wt}4) ă 8 and E(}εt}2) ă 8.

Condition 6. When d = 8, γ0(u, v) =
ř8

j=1
ř8

�=1 bj�ψj(u)ψ�(v) and there exist some positive
constants τ ě α + 1{2 and C such that |bj�| ď C(j + �)´τ´1{2

for j, � ě 1.
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Theorem 2. Suppose that Conditions 1, 3, 5, and 6 hold. The
following assertions hold as n Ñ 8:

(i) Let εn Ñ 0 and ε2
nn Ñ 8 as n Ñ 8. When d is fixed, then

}pγ ´ γ0}S = OP(n´1{2).

(ii) When d = 8, if we further assume that M — n1{(2α+2τ),
then

}pγ ´ γ0}
2
S = OP

(
M2α+1n´1 + M´2τ+1) = OP

(
n´

2τ´1
2α+2τ

)
.

4. Partially Observed Functional Predictor

In this section, we consider a practical scenario where
each Wt(¨) is partially observed at random time points,
Ut1, . . . , Utmt P U = [0, 1], where for dense measurement
designs all mt ’s are larger than some order of n, and for sparse
designs all mt ’s are bounded (Zhang and Wang 2016; Qiao et al.
2020). Let Zti represent the observed value of Wt(Uti) satisfying

Zti = Wt(Uti) + ηti, i = 1, . . . , mt , (25)

where ηti’s are iid random errors with finite variance, indepen-
dent of Wt(¨).

Let K(¨) be an univariate kernel function. We apply a local
linear surface smoother to estimate the lag-k autocovariance
function Ck(u, v) for k = 1, . . . , L by minimizing

n´L
ÿ

t=1

mt
ÿ

i=1

mt+k
ÿ

j=1

"

ZtiZ(t+k)j ´ a(k)
0 ´ a(k)

1 (Uti ´ u) (26)

´ a(k)
2 (U(t+k)j ´ v)

*2
Kk,i,j,t,h(u, v)

with respect to (a(k)
0 , a(k)

1 , a(k)
2 ), where Kk,i,j,t,h(u, v) =

K
(

Uti´u
hC

)
K

(U(t+k)j´v
hC

)
with a bandwidth hC ą 0. Let the

minimizer of (26) be (pa(k)
0 , pa(k)

1 , pa(k)
2 ) and the resulting lag-k

autocovariance estimator is rCk(u, v) = pa(k)
0 . Similarly, we

implement a local linear smoothing approach to estimate
Sk(u) = cov(Yt , Wt+k(u)) for k = 1, . . . , L by minimizing

n´L
ÿ

t=1

mt
ÿ

i=1

!

YtZ(t+k)i ´ b(k)
0 ´ b(k)

1 (U(t+k)i ´ u)

)2
K

(
Uti ´ u

hS

)

(27)
with respect to (b(k)

0 , b(k)
1 ) with a bandwidth hS ą 0. Then

we obtain the estimate rSk(u) = pb(k)
0 . We also develop a basis

expansion approach (Radchenko, Qiao, and James 2015) to
estimate Ck and Sk, where details can be found in Section C of
the supplementary materials.

Let rK(u, v) = řL
k=1

ş

U
rCk(u, z)rCk(v, z)dz with estimated

eigenpairs (rθj, rψj)jě1 and rR(u) = řL
k=1

ş

U
rCk(u, z)rSk(z)dz. In

analogy to (16) and (17), we obtain the corresponding estimates
rβ of β0 by replacing (pθj, pψj)jě1 and pR with (rθj, rψj)jě1 and rR,
respectively. Before presenting the main asymptotic results, we
impose the following regularity conditions.

Condition 7. (i) The errors tηtiu are iid mean zero random vari-
ables with E|ηti|2s ă 8 for some s ą 2; (ii) tWt(¨), t = 1, 2, . . .u
is strictly stationary with ψ-mixing coefficients ψ(l) satisfying
ψ(l) À l´λ with λ ą

3s´2
s´2 and supuP[0,1] E|Wt(u)|2s ă 8.

Condition 8. K(¨) is a symmetric probability density function
on [´1, 1] and is Lipschitz continuous.

Condition 9. tUti, i = 1, . . . , mtu are iid copies of a random
variable U defined on [0, 1] and the density f (¨) of U is twice
continuously differentiable and is bounded from below and
above over [0, 1].
Condition 10. tWtu are independent of tUtiu and tηtiu are
independent of tUtiu, tWtu.

Condition 11. (i) B2Ck(u, v){Bu2, B2Ck(u, v){BuBv, and
B2Ck(u, v){Bv2 for k ě 1 are uniformly continuous and
bounded on [0, 1]2; (ii) B2Sk(u){Bu2 for k ě 1 are uniformly
continuous and bounded on [0, 1].
Condition 12. The number mt of measurement locations in time
t are independent random variables with distribution mtρ´1

n „

qm, where qm P t1, . . . , �mu for some bounded �m such that P(qm ą

1) ą 0.

Condition 13. The bandwidth parameters hC and hS satisfy

hC Ñ 0, hS Ñ 0,
log(nρ2

n)

(nρ2
n)θC h2

C
Ñ 0 and

log(nρn)

(nρn)θS hS
Ñ 0,

with

θC = β ´ 2 ´ (1 + β){(s ´ 1)

β + 2 ´ (1 + β){(s ´ 1)
,

θS = β ´ 3 ´ (1 + β){(s ´ 1)

β + 1 ´ (1 + β){(s ´ 1)
.

Conditions 7–13 are standard in local linear smoothing when
the serial dependence exists (Hansen 2008; Rubín and Panaretos
2020). In Condition 12, we treat the number mt of measurement
locations as random variables, but possibly diverges with n at the
order of ρn. When ρn is bounded, it corresponds to the sparse
case in Rubín and Panaretos (2020).

