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Abstract
In this study, we introduce a novel methodological framework called Bayesian penalized empirical likelihood 
(BPEL), designed to address the computational challenges inherent in empirical likelihood (EL) approaches. 
Our approach has two primary objectives: (i) to enhance the inherent flexibility of EL in accommodating 
diverse model conditions, and (ii) to facilitate the use of well-established Markov Chain Monte Carlo 
sampling schemes as a convenient alternative to the complex optimization typically required for statistical 
inference using EL. To achieve the first objective, we propose a penalized approach that regularizes the 
Lagrange multipliers, significantly reducing the dimensionality of the problem while accommodating a 
comprehensive set of model conditions. For the second objective, our study designs and thoroughly 
investigates two popular sampling schemes within the BPEL context. We demonstrate that the BPEL 
framework is highly flexible and efficient, enhancing the adaptability and practicality of EL methods. Our 
study highlights the practical advantages of using sampling techniques over traditional optimization 
methods for EL problems, showing rapid convergence to the global optima of posterior distributions and 
ensuring the effective resolution of complex statistical inference challenges.
Keywords: Bayesian methods, Bernstein–von Mises theorem, estimating equations, MCMC, penalized empirical 
likelihood
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1 Introduction
Empirical likelihood (EL) (Owen, 2001) is a versatile and flexible tool for statistical inference, pro
viding a framework that accommodates broadly defined model conditions. Unlike traditional like
lihood approaches, EL does not require the explicit specification of probability distributions 
governing the data generation process (DGP). This inherent flexibility offers numerous practical 
advantages, such as the ability to incorporate a wide range of model specifications and prior 
knowledge, making it highly adaptable for integrating information from multiple data sources. 
Additionally, EL retains key benefits of its parametric likelihood counterpart, including efficiency 
(in the semiparametric sense) and the convenience of conducting hypothesis tests and estimating 
confidence sets through the Wilks-type likelihood ratio framework.

Recent developments in EL approaches have a focus on addressing the challenges posed by com
plex high-dimensional data. To handle the complexities arising from various model conditions, 
researchers have explored regularization techniques applied to the Lagrange multipliers associated 
with EL or the empirical versions of moment conditions, aiming to achieve enhanced model par
simony. In Shi (2016), a two-step procedure is introduced. The first step involves employing a 
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‘relaxed’ EL that incorporates specific inequality constraints in its formulation. The second step 
includes moment selection and bias correction. Chaussé (2017) addresses a continuum of moment 
conditions where the numerical optimization problem becomes ill-conditioned. To resolve this, a 
penalty on the continuous version of the Lagrange multiplier’s counterpart is proposed and inves
tigated. Chang et al. (2018) proposes a method to penalize the magnitudes of both the Lagrange 
multiplier and the model parameters, specifically to tackle high-dimensional model parameters 
under complex conditions. More recently, Chang et al. (2021) explores the projection of high- 
dimensional moment conditions onto lower-dimensional spaces to facilitate statistical inference 
for specific components of model parameters and to assess model specification validity. Besides 
addressing the challenge of handling many moment conditions, the development of EL approaches 
that incorporate penalties on model parameters to promote parsimonious structures can effective
ly manage high-dimensional problems, as discussed in Tang and Leng (2010), Leng and Tang 
(2012), Chang et al. (2015), and Chang et al. (2023).

The synergy of Bayesian methodologies with traditional likelihoods has consistently demon
strated its effectiveness. Leveraging advances in sampling techniques, Bayesian approaches have 
established their significance in tackling a wide array of challenges across various domains. This 
is particularly valuable when dealing with intricate statistical problems where maximizing or 
even computing the objective function becomes infeasible. The amalgamation of Bayesian princi
ples with EL shows great promise in practical applications. This integration enhances the adapt
ability and robustness of the Bayesian framework, enabling the creation of statistical models that 
can accommodate a wide range of scenarios. Recent developments in the realm of Bayesian EL 
(BEL) methods are evident in a growing body of literature; see Lazar (2003), Rao and Wu 
(2010), Chaudhuri and Ghosh (2011), Yang and He (2012), Mengersen et al. (2013), Chib 
et al. (2018), Cheng and Zhao (2019), Zhao et al. (2020), Tang and Yang (2022), and Yu and 
Bondell (2024).

The class of EL approaches often encounters significant challenges due to substantial computa
tional complexity, which frequently presents barriers in practice. These difficulties primarily arise 
from the nonconvex nature of the objective function and the potential nonconvexity of its support. 
As the complexity of the model increases with additional parameters and conditions, these com
putational obstacles become more severe. Thus, developing computationally efficient strategies is 
crucial to address these challenges. Indeed, as demonstrated in Chaussé (2017) and related works, 
solving the associated optimization problem of penalized EL (PEL) can be a dauntingly difficult 
task. In our study, we demonstrate that, when combined with the Bayesian framework, sampling 
schemes offer promising alternatives. Once successfully drawn, samples from the posterior distri
bution can be used to develop the estimator.

In recent research, sampling techniques, often perceived as computationally demanding alterna
tives to optimization methods, demonstrate remarkable efficiency in approximating target distri
butions, outperforming optimization alternatives in handling nonconvex problems; see Ma et al. 
(2019). While sampling techniques offer a promising approach within the framework of BEL, 
there exist numerous challenges associated with devising these computational schemes. On one 
hand, EL has the potential to leverage information from various model conditions, leading to 
more precise estimates of unknown model parameters. However, the inclusion of a large number 
of these conditions introduces additional complexities, both in theory and practical implementa
tion. Indeed, the dimensionality of the problem remains a central obstacle in EL approaches, as 
elaborated in Hjort et al. (2009). Furthermore, the incorporation of an increasing number of mo
ment conditions can substantially amplify the nonconvex nature of the associated optimization 
problems, making the development of an effective sampling scheme increasingly more challenging. 
As underscored in Chaudhuri et al. (2017), traditional Markov Chain Monte Carlo (MCMC) 
techniques encounter significant hurdles when applied to BEL due to the intricate and nonconvex 
characteristics of the parameter space in which new samples are generated.

Our research aims to establish an innovative methodological framework, guided by two pri
mary objectives: (i) our approach maintains the inherent flexibility and adaptability of EL, allow
ing for the incorporation of broad model conditions; and (ii) our framework provides convenient 
access to well-established MCMC computing schemes, streamlining practical implementations. 
To address the first objective and mitigate challenges stemming from numerous model conditions, 
we propose a penalized approach. By penalizing the magnitudes of the Lagrange multipliers used 
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in evaluating EL at specific model parameter values, we create an effective mechanism similar to 
moment selection. This approach reduces the problem’s dimensionality while still leveraging the 
potential efficiency gains from a comprehensive set of model conditions. For the second objective, 
our approach effectively overcomes the obstacles associated with devising sampling schemes for 
applying Bayesian approaches, thanks to the efficient dimensionality reduction achieved through 
PEL. In our study, we demonstrate the practicality of our framework using two well-established 
sampling methods: the popular Metropolis–Hastings (M-H) sampling and the influential adaptive 
multiple importance sampling (AMIS) technique for approximate Bayesian computations.