We present the convergence rates of rCk, rSk for k ě 1 and rβ0
in the following Theorems 3 and 4, respectively.

Theorem 3. Suppose that Conditions 7–13 hold. As n Ñ 8, we
have

}rCk ´ Ck}S = OP (δn1) and }rSk ´ Sk} = OP (δn2) for k ě 1,

where

δn1 = 1
b

nρ2
nh2

C

+ 1
?

n
+ h2

C and δn2 = 1
?

nρnhS
+ 1

?
n

+ h2
S.

Theorem 4. Suppose that Conditions 3–4 and 7–13 hold. The
following assertions hold as n Ñ 8 :

(i) Let εn Ñ 0 and ε2
nn Ñ 8 as n Ñ 8. When d is fixed, then

} rβ ´ β0} = OP
(
δn1 + δn2

)
.
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(ii) When d = 8, if we further assume that M — δ
´2{(2α+2τ)

n1 +
δ

´2{(2α+2τ)

n2 , then

} rβ ´ β0}
2 = OP

!

M2α+1(δ2
n1 + δ2

n2
) + M´2τ+1

)

= OP
!

δ
2(2τ´1)
2α+2τ

n1 + δ
2(2τ´1)
2α+2τ

n2

)

.

Remarks.

(a) In the sparse case where ρn is bounded, the L2 rates
of convergence for rCk and rSk in Theorem 3 become
OP(n´1{2h´1

C +h2
C) and OP(n´1{2h´1{2

S +h2
S), respectively,

which are consistent to those yielded convergence rates
of one-dimensional and surface local linear smoothers for
independent and sparsely sampled functional data (Zhang
and Wang 2016). When ρn grows with n, the conver-
gence result reveals interesting phase transition phenomena
depending on the relative order of ρn to n. We use different
rates of rCk (k ě 1) to illustrate such phenomenon:

i. When ρn{n1{4 Ñ 0 with n1{4h Ñ 8, }rCk ´ Ck} =
OP(n´1{2ρ´1

n h´1
C + h2

C);
ii. When ρn — n1{4 with hC — n´1{4 or ρn{n1{4 Ñ 8 with

hC = o(n´1{4) and hCρn Ñ 8, }rCk ´Ck} = OP(n´1{2).

As ρn grows very fast, case (ii) results in the root-n rate,
presenting that the theory for very dense curve time series
falls in the parametric paradigm. As ρn grows moderately
fast, case (i) corresponds to the rate faster than that for
sparse data but slower than root-n. The rates under cases (i)
and (ii) are, respectively, consistent to those of the estimated
covariance function under categories of “dense” and “ultra-
dense” functional data (Zhang and Wang 2016). For rSk (k ě

1), similar phase transition phenomenon occurs based on
the ratio of ρn to n1{4.

(b) The L2 rates of rβ0 in Theorem 4 are governed by dimension-
ality parameters (n, ρn), bandwidth parameters (hC, hS),
and those internal parameters in part (ii) of Theorem 1
when d = 8. There also exists the phase transition based
on the relative order of ρn to n. For example, when ρn is
bounded and d is fixed, the rate of rβ0 is OP(n´1{2h´1

C +
n´1{2h´1{2

S + h2
C + h2

S). When ρn grows very fast with
ρ´1

n = O(n´1{4) and suitable choices of hC, hS, the rates
of rβ0 are identical to those for fully observed functional
predictors in Theorem 1.

5. Empirical Studies

5.1. Simulation Study

In this section, we evaluate the finite sample performance of
AGMM by a number of simulation studies. The observed pre-
dictor curves, Wt(u), u P [0, 1], are generated from Equation (1)
with

Xt(u) =
d

ÿ

j=1
ξtjφj(u) and et(u) =

10
ÿ

j=1
νtjζj(u),

where tξtju
n
t=1 follows a linear AR(1) process with the coeffi-

cient (´1)j(0.9 ´ 0.5j{d). The slope functions are generated
by β0(u) = řd

j=1 bjφj(u), where bj’s take values from the
first d components in (2, 1.6, ´1.2, 0.8, ´1, ´0.6). We generate
responses Y1, . . . , Yn from Equation (2), where εt are inde-
pendent N(0, 1) variables. Finally, we consider two different
scenarios to generate tφj(¨)u

d
j=1, tζj(¨)u

10
j=1 and tνtjunˆ10.

Example 1. This example is taken from Bathia, Yao, and Ziegel-
mann (2010) with

φj(u) = ?
2 cos(π ju), ζj(u) = ?

2 sin(π ju),

and the innovations νtj being independent standard normal
variables.

We compare two versions of AGMM with three competing
methods: covariance-based LS (CLS), covariance-based GMM
(CGMM), autocovariance-based LS (ALS). The three compet-
ing approaches are implemented as follows. In the first two
methods, we perform eigenanalysis on the estimated covariance
function pCW , which converts the functional linear regression
to the multiple linear regression, and then implement either LS
or GMM. The truncated dimension was chosen such that the
selected principal components can explain more than 90% of the
variation in the trajectory. We also tried the bootstrap method
in Hall and Vial (2006) or to set a larger threshold level, for
example, 95%. However neither approach performed well, so we
do not report the results here. The third ALS method relies on
the eigenanalysis on the estimated autocovariance-based pK and
the subsequent implementation of LS. In a similar fashion to the
difference between base AGMM and AGMM, we refer to each
of the unregularized method as the “base” version.

The performance of four types of approaches is examined
based on the mean integrated squared error for pβ(u), that is,
E[şt pβ(u) ´ β0(u)u2du]. We consider different settings with
d = 2, 4, 6 and n = 200, 400, 800, and ran each simulation 100
times. The regularized versions of CGMM and ALS did not give
improvements in our simulation studies, so we do not report
their results here. Figure 1 provides a graphical illustration of
the results for n = 800 and d = 2, 4, 6. The black solid lines
correspond to the true β(u) from which the data were generated.
The median most accurate estimate is also plotted for each of the
competing methods. It is easy to see that the AGMM methods
apparently provide the highest level of accuracy. The top part
of Table 1 reports numerical summaries for all simulation sce-
narios. We can observe that the advantage of AGMM over base
AGMM is prominent especially when either d or n is relatively
small, while AGMM methods are superior to the competing
methods when n = 400 or 800. However, under the setting with
n = 200 and d = 4 or 6, the bootstrap test in Section 2.5 could
not select pd very accurately, thus resulting in AGMM estimates
inferior to some competitors.

To investigate the performance of AGMM after excluding the
negative impact from the low accuracy of pd especially when n =
200, we also implement an “oracle” version, which uses the true
d in the estimation. The numerical results are reported in the
bottom part of Table 1. We can observe that GMM methods are
superior to their LS versions, while CGMM slightly outperforms
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Figure 1. Example 1 with n = 800 and d = 2, 4, 6: Comparison of true β(¨) functions (black solid) with median estimates over 100 simulation runs for AGMM (red solid),
base AGMM (red dashed), CLS (cyan solid), base CLS (cyan dashed), base CGMM (green dotted), and base ALS (gray dash-dotted).

Table 1. Example 1: The mean and standard error (in parentheses) of the mean integrated squared error for pβ(u) over 100 simulation runs.

pd n d Base CLS CLS Base CGMM Base ALS Base AGMM AGMM

Est

200
2 1.320(0.026) 1.315(0.025) 2.215(0.099) 1.619(0.044) 1.187(0.052) 0.720(0.033)
4 1.360(0.028) 1.340(0.028) 2.128(0.093) 2.451(0.102) 2.053(0.117) 1.704(0.107)
6 1.337(0.030) 1.320(0.029) 1.912(0.102) 2.150(0.092) 1.847(0.098) 1.612(0.072)

400
2 1.184(0.018) 1.181(0.019) 1.891(0.090) 1.338(0.026) 0.772(0.034) 0.498(0.028)
4 1.198(0.021) 1.199(0.021) 1.939(0.090) 1.316(0.028) 0.701(0.034) 0.584(0.034)
6 1.159(0.023) 1.154(0.022) 1.519(0.087) 1.323(0.034) 0.824(0.045) 0.745(0.037)

800
2 1.159(0.012) 1.158(0.012) 1.792(0.080) 1.161(0.013) 0.346(0.013) 0.211(0.012)
4 1.161(0.014) 1.160(0.014) 1.762(0.105) 1.122(0.014) 0.336(0.015) 0.247(0.012)
6 1.123(0.014) 1.122(0.014) 1.297(0.091) 1.119(0.016) 0.348(0.016) 0.350(0.018)

True

200
2 1.402(0.032) 1.238(0.030) 0.774(0.044) 1.637(0.044) 1.196(0.052) 0.718(0.033)
4 1.365(0.030) 1.191(0.029) 0.924(0.056) 1.515(0.043) 1.214(0.071) 0.797(0.046)
6 1.345(0.028) 1.272(0.027) 1.150(0.065) 1.465(0.036) 1.378(0.070) 1.196(0.057)

400
2 1.226(0.019) 1.145(0.019) 0.503(0.027) 1.336(0.026) 0.772(0.034) 0.498(0.028)
4 1.199(0.021) 1.139(0.021) 0.529(0.024) 1.237(0.022) 0.653(0.032) 0.488(0.029)
6 1.166(0.023) 1.139(0.022) 0.656(0.038) 1.170(0.023) 0.726(0.039) 0.704(0.042)

800
2 1.174(0.012) 1.136(0.012) 0.269(0.011) 1.161(0.013) 0.346(0.013) 0.211(0.012)
4 1.165(0.014) 1.131(0.014) 0.324(0.014) 1.130(0.014) 0.333(0.015) 0.245(0.012)
6 1.121(0.014) 1.119(0.014) 0.323(0.016) 1.106(0.015) 0.336(0.015) 0.334(0.016)

NOTE: The lowest values are in bold font.

AGMM. These observations are due to the facts that, (i) top
d eigenvalues for CW and K correspond to the same signal
components in Example 1, (ii) GMM methods are capable of
removing the impact from the noise term, (iii) the estimate
pCW in CGMM does not consider the functional error, while
pK in AGMM would suffer from error accumulations. To better
demonstrate the superiority of AGMM, we explore Example 2,
where the covariance-based approach would fail to identify the
signal components but its autocovariance-based version could.

Example 2. We generate tζj(¨)u
10
j=1 from a 10-

dimensional orthonormal Fourier basis function,
t
?

2 cos(2π ju),
?

2 sin(2π ju)u5
j=1, and set φj(u) = ζj(u)

for j = 1, . . . , d. The innovations νtj are independently sampled
from N(0, σ 2

j ) with

σ 2
j =

#

(1{2)j´1, for j = 1, . . . , 6,
(2.6 ´ 0.1j) ˆ 1.1(d{2´3), for j = 7, . . . , 10.

In this example, provided the fact that tφj(¨)u
d
j=1 shares the

common basis functions with the first d elements in tζj(¨)u
10
j=1,

we can calculate the variation in the trajectory explained by
each of the 10 components under the population level. See

Table 5 of the supplementary materials for details. Take d = 4
as an illustrative example, the autocovariance-based methods
can correctly identify the 4 signal components, while CLS and
CGMM would misidentify “7” and “8” as the signal compo-
nents. Table 2 gives numerical summaries under the “oracle”
scenario with true d in the estimation. As we would expect, two
versions of AGMM provide substantially improved estimates,
while Base AGMM is outperformed by AGMM in most of
the cases. Under the scenario that pd is selected by the boot-
strap approach, Figure 2 and Table 2 provide the graphical and
numerical results, respectively. We observe similar trends as in
Figure 1 and Table 1 with AGMM methods providing highly
significant improvements over all the competitors.