Our study makes several noteworthy contributions, in addition to the methodological advance
ment mentioned earlier. On a theoretical level, our analysis establishes the properties of the BPEL 
estimator, allowing for an exponentially increasing number of model conditions, thereby enabling 
unprecedented adaptability in practical applications. Furthermore, we develop theory that guar
antees the convergence of the two showcased sampling schemes, thereby ensuring the validity 
of BPEL in statistical inference. Our study reinforces the observations made in a recent study by 
Ma et al. (2019) that sampling techniques offer compelling alternatives to optimization methods 
in addressing computationally demanding problems. Our theoretical results and numerical studies 
demonstrate that sampling schemes converge rapidly to stationary distributions centred around 
the true global optimizer. In contrast, optimization methods often require more time and can be
come trapped at local peaks, limiting their ability to locate the true optimum.

The rest of this article are structured as follows. Section 2 delves into the framework of BPEL 
and introduces two MCMC algorithms. Numerical studies and real data analysis for an inter
national trade dataset are presented in Sections 3 and 4, respectively. Section 5 comprehensively 
develops the properties and theoretical guarantees of the proposed methods. Some discussions 
are provided in Section 6, while all technical proofs are available in the online supplementary 
material. The code for implementing our proposed methods is available at the GitHub repository: 
https://github.com/JinyuanChang-Lab/BayesianPenalizedEL.

1.1 Notation
For any positive integer q, write [q] = {1, . . . , q} and let Iq be the q × q identity matrix. Denote by 
I(·) the indicator function. Let vech(·) be an operator that stacks the columns of the lower triangu
lar part of its argument square matrix. For a q-dimensional vector a = (a1, . . . , aq)⊤, we use |a|2 = 
(
􏽐q

i=1 a2
i )1/2 and supp(a) = {i ∈ [q] : ai ≠ 0} to denote its L2-norm and support, respectively. Let 

U(a, b) be the uniform distribution among (a, b), and N (μ, Σ) be the Gaussian distribution with 
mean μ and covariance matrix Σ. Denote by T k(μ, Σ) the multivariate Student’s distribution 
with k degrees of freedom, mean μ, and covariance matrix Σ. For two positive real-valued sequen
ces {an} and {bn}, we write an ≲ bn if lim supn→∞an/bn ≤ c0 for some positive constant c0, an ≍ bn 

if an ≲ bn and bn ≲ an hold simultaneously, and an ≪ bn if lim supn→∞an/bn = 0.

2 Methodology
2.1 Penalized empirical likelihood
Let Xn = {x1, . . . , xn} represent a set of d-dimensional independent and identically distributed ob
servations, and let θ = (θ1, . . . , θp)⊤ ∈ Θ be a p-dimensional parameter. Here, the parameter space 
Θ ⊂ Rp is a compact set. The information regarding the model parameter θ is gathered through a 
set of unbiased moment conditions E{g(xi; θ0)} = 0, where g( · ; · ) = {g1( · ; · ), . . . , gr( · ; · )}

⊤ ∈ 
Rr is referred to as the estimating function, and the true, yet unknown value θ0 is situated within 
the interior of Θ.

In existing studies, it has been typically required that r ≥ p for the identification of θ0. When p 
and r are fixed constants, the EL with the estimating function g( · ; · ) considered in Qin and 
Lawless (1994) can be formulated as

EL(θ) = exp −n log n − max
λ∈Λ̂n(θ)

􏽘n

i=1

log {1 + λ⊤g(xi; θ)}

􏼢 􏼣

, (1) 
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where Λ̂n(θ) = {λ ∈ Rr : λ⊤g(xi; θ) ∈ V for any i ∈ [n]} with an open interval V containing zero. 
The standard EL estimator for θ0 is defined as θ̃n = arg maxθ∈Θ EL(θ), which is equivalent to solv
ing the corresponding dual problem:

θ̃n = arg min
θ∈Θ

max
λ∈Λ̂n(θ)

􏽘n

i=1

log {1 + λ⊤g(xi; θ)}. (2) 

The estimator θ̃n exhibits several desirable properties: (i) it is 
��
n
√

-consistent, (ii) it possesses 
asymptotic normality, and (iii) it attains the semiparametric efficiency bound of Godambe and 
Heyde (1987). However, in high-dimensional scenarios, the literature has highlighted the chal
lenge of accommodating a diverging r. This issue is discussed in works such as Donald et al. 
(2003), Chen et al. (2009), Hjort et al. (2009), Leng and Tang (2012) and Chang et al. (2015). 
To elaborate, it is generally required that r ≪ n1/2 for the consistency and r ≪ n1/3 for the asymp
totic normality of θ̃n. These constraints on the diverging rate of r pose significant challenges when 
dealing with high-dimensional estimating equations.

To address scenarios where r ≫ n and p remains fixed, we investigate the PEL estimator for θ0 as 
follows:

θ̂n = arg min
θ∈Θ

max
λ∈Λ̂n(θ)

􏽘n

i=1

log {1 + λ⊤g(xi; θ)} − n
􏽘r

j=1

Pν(|λj|)

􏼢 􏼣

, (3) 

where λ = (λ1, . . . , λr)
⊤, and Pν(·) is a penalty function with the tuning parameter ν. Given a pen

alty function Pν(·) with the tuning parameter ν, we define ρ(t; ν) = ν−1Pν(t) for t ∈ [0, ∞) and 
ν ∈ (0, ∞). For Pν(·) in (3), we consider the following class of penalty functions:

P = {Pν(·) : ρ(t; ν) is increasing in t ∈ [0, ∞) and has continuous derivative

ρ′(t; ν) for any t ∈ (0, ∞) with ρ′(0+; ν) ∈ (0, ∞), where

ρ′(0+; ν) is independent of ν}.

(4) 

The class P is broad and general, encompassing commonly used penalty functions. Theorem 1 in 
Section 5.1 demonstrates that the PEL estimator θ̂n follows an asymptotically normal distribution 
and accommodates exponentially diverging r with respect to n.

To practically implement (3), we encounter a two-layer optimization problem for θ ∈ Θ and 
λ ∈ Rr. Let

fn(λ; θ) =
1
n

􏽘n

i=1

log {1 + λ⊤g(xi; θ)} −
􏽘r

j=1

Pν(|λj|). (5) 

Since n−1􏽐n
i=1 log {1 + λ⊤g(xi; θ)} is concave in λ, the inner optimization layer of (3), which seeks λ 

given θ by maximizing fn(λ; θ), can be efficiently implemented even for large r when Pν(·) is chosen 
as a convex function, such as the L1 penalty. The main challenge is the outer optimization layer of 
(3), which seeks the optimizer θ̂n. This is difficulty due to the nonconvex nature of the problem, 
making it NP-hard to find global minima (Jain & Kar, 2017). As a result, this complexity often 
leads to computational inefficiency and a higher likelihood of converging to local optima.

2.2 Bayesian penalized empirical likelihood
We are motivated to explore an alternative approach using sampling techniques to solve the non
convex problem associated with PEL. Indeed, as an efficient alternative for addressing nonconvex 
optimization problems, Ma et al. (2019) has demonstrated that solving these issues with MCMC 
techniques can yield highly effective results. Their findings indicate that the computational com
plexity of sampling algorithms exhibits linear scalability with the model dimension, in contrast 
to the exponential scaling of optimization algorithms in nonconvex settings.
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Applying sampling techniques to EL in conjunction with a Bayesian framework emerges as a 
compelling approach. For EL(θ) defined as (1), let π0(·) represent a prior distribution for θ. 
Then, the posterior distribution π(θ | Xn) is proportional to π0(θ) × EL(θ). In cases where r and 
p are fixed constants, π(θ | Xn) converges to a Gaussian distribution with mean being the standard 
EL estimator θ̃n defined as (2). Consequently, when samples are successfully drawn from the pos
terior distribution, their sample mean can serve as an estimator for θ0.