Example 3. We use this example to demonstrate the sample
performance of our proposed kernel smoothing approach to
handle partially observed functional predictors. In each simu-
lated scenario, we first generate tWt(¨)u and tet(¨)u in the same
way as Example 2 and then generate the observed values Zti from
Equation (25), where time points Uti and errors ηti are randomly
sampled from Uniform[0, 1] and N(0, 0.52), respectively. We
consider simulation settings d = 2, 4, 6, n = 400, 800, 1200,
and mt = 10, 25, 50, 100, changing from sparse to moderately
dense to very dense measurement schedules. In each case, the
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Table 2. Example 2: The mean and standard error (in parentheses) of the mean integrated squared error for pβ(u) over 100 simulation runs.

pd n d Base CLS CLS Base CGMM Base ALS Base AGMM AGMM

True

400
2 1.591(0.059) 0.990(0.046) 1.118(0.078) 1.165(0.030) 0.599(0.038) 0.262(0.026)
4 2.026(0.066) 1.590(0.070) 2.310(0.112) 0.972(0.033) 0.686(0.041) 0.448(0.034)
6 2.310(0.069) 1.932(0.077) 2.722(0.104) 0.938(0.035) 0.825(0.042) 0.676(0.048)

800
2 1.377(0.051) 0.940(0.038) 0.884(0.085) 0.994(0.019) 0.337(0.020) 0.138(0.010)
4 1.934(0.051) 1.526(0.054) 2.268(0.105) 0.685(0.016) 0.318(0.016) 0.208(0.013)
6 2.160(0.056) 1.872(0.055) 2.859(0.138) 0.575(0.015) 0.339(0.017) 0.364(0.020)

1200
2 1.294(0.053) 0.980(0.048) 0.750(0.081) 0.900(0.013) 0.203(0.011) 0.080(0.005)
4 1.959(0.053) 1.524(0.058) 2.426(0.121) 0.582(0.009) 0.167(0.008) 0.124(0.006)
6 2.270(0.048) 2.002(0.050) 3.092(0.113) 0.494(0.011) 0.217(0.010) 0.248(0.010)

Est

400
2 0.817(0.012) 0.818(0.012) 0.980(0.059) 1.141(0.026) 0.575(0.030) 0.248(0.018)
4 1.037(0.043) 0.725(0.036) 1.319(0.070) 1.097(0.038) 0.773(0.042) 0.584(0.038)
6 0.913(0.041) 0.811(0.038) 1.305(0.068) 1.164(0.050) 0.999(0.051) 0.955(0.053)

800
2 0.795(0.010) 0.795(0.010) 0.899(0.055) 0.989(0.019) 0.333(0.020) 0.138(0.009)
4 1.093(0.033) 0.768(0.035) 1.471(0.065) 0.682(0.016) 0.319(0.016) 0.212(0.013)
6 0.859(0.041) 0.809(0.039) 1.139(0.061) 0.571(0.016) 0.335(0.017) 0.369(0.020)

1200
2 0.779(0.007) 0.780(0.007) 0.747(0.044) 0.898(0.012) 0.205(0.012) 0.079(0.005)
4 1.055(0.026) 0.815(0.032) 1.344(0.052) 0.580(0.009) 0.166(0.008) 0.130(0.007)
6 0.813(0.029) 0.808(0.029) 1.159(0.058) 0.492(0.011) 0.216(0.011) 0.243(0.009)

NOTE: The lowest values are in bold font.

Figure 2. Example 2 with n = 800 and d = 2, 4, 6: Comparison of true β(¨) functions (black solid) with median estimates over 100 simulation runs for AGMM (red solid),
base AGMM (red dashed), CLS (cyan solid), base CLS (cyan dashed), base CGMM (green dotted), and base ALS (gray dash-dotted).

Table 3. Example 3: The mean and standard error (in parentheses) of the mean
integrated squared error for pβ(u) over 100 simulation runs.

n d mt = 10 mt = 25 mt = 50 mt = 100

400
2 0.906(0.052) 0.374(0.019) 0.296(0.015) 0.227(0.011)
4 1.238(0.046) 0.637(0.027) 0.593(0.045) 0.395(0.020)
6 1.168(0.051) 1.092(0.031) 0.906(0.028) 0.721(0.027)

800
2 0.571(0.030) 0.194(0.009) 0.155(0.008) 0.142(0.007)
4 0.804(0.030) 0.375(0.015) 0.329(0.023) 0.231(0.010)
6 1.130(0.039) 0.835(0.029) 0.481(0.019) 0.360(0.013)

1200
2 0.317(0.017) 0.145(0.007) 0.124(0.006) 0.107(0.005)
4 0.632(0.025) 0.226(0.008) 0.214(0.013) 0.150(0.007)
6 1.043(0.031) 0.505(0.016) 0.311(0.010) 0.269(0.009)

optimal bandwidth parameters, hC, hS, are selected by the 10-
fold cross-validation in Rubín and Panaretos (2020) and pd is
chosen so that the first pd eigenvalues explains over 95% of the
total variation. Table 3 reports numerical summaries for all 36
cases. Several conclusions can be drawn. First, for each d, the
estimation accuracy is improved as n and mt increase. Second,
as curves are very densely observed, for example, mt = 100,
our proposed smoothing approach enjoys similar performance
with AGMM in Table 2, providing empirical evidence to support
our remark for Theorem 4 about the same convergence rate
between very densely observed and fully observed functional
scenarios.

5.2. Real Data Analysis

In this section, we illustrate the proposed AGMM using a public
financial dataset. The dataset was downloaded from https://
wrds-web.wharton.upenn.edu/wrds and consists of one-minute
resolution prices of Standard & Poor’s 500 index and inclusive
stocks from n = 251 trading days in year 2017. The trading
time (9:30–16:00) is then converted to minutes, u P [0, 390]. Let
Pt(uj) (t = 1, . . . , n, j = 1, . . . , 390) be the price of a financial
asset at the jth minute after the opening time on the tth trading
day. Denote the cumulative intraday return (CIDR) trajectory,
in percentage, by rt(uj) = 100r logtPt(uj)u ´ logtPt(u1)us

(Horvath, Kokoszka, and Rice 2014). Let rm,t(u) be the CIDR
curves of the Standard & Poor’s 500 index.

We extend the standard capital asset pricing model (CAPM)
(Campbell, Lo, and MacKinlay 1997, chap. 5) to the functional
domain by considering the functional linear regression with
functional errors-in-predictors as follows

yt = α +
ż

xt(u)β(u)du + εt , (28)

rm,t(u) = xt(u) + et(u), t = 1, . . . , n, u P [0, 390],
where xt(¨) and et(¨) represent the signal and error components
in rm,t(¨), respectively, and yt is the intraday return of a specific

https://wrds-web.wharton.upenn.edu/wrds
https://wrds-web.wharton.upenn.edu/wrds
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Figure 3. Estimated β(¨) curves for AGMM (solid) and CLS (dashed).

Table 4. Mean squared prediction errors up to different current times, T = 330, 345, 360, 375, 380, and 385 min, for AGMM and two competing methods.

Stock Method u ď 330 u ď 345 u ď 360 u ď 375 u ď 380 u ď 385

ADBE
AGMM 1.276 1.179 0.983 0.852 0.800 0.728

CLS 1.272 1.186 1.094 0.991 0.949 0.895
Mean 12.224 12.224 12.224 12.224 12.224 12.224

JNJ
AGMM 0.419 0.305 0.279 0.254 0.243 0.226

CLS 0.583 0.496 0.419 0.352 0.330 0.306
Mean 3.077 3.077 3.077 3.077 3.077 3.077

PEP
AGMM 0.749 0.659 0.557 0.466 0.429 0.384

CLS 0.781 0.687 0.596 0.502 0.468 0.429
Mean 2.956 2.956 2.956 2.956 2.956 2.956

NOTE: All entries have been multiplied by 10 for formatting reasons. The lowest MSPE for each value of T is bolded.

stock on the tth trading day. Note that the slope parameter in the
classical CAPM explains how strongly an asset return depends
on the market portfolio. Analogously, β(¨) in functional CAPM
in (28) can be understood as the functional sensitivity measure
of an asset return to the market CIDR trajectory.

Figure 3 plots the estimated β(¨) functions using both
AGMM and CLS for three large-cap-sector stocks, Adobe
(ADBE), Johnson & Johnson (JNJ), and PepsiCo (PEP). A few
trends are apparent. First, the AGMM estimates place more
positive weights as u increases. This result seems reasonable
given the fact that the daily most recent market price would
contain the most information about the stock’s closing price.
Second, the CLS estimates first dip in the mid-morning and then
start to increase until the end of the trading day. In general, the
shapes of the estimated β(¨) functions by either AGMM or CLS
are quite similar across the three stocks.

To formulate a prediction problem, we treat CIDR trajec-
tories of the same stock as that in (28) up to current time
T ă 390 as ry,t(u), u P [0, T], where, for example, T = 375
corresponds to 15 min prior to the closing time of the trading
day. Then we construct the same functional linear model as
(28) by replacing rm,t(¨) with ry,t(¨). To judge which method
produces superior predictions, we implement a rolling proce-
dure to calculate the mean squared prediction error (MSPE) for
H = 30 days. Specifically, for each h = H, H ´ 1, . . . , 1, we treat
tyn´h+1, ry,n´h+1u as a testing set, implementing each fitting
method on the training set of t(yt , ry,t) : t = 1, . . . , n ´ hu,
calculate the squared error between yn´h+1 and its predicted
value, and repeat this procedure H-times to compute the MSPE.
We calculate the MSPEs over a grid of (d, J) values and choose
the pair with the lowest error. We also include the prediction

errors from the null model, using the mean of the training
response to predict the test response. The resulting MSPEs, for
various values of T and the same three stocks, are provided in
Table 4. It is easy to observe that the prediction accuracy for
AGMM and CLS improves as T approaches to 390 and AGMM
significantly outperforms two competitors in almost all settings.

Appendix A

Appendices A.1 and A.2 contain proofs of Theorem 1 and Theorems 3–
4. The proofs of Theorem 2 and all technical lemmas are in the supple-
mentary materials.

A.1. Proof of Theorem 1

A.1.1. Proof of Theorem 1(i)
Define qK(u, v) = řd

j=1 pθj pψj(u) pψj(v) and K´1(u, v) =
řd

j=1 θ
´1
j ψj(u)ψj(v). Let qβ(u) = ş

U qK´1(u, v)pR(v)dv. For a large
δ ą 0, by Lemma 4, we have

P
(
n1{2

} pβ ´ β0} ą δ
) = P

(
n1{2

} pβ ´ β0} ą δ, pd = d
)

+P
(
n1{2

} pβ ´ β0} ą δ, pd ‰ d
)

ď P
(
n1{2

} qβ ´ β0} ą δ, pd = d
) + P

(
pd ‰ d

)
ď P

(
n1{2

} qβ ´ β0} ą δ
) + o(1),

which means that, to prove n1{2} pβ ´ β0} = OP(1), it suffices to show
that } qβ ´ β0} = OP(n´1{2). It is easy to show that

} rβ ´ β0} ď }qK´1
´ K´1

}S}pR} + }K´1
}S}pR ´ R}. (A.1)

Then it follows from Lemmas 2, 3, and 5 that } qβ ´ β0} = OP(n´1{2).
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A.1.2. Proof of Theorem 1(ii)
Without any ambiguity, write xq, Ky, xK, qy, and xp, xK, qyy for

ż

U
K(u, v)q(u)du,

ż

U
K(u, v)q(v)dv, and

ż

U

ż

U
K(u, v)p(u)q(v)dudv,

respectively. In Lemma 6, we give expressions for pθj ´ θj and pψj ´ ψj
for j ě 1.