As the model’s complexity increases, BEL faces challenges. In this study, we explore a scenario 
with high-dimensional model conditions (r ≫ n), while keeping p fixed. The flexibility by allowing 
large number r also brings significant challenges. For example, as demonstrated in Tsao (2004), as 
n→∞, P{EL(θ) = 0}→ 1 for any θ in a small neighbourhood of θ0 if r/n ≥ 0.5. Such degener
ation renders EL(θ) inapplicable in this scenario. To handle diverging r, we propose to replace 
EL(θ) by

PELν(θ) = exp
􏼒

− n log n − max
λ∈Λ̂n(θ)

􏼔􏽘n

i=1

log {1 + λ⊤g(xi; θ)} − n
􏽘r

j=1

Pν(|λj|)
􏼕􏼓

, (6) 

where Pν(·) is a penalty function with the tuning parameter ν. Since adding the penalty term Pν(·) 
encourages sparse Lagrange multiplier λ, the PEL effectively performs a selection of the model con
ditions at each given θ. We then consider the BPEL with a prior distribution π0(·), which leads to a 
posterior distribution defined as

π†(θ | Xn) ∝ π0(θ) × PELν(θ) × I(θ ∈ Θ). (7) 

Our BPEL connects with and differs from the so-called Gibbs posterior in the literature of Bayesian 
methods (Bissiri et al., 2016; Tang & Yang, 2022). On one hand, they share a common foundation 
with the Gibbs posterior in that both are built upon generic loss functions. The key difference lies 
in the device each utilizes: EL employs an appropriate multinomial likelihood, (p1, . . . , pn) with 
pi ≥ 0 and 

􏽐n
i=1 pi = 1, subject to a broad class of model conditions. In contrast, the Gibbs poster

ior uses a ‘pseudo-likelihood’ proportional to the exponential loss. Furthermore, the inclusion of 
the penalty on the Lagrange multiplier helps achieve substantial dimension reduction of the prob
lem, which is key in handling high-dimensional problems with many moment conditions. As 
shown in our numerical studies in Section 3 and Section A.3 (online supplementary material), 
MCMC schemes developed from the proposed BPEL demonstrate compelling performance in 
their finite sample accuracy in approximating the posterior distributions.

Our theory, as elaborated in Section 5.2, establishes the fundamental properties of BPEL. 
Theorem 2 in Section 5.2 demonstrates that the posterior distribution π†(θ | Xn) defined as (7) ex
hibits a Gaussian limiting distribution centred around the PEL estimator θ̂n as defined in (3). 
Additionally, we define the expected value as

Eθ∼π†(θ) = ∫
Rp θπ†(θ | Xn) dθ. (8) 

Corollary 1 in Section 5.2 suggests that θ̂n can be effectively approximated by Eθ∼π†(θ) with an 

approximation error that diminishes faster than n−1/2. This validates the approach to obtain θ̂n: 

generating samples from the posterior distribution π†(θ | Xn) and then using the associated sample 
mean to approximate θ̂n. In Section 2.3, we will introduce two algorithms designed for implement
ing BPEL.

The impact of prior specification on the properties of resulting estimators is a notable area of 
research. For instance, Vexler et al. (2014) explores this in the context of EL. In various scenarios, 
the choice of prior can enhance desirable properties of the estimator derived from the posterior 
distribution, such as sparsity, as discussed in Narisetty and He (2014), Castillo et al. (2015), 
and Ouyang and Bondell (2023). Given the two primary goals of our study—developing BPEL 
and investigating it with MCMC—we use a noninformative prior in our numerical demonstra
tions. As detailed in Section A.1 (online supplementary material), we examined the effects of dif
ferent prior specifications. The overall finding is intuitive: when the prior is specified closer to the 
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true value, the resulting estimator performs better compared to using a noninformative prior. 
Conversely, if the prior is specified further from the true value, the performance of the estimator 
deteriorates and becomes less competitive.

2.3 MCMC algorithms

2.3.1 Algorithm 1
In recent decades, MCMC sampling methods have achieved significant success and have garnered 
influential applications across diverse fields. For an extensive overview of this body of work, we 
refer to the monograph by Brooks et al. (2011) and reference therein. The M-H algorithm family 
plays a central role in the practical implementation of MCMC techniques, serving as a cornerstone 
in the toolbox of statisticians and data scientists.

Our first algorithm explores the utilization of the M-H algorithm for BPEL. To accomplish this, 
we begin by specifying a proposal distribution with a density function denoted as ϕ( · |x), where 
x ∈ Rp. Subsequently, we employ the M-H algorithm to generate samples from the posterior dis
tribution π†(θ | Xn), as defined in (7). The specific steps for this process are detailed in Algorithm 1.

At each iteration k, Algorithm 1 begins with a state θk ∈ Θ. In the proposal step, it generates a 
new parameter ϑk+1 from the proposal distribution centred at θk, denoted by ϕ( · | θk). Following 
this, in the accept-reject step, Algorithm 1 decides whether to accept ϑk+1 with a probability de
noted as αk+1. This crucial step ensures that the Markov chain, guided by Algorithm 1, remains 
within the valid parameter space Θ. Consequently, it expedites the convergence of the resulting 
chain towards its stationary distribution, which is the posterior distribution π†(θ | Xn). There exist 
various approaches for selecting the proposal distribution with density ϕ( · | · ), including methods 
like the symmetric Metropolis algorithm, random walk M-H, and the independence sampler, as 
detailed by Roberts and Rosenthal (2004).

2.3.2 Algorithm 2
Another widely used MCMC technique is importance sampling (Hesterberg, 1995; Ripley, 2006). 
This method involves generating samples from a proposal distribution and then applying import
ance weights to these samples to account for the disparities between the proposal distribution and 
the target distribution. In practical applications, recycling successive samples often proves to be an 
effective strategy (Marin et al., 2019), particularly when the computation of importance weights is 
computationally intensive. In this context, Cornuet et al. (2012) introduces the AMIS algorithm, 
which combines various importance sampling methods with adaptive techniques. The integration 

Algorithm 1 M-H algorithm to generate samples from π†(θ | Xn)

Input: the proposal distribution with density ϕ(· | ·), the number of iteration K, an initial point θ0 ∈ Θ.

for k = 0, 1, . . . , K − 1 do

Proposal step:

generate ϑk+1 from the proposal distribution with density ϕ(ϑ | θk).

Accept-reject step:

compute

αk+1 =
min

􏼚

1, π†(ϑk+1 | Xn)ϕ(θk | ϑk+1)

π†(θk | Xn)ϕ(ϑk+1 | θk)

􏼛

, if ϑk+1 ∈ Θ with π†(θk | Xn)ϕ(ϑk+1 | θk) ≠ 0 ,

1 , if ϑk+1 ∈ Θ with π†(θk | Xn)ϕ(ϑk+1 | θk) = 0 ,

0 , if ϑk+1 ∉ Θ.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

generate u ∼ U(0, 1).

if u ≤ αk+1, then θk+1 ← ϑk+1, else θk+1 ← θk.

end for

Output: θ1, . . . , θK.
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of the AMIS approach with EL, as shown in Mengersen et al. (2013), is particularly compelling. To 
ensure the consistency of AMIS, Marin et al. (2019) introduces a modified variant called modified 
AMIS (MAMIS) with a simpler recycling strategy compared to AMIS.