Let βM(u) = řM
j=1 θ

´1
j xψj, Ryψj(u). By the triangle inequality, we

have

} pβ ´ β0}
2

ď } pβ ´ βM}
2 + }βM ´ β0}

2. (A.2)

By (12) and orthonormality of tψj(¨)u, we have }βM ´ β0}2 =
ř8

j=M+1 θ
´2
j xψj, Ry2. It follows from Condition 4 and some specific

calculations that

}βM ´ β0}
2 =

8
ÿ

j=M+1
b2

j ď C
8
ÿ

j=M+1
j´2τ = O(M´2τ+1). (A.3)

Next we will show the convergence rate of } pβ ´βM}2. Observe that

pβ(u) ´ βM(u) =
M
ÿ

j=1

(
pθ

´1
j ´ θ

´1
j

)
xψj, Ry pψj(u)

+
M
ÿ

j=1

pθ
´1
j

(
x pψj, pRy ´ xψj, Ry

)
pψj(u)

+
M
ÿ

j=1
θ

´1
j xψj, Ryt pψj(u) ´ ψj(u)u.

Then we have

} pβ ´ βM}
2

ď 3
M
ÿ

j=1

(
pθ

´1
j ´ θ

´1
j

)2
xψj, Ry

2

+3
M
ÿ

j=1

pθ
´2
j

(
x pψj, pRy ´ xψj, Ry

)2

+3M
M
ÿ

j=1
θ

´2
j xψj, Ry

2
} pψj ´ ψj}

2

= 3In1 + 3In2 + 3In3. (A.4)

Let p� = }pK ´ K}S and �M = t2 p� ď δMu. On the event �M ,
we can see that supjďM |pθj ´ θj| ď θM{2, which implies that 2´1θj ď

pθj ď 2θj. Moreover, we can show that P(�M) Ñ 1 since n1{2δM Ñ 8

as n Ñ 8. Hence, it suffices to work with bounds that are established
under the event �M .

Provided that event �M holds, it follows from supjě1 |pθj ´ θj| =
OP(n´1{2) in Lemma 1(i) and some calculations that

In1 ď 4
M
ÿ

j=1

(
pθj ´ θj

)2
θ

´4
j xψj, Ry

2 = 4
M
ÿ

j=1
θ

´2
j b2

j
(
pθj ´ θj

)2

= OP
(

n´1
M
ÿ

j=1
θ

´2
j b2

j
)

.

By Conditions 3 and 4, we have

In1 = OP(n´1) ¨

( M
ÿ

j=1
j2α´2τ

)
= OP(n´1) ¨

(
M + M2α´2τ+1)

= oP
(
n´1M2α+1). (A.5)

Consider the term In3. By } pψj ´ ψj} = OP
(
j1+αn´1{2) in

Lemma 1(iii) and Condition 4, we obtain that

In3 ď M
M
ÿ

j=1
b2

j } pψj ´ ψj}
2 = OP

(
n´1M2´2τ+2α+2)

= OP
(

n´1M2α+1), (A.6)

where the last equality comes from α ą 1 and 2α ´ 2τ + 4 ď 2α + 1
implied by Condition 4.

Consider the term In2. On the event �M , we have that

In2 ď 4
M
ÿ

j=1
θ

´2
j

(
x pψj, pRy ´ xψj, Ry

)2

ď 12
M
ÿ

j=1
θ

´2
j

(
x pψj ´ ψj, Ry

2 + xψj, pR ´ Ry
2 + x pψj ´ ψj, pR ´ Ry

2
)

ď 12
M
ÿ

j=1
θ

´2
j

(
x pψj ´ ψj, Ry

2 + }pR ´ R}
2 + } pψj ´ ψj}

2
}pR ´ R}

2
)

,

(A.7)

where the last inequality comes from orthonormality of tψj(¨)u and
Cauchy–Schwarz inequality. By Lemma 6 and some calculations, we
can represent the term x pψj ´ ψj, Ry as

x pψj ´ ψj, Ry = Rj1 + Rj2,

where Rj1 = ř

k:k‰j θkbk(pθj ´ θk)
´1x pψj, xpK ´ K, ψkyy and Rj2 =

θjbjx pψj ´ ψj, ψjy. It follows from Conditions 3–4, Lemma 1, and
Cauchy–Schwarz inequality that

M
ÿ

j=1
θ

´2
j R2

j2 = OP(n´1) ¨

( M
ÿ

j=1
j´2τ+2α+2

)
= oP

(
n´1M2α+1).