We present and investigate an MAMIS algorithm, as outlined in Algorithm 2, specifically 
designed for computing BPEL. This algorithm operates in a scenario where a density function 
φ( · ; ζ) is defined, with ζ representing a parameter in Rs, and where an explicit function 
h : Rp 7! Rs is known. This configuration allows us to generate weighted samples that effectively 
capture the characteristics of the posterior distribution π†(θ | Xn), as defined in (7).

Algorithm 2 generates a sequence of samples while progressively adjusting the parameter ζ ∈ Rs 

involved in the proposal distribution. At each iteration k of Algorithm 2, the new value for the par
ameter ζ of the proposal distribution is determined based on the most recent Nk samples drawn. 
This represents the primary distinction between the MAMIS algorithm by Marin et al. (2019) and 
the AMIS algorithm by Cornuet et al. (2012). Specifically, MAMIS updates the proposal distribu
tion parameter using only the last Nk samples at iteration k, while AMIS updates this parameter by 
considering all past 

􏽐k
j=1 Nj samples. The end product output of Algorithm 2 is generated by up

dating the importance weights for all samples produced during the recycling process.

2.4 Sampling vs. optimizations
We advocate the utilization of sampling techniques as a practical and efficient alternative to opti
mization methods for addressing computationally challenging PEL problems. Specifically for ob
taining the estimator θ̂n as defined in (3), we can rely on samples θ1, . . . , θK generated from the 
M-H algorithm (see Algorithm 1), estimating Eθ∼π†(θ), as defined in (8), by computing the sample 
mean, i.e. K−1􏽐K

k=1 θk. When employing the MAMIS algorithm (see Algorithm 2) and completing 
K iterations, the estimator for Eθ∼π†(θ) is determined as a weighted average:

􏽢E
π†,K

(θ) =
1
SK

􏽘K

k=1

􏽘Nk

i=1

ωk
i θk

i , (9) 

where SK = N1 + · · · + NK.

Algorithm 2 An MAMIS algorithm to generate the weighted samples with respect to π†(θ | Xn)

Input: the proposal distribution admits density φ(· ; ζ) with the parameter ζ ∈ Rs, an initial parameter ζ̂1, an 
explicitly known function h : Rp 7! Rs, the number of iteration K and the increasing sampling sizes

{N1, . . . , NK}.

for k ∈ [K] do

for i ∈ [Nk] do

Proposal step:

generate θk
i from the proposal distribution with density φ(θ ; ζ̂k).

compute the importance weight ωk
i = π†(θk

i | Xn)/φ(θk
i ; ζ̂k).

end for

update the parameter of the proposal distribution: ζ̂k+1 = N−1
k

􏽐Nk
i=1 ωk

i h(θk
i ).

end for

for k ∈ [K] do

for i ∈ [Nk] do

Recycling process:

update the importance weight ωk
i = π†(θk

i | Xn)/{S−1
K

􏽐K
l=1 Nlφ(θk

i ; ζ̂ l)} with SK = N1 + · · · + NK

if θk
i ∈ Θ.

end for

end for

Output: the weighted samples (θ1
1, ω1

1), . . . , (θ1
N1

, ω1
N1

), . . . , (θK
1 , ωK

1 ), . . . , (θK
NK

, ωK
NK

).
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Our theory in Section 5.2 supports the use of sampling algorithms as efficient alternatives. For 
the M-H algorithm, Theorem 3 in Section 5.2 demonstrates that, conditional on Xn, the average 
K−1􏽐K

k=1 θk converges almost surely to Eθ∼π†(θ) as K→∞. For the MAMIS algorithm, 

Theorem 4 in Section 5.2 establishes that, conditional on Xn, 􏽢Eπ†,K(θ) in (9) converges almost sure

ly to Eθ∼π†(θ) as K→∞. These results, combined with Corollary 1 in Section 5.2, validate the 
properties of BPEL estimators obtained through these established sampling techniques. Another 
consideration in Algorithms 1 and 2 is the choice of the initial point, denoted, respectively, as 

θ0 and ζ̂1. Our theoretical analyses only require θ0 ∈ Θ satisfying π†(θ0 | Xn) > 0 and do not im
pose any restriction on ζ̂1; see Theorems 3 and 4 in Section 5.2 for details. Our empirical simula
tion studies in Section 3 consistently demonstrate the proposed algorithms’ robust performance, 
irrespective of the initial value chosen. Notice that the performance of the optimization methods 
for the nonconvex optimization problems usually depends crucially on the choice of the initial 
point. The combination of theoretical analysis and empirical evidence underscores that, in com
parison to competing optimization methods, these sampling-based approaches offer significant 
advantages in terms of convergence speed, stability across replications, and resilience to variations 
in initial values. This reaffirms the benefits of incorporating BPEL into the methodology.

The M-H and MAMIS algorithms each have their strengths. M-H is easy to implement, but high 
rejection rates can reduce its efficiency, especially with a poorly tuned proposal distribution. 
MAMIS, while requiring more effort—particularly in computing importance weights—offers im
proved sampling efficiency and is less sensitive to the proposal distribution, making it ideal for 
complex posterior distributions. Choosing between these algorithms depends on the specific prob
lem and the balance between implementation ease and sampling efficiency.

3 Numerical studies
3.1 Data generation process
We conduct simulation studies to empirically assess the performance of our proposed methods. 
For the DGP, we adopt the structural equation yi = h− (u⊤

i θ0) + e(0)
i , i ∈ [n], where h− : R 7! R is a 

continuous function, e(0)
i is the error, and ui = (ui,1, ui,2)⊤ represents two endogenous variables. 

The set of all instrumental variables (IVs) is denoted as zi = (zi,1, . . . , zi,r)
⊤ for i ∈ [n]. The true 

reduced-form equations for the endogenous variables are specified as ui,1 = 0.5zi,1 + 0.5zi,2 + 
e(1)

i and ui,2 = 0.5zi,3 + 0.5zi,4 + e(2)
i , where (e(1)

i , e(2)
i ) represents the random errors. Essentially, 

each of the two endogenous variables is influenced by only two IVs. All IVs are selected orthogonal 
to the error term e(0)

i . Hence, we have E{yi − h− (u⊤
i θ0) | zi} = 0, which implies that θ0 can be identi

fied by the r unbiased moment conditions E{g(xi; θ0)} = 0, where g(xi; θ) = {yi − h− (u⊤
i θ)}zi with 

xi = (yi, u⊤
i , z⊤

i )⊤. In the DGP, we generate zi ∼ N (0, Ir), and

e(0)
i

e(1)
i

e(2)
i

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ ∼ N

0

0

0

⎛

⎜
⎝

⎞

⎟
⎠,

0.43 0.3 0.3

0.3 0.34 0.09

0.3 0.09 0.34

⎛

⎜
⎝

⎞

⎟
⎠

⎛

⎜
⎝

⎞

⎟
⎠.

We set θ0 = (0.5, 0.5)⊤ and consider two selections for the link function h− (·): (i) the linear case 
with h− (v) = v, and (ii) the nonlinear case with h− (v) = sin v.

3.2 Sampling efficiency and stability
We begin by demonstrating the improvement in sampling efficiency achieved through the use of 
PEL. In this context, we generate data following the DGP with linear link function h− (·) by setting 
n = 120 and varying r in the range [50, 1,000]. We aim to sample from two posterior distributions 
π0(θ) × EL(θ) and π0(θ) × PELν(θ), where EL(θ) and PELν(θ) are, respectively, given in (1) and (6). 
Evaluating PELν(θ) involves an optimization problem that solves for λ by maximizing the objective 
function fn(λ; θ) defined as (5) at given θ. To ensure the attainment of a sparse Lagrange multiplier 
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and maintain the convexity of the objective function, we select Pν(·) as the L1 penalty function. In 
practice, since the prior information about the true parameter θ0 is typically unavailable, we select 
π0(·) as the improper uniform prior. We implement Algorithm 1 to sample from both posterior dis
tributions using identical settings, employing a proposal distribution N (θ, σ2Ip) with σ2 = 10−4 

and initializing from θ0 = (0.3, 0.3)⊤. In the case of PEL, we set the tuning parameter ν = 0.03 in
volved in PELν(θ).