(A.8)
Note that on the event �M , |pθj ´ θj| ď 2´1|θj ´ θk| for j = 1, . . . , k ´

1, k + 1, . . . , M and hence |pθj ´ θk| ě 2´1|θj ´ θk|. If we can show that

sup
jě1

(θ2
j j2α)´1 ÿ

k:k‰j
θ2

k b2
k(θj ´ θk)

´2 = O(1), (A.9)

then, by Condition 4, Lemma 1, and on the event �M , we have

M
ÿ

j=1
θ

´2
j R2

j1 ď 4
M
ÿ

j=1
θ

´2
j

ÿ

k:k‰j
θ2

k b2
k(θj ´ θk)

´2
}pK ´ K}

2
S

= OP(n´1) ¨

M
ÿ

j=1
θ

´2
j θ2

j j2α = OP(n´1M2α+1). (A.10)

We turn to prove (A.9) as follows. Denote [j{2] by the largest integer
less than j{2. Then

ÿ

k:k‰j
θ2

k b2
k(θj ´ θk)

´2

=
⎛
⎝ 8

ÿ

k=2(j+1)

+
k=2j+1

ÿ

k=[j{2]+1,k‰j
+

[j{2]
ÿ

k=1

⎞
⎠ θ2

k b2
k(θj ´ θk)

´2.

Observe that for k ě 2(j + 1),

θj ´ θk =
k´1
ÿ

s=j
(θs ´ θs+1) ě c

ż 2(j+1)

j+1
s´α´1ds

= ´
c
α

s´α
ˇ

ˇ

ˇ

2(j+1)

j+1
ě

c
2α

2´α j´α ,
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and for [j{2] + 2 ď k ď 2j + 1 but k ‰ j,

|θj ´ θk| ě max(θj ´ θj+1, θj´1 ´ θj) ě cj´α´1.

Therefore,

(θ2
j j2α)´1

8
ÿ

k=2(j+1)

θ2
k b2

k(θj ´ θk)
´2

= O(1) ¨ j2α´2τ
8
ÿ

k=2(j+1)

θ2
k = O(1),

(θ2
j j2α)´1

2j+1
ÿ

k=[j{2]+1
θ2

k b2
k(θj ´ θk)

´2

ď (θ2
j j2α)´1

2j+1
ÿ

k=[j{2]+1
2tθ2

j + (θj ´ θk)
2
ub2

k(θj ´ θk)
´2

= O(1) ¨ θ
´2
j j´2α(1 + θ2

j j2α+3´2τ ) = O(1),

(θ2
j j2α)´1

[j{2]
ÿ

k=1
θ2

k b2
k(θj ´ θk)

´2

ď O(1)

[j{2]
ÿ

k=1
θ2

k b2
k(θk ´ θ2k)

´2 = O(1) ¨ θ2
1 j2α´2τ+1 = O(1),

uniformly in j. Then (A.9) follows.
Moreover, it follows from Condition 3, Lemmas 1–3 that

M
ÿ

j=1
θ

´2
j }pR ´ R}

2 = OP(n´1M2α+1) and (A.11)

M
ÿ

j=1
θ

´2
j } pψj ´ ψj}

2
}pR ´ R}

2 = OP(n´2M4α+3).

Combing the results in (A.7)–(A.8) and (A.10)–(A.11), we have

In2 = OP
(

n´2M4α+3 + n´1M2α+1
)

. (A.12)

Combining the results in (A.2), (A.3), and (A.12) and choosing M —

n1{(2α+2τ), we obtain that

} pβ ´ β0}
2 = OP

(
n´2M4α+3 + n´1M2α+1 + M´2τ+1)

= OP
(
n´

2τ´1
2α+2τ

)
.

A.2. Proofs of Theorems 3 and 4

Proof of Theorem 3. We begin with the L2 rates of rCk for k ě 1. We
wish to prove them in the same fashion as the proof of Theorem 1 in
Hansen (2008). For p, q = 0, 1, 2, define

rZ(1)
p,q,t(u, v) =

mt
ÿ

i=1

mt+k
ÿ

j=1
Kk,i,j,h,t(u, v)

(
Uti ´ u

hC

)p (U(t+k)j ´ v
hC

)q
,

rZ(2)
p,q,t(u, v) =

mt
ÿ

i=1

mt+k
ÿ

j=1
Kk,i,j,h,t(u, v)

(
Uti ´ u

hC

)p (U(t+k)j ´ v
hC

)q

ZtiZ(t+k)j.

Let Spq = (nρ2
nh2

C)´1 řn´L
t=1 rZ(1)

p,q,t and Gpq = (nρ2
nh2

C)´1
řn´L

t=1 rZ(2)
p,q,t . Then we have

rCk = (S20S02 ´ S2
11)G00 ´ (S10S02 ´ S01S11)G10 + (S10S11 ´ S01S20)G01

(S20S02 ´ S2
11)S00 ´ (S10S02 ´ S01S11)S10 + (S10S11 ´ S01S20)S01

so that rCk(u, v) ´ Ck(u, v) can be expressed as

= (S20S02 ´ S2
11)tG00 ´ Ck(u, v)S00 ´ hC

BCk
Bu (u, v)S10 ´ hC

BCk
Bv (u, v)S01u

(S20S02 ´ S2
11)S00 ´ (S10S02 ´ S01S11)S10 + (S10S11 ´ S01S20)S01

´
(S20S02 ´ S2

11)tG10 ´ Ck(u, v)S10 ´ hC
BCk
Bu (u, v)S20 ´ hC

BCk
Bv (u, v)S11u

(S20S02 ´ S2
11)S00 ´ (S10S02 ´ S01S11)S10 + (S10S11 ´ S01S20)S01

+(S20S02 ´ S2
11)tG01 ´ Ck(u, v)S01 ´ hC

BCk
Bu (u, v)S11 ´ hC

BCk
Bv (u, v)S02u

(S20S02 ´ S2
11)S00 ´ (S10S02 ´ S01S11)S10 + (S10S11 ´ S01S20)S01

.