To compare efficiency, we measure the number of iterations required to obtain the same number 
of accepted samples. Figure 1 illustrates the average number of iterations needed over 500 runs to 
accept five samples for different values of r, thereby providing a comparison between using EL and 
PEL within a Bayesian framework. The sampling efficiency of Algorithm 1 when using PELν(θ) is 
notably superior to that achieved with EL(θ). The selection of σ2 within the proposal distribution 
closely influences the acceptance rate in each step of the M-H algorithm. With our small choice of 
σ2 in the simulation, the M-H algorithm should efficiently generate valid samples. It is worth high
lighting that the acceptance rate remains consistently high and stable when using PEL across all r 
settings. In contrast, when employing EL without any penalty, it may require thousands more iter
ations to achieve the same number of accepted samples. Additionally, it is evident that the M-H 
algorithm with EL becomes increasingly unstable as r increases.

3.3 Comparison with the optimization methods
As we suggested in Section 2.3, the computation of the PEL estimator θ̂n defined as (3) can be im
plemented using Algorithm 1 (referred to as M-H) and Algorithm 2 (referred to as MAMIS). In this 
part, we compare their performance with two optimization methods: (a) optim: A versatile R func
tion for general-purpose optimization of objective functions, supporting various optimization al
gorithms like Nelder–Mead, quasi-Newton, and conjugate-gradient; and (b) nlm: An R function 
specialized in nonlinear optimization, particularly designed for finding minima of objective func
tions using Newton-type algorithms.

The choice of the proposal distribution plays a crucial role in achieving efficient sampling with 
BPEL. Within the context of the M-H algorithm, one commonly used scheme is the random walk 
M-H, where the proposal distribution takes the form of a Gaussian distribution N (θ, σ2Ip) with 
the current state denoted as θ. It is essential to carefully select an appropriate value for σ2. A small 
value for σ2 can result in slow exploration of the state space, while a large value can lead to de
creased acceptance rates, subsequently slowing down the algorithm. To strike a balance between 
exploration and acceptance rates, we can monitor the acceptance rate of the algorithm. In the 
simulation for M-H, we set σ2 = C(n log r)−1 with some constant C > 0. We adjust the value of 
C until the acceptance rate closely matches the desired rate, typically aiming for ∼ 0.234, as sug
gested in Gelman et al. (1997). It is known that the M-H algorithm requires some time to converge 
to its stationary distribution, especially when the initial point θ0 ∈ Θ is situated in the tails of the 

Figure 1. The average number of iterations over 500 runs required to obtain five valid samples.
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posterior distribution π†(θ | Xn). Considering this, we set a burn-in period of 500 iterations. For 
the MAMIS algorithm, we adhere to recommendations from Cornuet et al. (2012) and 
Mengersen et al. (2013) that advocate for the adoption of T 3(μ, Σ) as the proposal distribution. 
During each iteration k of MAMIS, we calculate the updated value ζ̂k+1 = {μ̂⊤

k+1, vech(􏽢Σk+1)⊤}⊤ 

for the parameter vector ζ = {μ⊤, vech(Σ)⊤}⊤ involved in the proposal distribution T 3(μ, Σ) as 
μ̂k+1 = N−1

k

􏽐Nk
i=1 ωk

i θk
i and vech(􏽢Σk+1) = N−1

k

􏽐Nk
i=1 ωk

i vech{(θk
i − μ̂k+1)(θk

i − μ̂k+1)⊤}, where ωk
i rep

resents the corresponding importance weights, as outlined in Algorithm 2. In our simulations, we 
initialize 􏽢Σ1 = Ip, and the selection of μ̂1 is described in the next paragraph.

We conduct 200 replications following the DGP and explore various combinations of dimen
sionalities. Specifically, we consider n ∈ {120, 240} and r ∈ {80, 160, 320, 640}. To assess the ro
bustness of these methods with respect to initial points, we select 49 equally spaced grid points on 
the plane within the range of [−3, 4] × [−3, 4] as our chosen initial points. In the case of MAMIS, 
which is not an iterative algorithm, we set these initial points as the initial means μ̂1 for its proposal 
distribution T 3(μ, Σ) to facilitate comparison. In our simulations, we identify the true global min
ima θ̂n defined as (3) through exhaustive search. To achieve this, in each replication of the simu
lation (indexed by k), we generate a grid of 10,201 equally spaced points within the range 
[−0.5, 1.5] × [−0.5, 1.5]. We then compute the posterior probabilities for these points and se
lected θmode

k as the point with the highest probability. Since π0(·) is selected as the improper uniform 
prior, θmode

k is actually the required true global minima in the kth replication. We repeat this pro
cess for k = 1 to 200, and compare the outcomes obtained from both optimization and sampling 
methods by calculating the measure

MSE1 =
1

200 × 49

􏽘200

k=1

􏽘49

l=1

|θ̌k(l) − θmode
k |22.

Here, θ̌k(l) represents the related outcome in the kth replication initiated from the lth initial point.
In the context of BPEL sampling, we explore three scenarios with varying sample sizes of 1,500, 

2,500, and 3,500, which we label as (M-H-1, M-H-2, and M-H-3) and (MAMIS-1, MAMIS-2, 
and MAMIS-3), respectively, for Algorithms 1 and 2. Additionally, we conduct an investigation 
into the influence of different values for the tuning parameter ν. Table 1 presents the simulation 
results. The overall performance of the sampling approaches surpasses that of the optimization 
methods. Notably, for the nonlinear model, the optimization using the R function nlm is proven 
to be unreliable, resulting in highly unstable results. As the size of the generated samples increases, 
the performance of BPEL improves. Both M-H and MAMIS exhibit promising performance in 
both linear and nonlinear cases. For the nonlinear models, MAMIS significantly outperforms 
M-H, possibly owing to the advantages gained from employing importance weights for parameter 
estimation. The role of the tuning parameter ν is pivotal, underscoring the merits from using the 
PEL approach in achieving more parsimonious models by effectively selecting most useful model 
conditions within the constraints of the available data information. When using very small values 
of ν, such as 0.01, the performance of the methods becomes less satisfactory. Overall, the BPEL 
performs satisfactorily for a reasonable range of choices for ν.

3.4 Comparison with competing methods
In this part, we compare the PEL estimator θ̂n defined as (3) with two other estimators: the stand
ard EL estimator θ̃n defined as (2) and the relaxed EL (REL) estimator introduced by Shi (2016). 
The REL is tailored for high-dimensional estimating equations, making it resilient to minor 
deviations from the equality constraints. Notice that the standard EL can only work for low- 
dimensional estimating equations. In line with our model specifications, where the two endogen
ous variables ui,1 and ui,2 are linked to IVs (zi,1, zi,2 and zi,3, zi,4, respectively) for each i ∈ [n], we 
only use the first four moment conditions, that are related to the IVs zi,1, zi,2, zi,3, and zi,4, to pro
duce the standard EL estimator θ̃n. The computation of θ̃n can be implemented by the function gel
in the R-package gmm. For both our PEL estimator θ̂n and the REL estimator, we use all the r mo
ment conditions.
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For the selection of the tuning parameter in the REL estimator, we follow the recommendation 
in Shi (2016), using a consistent tuning parameter 0.5n−1/2( log r)1/2 throughout the simulations. 
Regarding the tuning parameter ν in our BPEL, we employ the Bayesian information criterion 
(BIC) defined as

BIC(ν) = log
􏼚

1
r

􏼌
􏼌
􏼌
􏼌
1
n

􏽘n

i=1

g(xi; θ̂(ν)
n )
􏼌
􏼌
􏼌
􏼌

2

2

􏼛

+ |R(ν)
n |n

−1 log n (10) 

for its selection, where θ̂(ν)
n denotes the associated PEL estimator with tuning parameter 

ν calculated by our proposed sampling algorithm, and R(ν)
n = supp{λ̂(θ̂(ν)

n )} with λ̂(θ̂(ν)
n ) = 

(λ̂(ν)
1 , . . . , λ̂(ν)

r )⊤ = arg maxλ∈Λ̂n(θ̂(ν)
n ) fn(λ; θ̂(ν)

n ) with fn(λ; θ) defined as (5). In practice, we set R(ν)
n = 

{j ∈ [r] : |λ̂(ν)
j | > 10−6} and restrict ν in the interval [0.05n−1/2( log r)1/2, 0.75n−1/2( log r)1/2].

For the same 49 initial points of the 200 replications mentioned in Section 3.3, we calculate the 
measure

MSE2 =
1

200 × 49

􏽘200

k=1

􏽘49

l=1

|θ̌k(l) − θ0|
2
2 

to evaluate the performance of different estimators, where θ̌k(l) is the related estimator in the kth 
replication initiated from the lth initial point. Table 2 compares the measure MSE2 for the three 
estimators: the PEL estimator (MAMIS, M-H), the standard EL estimator, and the REL estimator. 
The results for M-H and MAMIS are derived based on the generated samples of size 3,500. It be
comes clear that BPEL demonstrates substantial performance improvements, clearly establishing 
its superiority over the other estimation methods. Particularly noteworthy is the effectiveness of 
MAMIS in addressing the challenges posed by nonlinear estimating equations, showing its prom
ising performance.

3.5 Additional numerical studies
We provide additional simulation studies in the online supplementary material. Section A.1 exam
ines the impact of prior specification. Section A.2 evaluates the performance of our method using 
an alternative DGP with data from a Student’s t-distribution instead of a normal distribution. 
Section A.3 assesses the finite sample accuracy of the MCMC algorithms in approximating the 
posterior distribution. Section A.4 compares the posterior distributions resulting from different 
Bayesian EL formulations. Section A.5 presents the comparison between our method and two 
competing methods: approximate Bayesian computation and Bayesian synthetic likelihood. 
Overall, our findings confirm the highly competitive performance of the proposed BPEL with 

Table 2. Comparison of Bayesian penalized empirical likelihood and other estimators

h− (v) = v h− (v) = sin v

n Methods r = 80 r = 160 r = 320 r = 640 r = 80 r = 160 r = 320 r = 640

120 MAMIS 0.0080 0.0096 0.0096 0.0114 0.0963 0.0829 0.0661 0.0620

M-H 0.0086 0.0108 0.0118 0.0140 6.8664 7.4009 6.8831 7.2457

EL 59.8762 58.7258 60.5130 60.0313 13.9942 14.0453 14.2512 14.4454

REL 8.6108 8.8342 8.8781 9.2086 18.1845 18.5454 18.5858 18.9122

240 MAMIS 0.0036 0.0044 0.0047 0.0055 0.1417 0.1200 0.1069 0.1136

M-H 0.0039 0.0048 0.0051 0.0061 13.1962 13.6146 12.9027 13.0548

EL 57.9585 57.3146 57.5111 57.6992 14.0103 13.8869 14.0533 14.3296

REL 8.2303 8.1680 8.1674 7.8542 19.3646 19.6221 19.9443 20.0887
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the MCMC framework in terms of finite sample performance and accuracy in approximating the 
posterior distributions.

4 Real data analysis
International trade refers to the cross-border exchange of capital, commodities, and services be
tween nations or regions. This type of trade typically constitutes a substantial portion of a coun
try’s gross domestic product (GDP). Eaton et al. (2011), hereafter referred to as EKK, combined an 
empirical model with microeconomic principles to analyse France’s international trade patterns. 
Additionally, Shi (2016) utilized EKK’s microeconomic model to derive parameter estimates for 
Chinese exporting companies. In this section, we reexamine the dataset previously examined in 
Shi (2016), employing the proposed BPEL approach.

The model proposed by EKK comprises five parameters denoted as θ = (θ1, . . . , θ5)⊤ ∈ Θ. The 
first component, θ1, characterizes the distribution of production efficiency among firms, with a 
higher θ1 indicating a larger proportion of manufacturers with lower efficiency. The second com
ponent, θ2, quantifies the cost associated with accessing a fraction of potential buyers, where a 
higher θ2 corresponds to lower costs. Parameters θ3, θ4, and θ5 represent the standard deviation 
of the demand shock, the standard deviation of the entry cost shock, and the correlation coefficient 
between these two shocks, respectively. Each firm is identified by the index i ∈ [n], while countries 
are represented by the index j ∈ {0} ∪ [r], with j = 0 denoting the home country.

According to the EKK’s model, the sales of firm i in country j is specified as 
Zi,j(θ; e(1)

i,j , e(2)
i,j , e(3)

i ) = κZ̅j(1 − τi,j)
θ2/θ1 τ−1/θ1

i,j a(1)
i,j /a

(2)
i,j , where a(1)

i,j = exp {θ3(1 − θ2
5)1/2e(1)

i,j + θ3θ5e(2)
i,j }, 

a(2)
i,j = exp {θ4e(2)

i,j }, τi,j = min {1, e(3)
i u̅ i/u̅i,j} and

κ =
􏼒

θ1

θ1 − 1
−

θ1

θ1 + θ2 − 1

􏼓

exp
􏼚

1
2

(
θ3 − θ2

1θ2
4

􏼁
+ θ3θ4θ5(θ1 − 1) +

1
2

θ4(θ1 − 1)2
􏼛

with u̅i,j = (a(2)
i,j )θ1 Nj and u̅i = min {u̅i,0, max j∈[r] u̅i,j}, and (Z̅j, Nj) j∈{0}∪[r] are known constants. 

Here e(1)
i,j ∼ N (0, 1), e(2)

i,j ∼ N (0, 1) and e(1)
i ∼ U(0, 1) are mutually independent. Furthermore, 

Zi,j(θ; e(1)
i,j , e(2)

i,j , e(3)
i ) = 0 means that the firm i is kept outside of the country j. As a pertinent 

economic indicator of our interest, the mean sale of all firms in country j is defined as 
μj(θ) = E{Zi,j(θ; e(1)

i,j , e(2)
i,j , e(3)

i )}, where the expectation is taken respect to the random variables 

{e(1)
i,j , e(2)

i,j , e(3)
i }. The dataset is sourced from the Chinese administrative databases, encompassing 

a total of n = 6,754 firms and their export data to r = 126 foreign destination countries in 
2006. Leveraging this dataset, we can obtain the r-dimensional estimating function 
g(xi; θ) = {g1(xi; θ), . . . , gr(xi; θ)}⊤, i ∈ [n], with xi = (xi,1, . . . , xi,r)

⊤, and gj(xi; θ) = xi,j − μj(θ) 
for any j ∈ [r] and θ ∈ Θ, where xi,j is the sale of firm i in country j from this dataset (j = 0 is 
not considered in this dataset).