Let U = tUti, i = 1, . . . , mt , t = 1, . . . , nu. Suppose we have shown
that for p, q = 0, 1, 2,

›

›Gpq ´ EtGpq|Uu
›

›

S = OP

⎛
⎝ 1

b

nρ2
nh2

C

+ 1
?

n

⎞
⎠ , (A.13)

and

sup
u,vP[0,1]

|Spq(u, v) ´ ESpq(u, v)| = oP(1). (A.14)

By Taylor expansion, Condition 11 and (A.14),
›

›

›

›

EtG00|Uu ´ Ck(u, v)S00 ´ hC
BCk
Bu

(u, v)S10 ´ hC
BCk
Bv

(u, v)S01

›

›

›

›

S
= OP(h2

C). (A.15)

Then combing (A.13) and (A.15) yields that
›

›

›

›

G00 ´ Ck(u, v)S00 ´ hC
BCk
Bu

(u, v)S10 ´ hC
BCk
Bv

(u, v)S01

›

›

›

›

S

= OP

⎛
⎝ 1

b

nρ2
nh2

C

+ 1
?

n
+ h2

C

⎞
⎠ . (A.16)

Similarly, both G10 ´ Ck(u, v)S10 ´ hC
BCk
Bu (u, v)S20 ´ hC

BCk
Bv (u, v)S11

and G01 ´ Ck(u, v)S01 ´ hC
BCk
Bu (u, v)S11 ´ hC

BCk
Bv (u, v)S02 can be

proved to have the same rate in (A.16). We can see from (A.14) that
each denominator in rCk(u, v) is positive and bounded away from zero
with probability approaching one, and as a consequence, part (i) of
Theorem 3 follows.

Next, we turn to prove (A.13) and (A.14). For (A.13), it suffices to
show that

ż ż

E tG00(u, v) ´ EtG00(u, v)|Uuu
2 dudv À

1
nρ2

nh2
C

+ 1
n

,

where an À bn means lim supnÑ8 |an{bn| ď C for some positive
constant C ą 0. It is easy to see that

E tG00 ´ EtG00|Uuu
2

ď
1

n2ρ4
nh4

C

n
ÿ

t=1
E

ˇ

ˇ

ˇ

rZ(2)
0,0,1 ´ EtrZ(2)

0,0,1|Uu

ˇ

ˇ

ˇ

2

+ 1
nρ4

nh4
C

n
ÿ

t=1

ˇ

ˇ

ˇ
cov

!

rZ(2)
0,0,1 ´ EtrZ(2)

0,0,1|Uu, rZ(2)
0,0,t+1 ´ EtrZ(2)

0,0,t+1|Uu

)ˇ

ˇ

ˇ
.

Let W = tWt(¨), Uti, i = 1, . . . , mt , t = 1, . . . , nu. Note that
rZ(2)

0,0,1 ´ EtrZ(2)
0,0,1|Uu = rZ(2)

0,0,1 ´ EtrZ(2)
0,0,1|Wu + EtrZ(2)

0,0,1|Wu ´

EtrZ(2)
0,0,1|Uu. Given W, the first term rZ(1)

0,0,1 ´ EtrZ(1)
0,0,1|Wu is a U-type

statistics and hence some specific calculations yield that E
!

rZ(2)
0,0,1 ´
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EtrZ(2)
0,0,1|Wu

)2
À ρ2

nh2
C + ρ3

nh3
C . Moreover, E

!

EtrZ(2)
0,0,1|Wu ´

EtrZ(2)
0,0,1|Uu

)2
À ρ4

nh4
C + ρ2

nh2
C . As a result,

E|rZ(2)
0,0,1 ´ EtrZ(2)

0,0,1|Uu|
2

À ρ4
nh4

C + ρ2
nh2

C .

In a similar manner together with Marcinkiewicz–Zygmund inequality,
we can show that

E|rZ(2)
0,0,1(u, v) ´ EtrZ(2)

0,0,1|Uu|
s

À ρ2s
n h2s

C + ρs
nhs

C + ρ
s{2
n h2

C .

For each fixed (u, v) and hC , under Conditions 7–12, we see
that (rZ(2)

0,0,1, rZ(2)
0,0,i, . . .) is strictly stationary with ψ-mixing coefficients

ψZ(l) satisfying ψZ(l) À (l ´ k)´λ for l ě k + 1. For j˚ ă j ď

max(j˚ + 1, ρ´2
n h´2

C ) with fixed j˚ ą k + 1, we have that
ˇ

ˇ

ˇ
covtrZ(2)

0,0,1 ´ EtrZ(2)
0,0,1|Uu, rZ(2)

0,0,t+1 ´ EtrZ(2)
0,0,t+1|Uuu

ˇ

ˇ

ˇ
À ρ4

nh4
C .

For j ą max(j˚ + 1, ρ´2
n h´2

C ) + 1, using Davydov’s lemma, we show
that

ˇ

ˇ

ˇ
covtrZ(2)

0,0,1 ´ EtrZ(2)
0,0,1|Uu, rZ(2)

0,0,t+1 ´ EtrZ(2)
0,0,t+1|Uuu

ˇ

ˇ

ˇ

À j´2+2{s(ρ4
nh4

C + ρ2
nh2

C + ρnh4{s
C

)
.

Therefore, the rate in (A.13) follows from the steps to prove Theorem 1
in Hansen (2008). Similarly, together with Conditions 7–13, the rates
in (A.14) and }pSk ´ Sk} follows from the steps to prove Theorem 2 in
Hansen (2008). The proof is complete.

Proof of Theorem 4. By Theorem 3 for k = 1, . . . , L, we can easily show
that

}rK ´ K}S = OP
(
δn1

)
and }rR ´ R} = OP

(
δn1 + δn2

)
. (A.17)

Following directly from the proof steps of Theorem 1 by replacing }pK ´

K}S = OP(n´1{2) and }pR´R} = OP(n´1{2) with the corresponding
rates in (A.17), we complete our proof.

Supplementary Materials

The supplementary material contains proofs of Theorem 2 as well as all
technical lemmas, the presentation of the basis expansion approach to
address partially observed curve time series and additional simulation
results.
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