Since the model is highly nonlinear with respect to θ ∈ Θ, resulting in no closed-form expression 
for μj(θ), we approximate it via numerical simulation (Eaton et al., 2011; Shi, 2016). Specifically, in 
the estimation, we utilize the ‘artificial data’ for another 5n = 33,770 firms from the dataset. This 
involves simulating the entry decisions and sales across various countries for each of these artificial 
firms. Subsequently, we calculate sample means to approximate μj(θ) for any j ∈ {0} ∪ [r] and 
θ ∈ Θ. We generated samples of size 3,500 from the posterior distribution for the BPEL. To select 
the tuning parameter ν, we employed the BIC as defined in (10). For the parameter space Θ, we 
adopted a compact range of values, specifically Θ = [1.5, 10] × [0.5, 5] × [0.1, 5] × [0.1, 5] × 
[−0.9, 0.9], which is consistent with the economic context and aligns with the study of Shi 
(2016). To initiate the analysis, we selected 15 samples uniformly distributed within the parameter 
space Θ. Figure 2 presents the box-plots of the corresponding 15 estimates obtained by M-H and 
MAMIS from these initial values. The results for the REL with the same initial values are also in
cluded for comparative evaluation.

It is evident that for all five parameters, MAMIS exhibits the smallest variations in the resulting 
estimates, whereas the variations of M-H and REL are relatively similar. This consistency with the 
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findings in Sections 3.3 and 3.4 reaffirms the robustness of MAMIS when considering different ini
tial points. Such robustness is desirable for conducting more in-depth analyses. For instance, let 
us take θ5 into consideration which represents the correlation coefficient between the demand 
shock and the entry cost shock. The sign of its estimate carries the key implication. The 15 esti
mates of θ5 obtained by REL and M-H, from different initial values, fall within the ranges of 
(−0.8738, 0.8507) and (−0.8774, 0.8996), respectively. In contrast, the estimates of θ5 by MAMIS 
range in (−0.7978, 0.1329), with the majority being negative, signalling a more assuring result.

We then proceed to examine the specific moments selected by the respective methods. For REL, 
we employ the greedy algorithm outlined in Section 3.2 of Shi (2016). To assess the effectiveness of 
moment selection, we validate whether or not the top 10 trading partners of China in terms of ex
port volume in this dataset, including the USA, Japan, Germany, etc., are either selected or partial
ly selected. We find that, although REL selects at least some of these countries for 10 out of the 15 
initial values, the number of selected countries does not exceed 3. In contrast, for 13 out of the 15 
initial values, M-H identifies at least some of these countries, with 9 of them including more than 
3. In the case of MAMIS, 13 out of the 15 initial values result in the identification of some of these 
countries, and all of them include more than 3 countries. Additionally, the robustness of MAMIS 
with respect to the initial points provides enhanced reliability in this context.

5 Theoretical analysis
We introduce some additional notation first. For simplicity, write En(·) = n−1􏽐n

i=1 ·. For a q × q 
symmetric matrix A, denote by λmin(A) and λmax(A) the smallest and largest eigenvalues of A, 
respectively. For a q1 × q2 matrix B = (bi,j)q1×q2

, let |B|∞ = maxi∈[q1],j∈[q2] |bi,j| be the super-norm. 

For the r-dimensional estimating function g(· ; ·) = {g1(· ; ·), . . . , gr(· ; ·)}
⊤ and p-dimensional 

parameter θ = (θ1, . . . , θp)⊤, let ∇θg(· ; θ) = {∂gj(· ; θ)/∂θk} j∈[r],k∈[p], an r × p matrix, be the first- 

order partial derivative of g(· ; θ) with respect to θ. Let V(θ) = E{g(xi; θ)⊗2} and Γ(θ) = 
E{∇θg(xi; θ)} for any θ ∈ Θ. For a given index set F , let |F| be its cardinality. Denote by gF (· ; ·) 
the subvector of g(· ; ·) collecting the components indexed by F . Let VF (θ) = E{gF (xi; θ)⊗2} and 
ΓF (θ) = E{∇θgF (xi; θ)}. Analogously, we also write aF as the corresponding subvector of vector 

Figure 2. The box-plots of the estimated points.
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a. For any two probability measures μ and ν, denote by DTV(μ, ν) the total variation distance 
between μ and ν.

5.1 Properties of the penalized empirical likelihood estimator
To investigate the asymptotic properties of θ̂n in (3), we assume some regularity conditions.

Condition 1 For any ε > 0, it holds that

inf
θ∈Θ: |θ−θ0|∞>ε

|E{g(xi; θ)}|∞ ≥ Δ(ε), 

where Δ(·) is a nonnegative function satisfying lim infε→0+ ε−1Δ(ε) ≥ K1 for 
some universal constant K1 > 0.

Condition 2 (a) There exist universal constants K2 > 0 and γ > 4 such that

max
j∈[r]

E

􏼚

sup
θ∈Θ
|gj(xi; θ)|γ

􏼛

≤ K2 

and supθ∈Θ max j∈[r] En{|gj(xi; θ)|γ} = Op(1). (b) There exist universal con
stants 0 < K3 < K4 such that K3 < λmin{V(θ0)} ≤ λmax{V(θ0)} < K4. (c) For 
any x and j ∈ [r], gj(x; θ) is twice continuously differentiable with respect 
to θ ∈ Θ satisfying

sup
θ∈Θ

max
j∈[r],k∈[p]

En

􏼚􏼌
􏼌
􏼌
􏼌
∂gj(xi; θ)

∂θk

􏼌
􏼌
􏼌
􏼌

2􏼛

= Op(1)

= sup
θ∈Θ

max
j∈[r],k1,k2∈[p]

En

􏼚􏼌
􏼌
􏼌
􏼌
∂2gj(xi; θ)
∂θk1

∂θk2

􏼌
􏼌
􏼌
􏼌

2􏼛

.

Detailed discussion on Conditions 1 and 2 are given in Section B (online supplementary 
material). For any θ ∈ Θ, define

M∗θ = {j ∈ [r] : |En{gj(xi; θ)}| ≥ C∗νρ′(0+)} 

for some C∗ ∈ (0, 1). We assume the existence of a sequence ℓn →∞ such that

P

􏼒

sup
θ∈Θ : |θ−θ0|2≤cn

|M∗θ| ≤ ℓn

􏼓

→ 1 

as n→∞, with some cn → 0 satisfying νc−1
n → 0. Proposition 1 shows that θ̂n is consistent to the 

true parameter θ0, allowing r growing exponentially with the sample size n.

Proposition 1 Let Pν(·) ∈ P be a convex function for P defined as (4). Under Conditions 
1, 2(a) and 2(b), if log r ≪ n1/3 and ℓnn−1/2( log r)1/2 ≪ min {ν, n−1/γ}, then 
the PEL estimator θ̂n defined as (3) satisfies |θ̂n − θ0|∞ = Op(ν).

Proposition 1 establishes the consistency of the PEL estimator with diverging r, incorporating 
the impact of the penalty function. In particular, the convergence rate of θ̂n is ν, provided that 
the tuning parameter ν in (3) satisfies ν ≫ ℓnn−1/2( log r)1/2. As a result, the convergence rate of 
θ̂n is slower than n−1/2, which can be viewed as the price paid for using the penalty in handling 
exponentially growing dimensionality r.

Recall ρ(t; ν) = ν−1Pν(t). For Pν(·) ∈ P with P defined as (4), since ρ′(0+; ν) is independent of ν, 
we write it as ρ′(0+) for simplicity. Let Rn = supp{λ̂(θ̂n)} for the Lagrange multiplier λ̂(θ̂n) = 
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(λ̂1, . . . , λ̂r)
⊤ = arg maxλ∈Λ̂n(θ̂n) fn(λ; θ̂n) with fn(λ; θ) defined as (5). Then θ̂n and λ̂(θ̂n) satisfy the 

score equation:

0 =
1
n

􏽘n

i=1

g(xi; θ̂n)

1 + λ̂(θ̂n)⊤g(xi; θ̂n)
− η̂, (11) 

where η̂ = (η̂1, . . . , η̂r)
⊤ with η̂j = νρ′(|λ̂j|; ν)sgn(λ̂j) for λ̂j ≠ 0 and η̂j ∈ [−νρ′(0+), νρ′(0+)] for λ̂j = 0. 

Here, an effective drastic dimension reduction is achieved with the associated sparse λ̂(θ̂n). The use 
of the penalty function Pν(·) leads to η̂ in (11), an extra term compared to that of the conventional 
EL. While Pν(·) ensures the consistency of θ̂n as shown in Proposition 1, as we will show in 
Theorem 1 later, η̂ leads to a bias of the PEL estimator θ̂n.

We further remark that while penalizing the Lagrange multiplier in our PEL does effectively 
achieve the selection of moments, its properties in terms of the validity of the selected moments 
remain an interesting research question. On one hand, it is reasonable to expect that under appro
priate conditions and with a suitably chosen tuning parameter, our PEL may correctly select the set 
of valid moments. On the other hand, the major challenge lies in the ambiguity of defining valid 
moments when the corresponding moment functions are evaluated at broad candidate values of 
the model parameters rather than the truth. This consideration opens the door to a research ques
tion of its own interest in the context of moment selection that we are interested in investigating in 
our future research.

To study the asymptotic distribution of θ̂n, we need the following regularity conditions.

Condition 3 Let QF = ΓF (θ0)⊤,⊗2 for any index set F ⊂ [r]. There exist universal con
stants 0 < K5 < K6 such that K5 < λmin(QF ) ≤ λmax(QF ) < K6 for any index 
set F ⊂ [r] with p ≤ |F| ≤ ℓn.

Condition 4 (a) For the PEL estimator θ̂n defined as (3), there exists a constant c̃ ∈ (C∗, 1) 
such that

P

􏼔 􏽛

j∈[r]

{c̃νρ′(0+) ≤ |En{gj(xi; θ̂n)}| < νρ′(0+)}
􏼕

→ 0 

as n→∞. (b) It holds that

P

􏼔
􏽛

j∈Rc
n

{|η̂j| = νρ′(0+)}
􏼕

→ 0 

as n→∞.

Discussion of Conditions 3 and 4 are given in Section B (online supplementary material). Write 
􏽢VRn (θ̂n) = En{gRn

(xi; θ̂n)⊗2} and 􏽢ΓRn (θ̂n) = En{∇θgRn
(xi; θ̂n)}. Define

􏽢HRn = {􏽢ΓRn (θ̂n)⊤􏽢V−1/2
Rn

(θ̂n)}⊗2 and ψ̂Rn
= 􏽢H−1

Rn
􏽢ΓRn (θ̂n)⊤􏽢V−1

Rn
(θ̂n)η̂Rn

, (12) 

where η̂ = (η̂1, . . . , η̂r)
⊤ is specified in (11). We assume (r, ℓn, ν) satisfy the following restrictions:

log r ≪ min {n1/3, n(γ−2)/(2γ)}, ℓn ≪ min {n(γ−2)/(3γ)( log r)−2/3, n1/5( log r)−2/5},

and ℓnn−1/2( log r)1/2 ≪ ν ≪ ℓ−1/4
n n−1/4.

(13) 

The asymptotic distribution of θ̂n is stated in Theorem 1, where the bias term ψ̂Rn 
comes from the 

penalty function Pν(·) imposed on the Lagrange multiplier λ in (3).
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Theorem 1 Let Pν(·) ∈ P be convex with bounded second-order derivative around 0, 
where P is defined as (4). Assume Conditions 1–4 hold with (r, ℓn, ν) satisfy
ing (13). For any t ∈ Rp with |t|2 = 1, the PEL estimator θ̂n defined as (3) sat
isfies n1/2t⊤􏽢H1/2

Rn
(θ̂n − θ0 − ψ̂Rn

)→N (0, 1) in distribution as n→∞, where 
􏽢HRn and ψ̂Rn 

are defined in (12).

Here, the estimated bias ψ̂Rn 
can be easily calculated based on (12). Theorem 1 indicates that, 

upon correcting the bias by subtracting it from θ̂n, the resulting estimator θ̂n − ψ̂Rn 
will be 

��
n
√

-consistent and asymptotically normal.

5.2 Properties of the posterior distribution and algorithms
For the proposed BPEL, we establish the Bernstein–von Mises theorem for the posterior distribu
tion π†(θ | Xn), as defined in (7). Furthermore, we provide theoretical assurances for the perform
ance of Algorithms 1 and 2 in Section 2.3.

For any θ ∈ Θ, write R(θ) = supp{λ̂(θ)} with

λ̂(θ) = {λ̂1(θ), . . . , λ̂r(θ)}⊤ = arg max
λ∈Λ̂n(θ)

fn(λ; θ), 

where fn(λ; θ) is defined as (5). Then θ and λ̂(θ) satisfy the score equation:

0 =
1
n

􏽘n

i=1

g(xi; θ)

1 + λ̂(θ)⊤g(xi; θ)
− η̂(θ), (14) 

where η̂(θ) = {η̂1(θ), . . . , η̂r(θ)}⊤ with η̂j(θ) = νρ′{|λ̂j(θ)|; ν}sgn{λ̂j(θ)} for λ̂j(θ) ≠ 0 and η̂j(θ) ∈ 
[−νρ′(0+), νρ′(0+)] for λ̂j(θ) = 0. By the definition of the PEL estimator θ̂n, we have fn{λ̂(θ); θ} ≥ 
fn{λ̂(θ̂n); θ̂n} for any θ ∈ Θ. To investigate the asymptotic properties of the posterior distribution 

π†(θ | Xn) defined as (7), we need to first study ℵn(θ) = fn{λ̂(θ); θ} − fn{λ̂(θ̂n); θ̂n} for θ ∈ Θ. Given 
αn = n−1/2( log r)1/2 and βn > 0 satisfying ℓ1/2

n ν ≪ βn ≪ min {ℓ−1
n n−1/γ, ν2/3ℓ−2/3

n n−1/(3γ)}, we split 
the whole parameter space Θ into three regions: C1 = {θ ∈ Θ : |θ − θ̂n|2 ≤ αn}, C2 = {θ ∈ 
Θ : αn < |θ − θ̂n|2 ≤ βn} and C3 = {θ ∈ Θ : |θ − θ̂n|2 > βn}. Proposition 2 (online supplementary 
material) shows that the asymptotic behaviour of ℵn(θ) for θ in these three regions are different.

Investigating the asymptotic behaviour of ℵn(θ) calls some new technical arguments. Write

f̃ n(λ; θ) =
1
n

􏽘n

i=1

log {1 + λ⊤g(xi; θ)} and λ̃(θ) = arg max
λ∈Λ̂n(θ)

f̃ n(λ; θ). (15) 

When r is a fixed constant, we know 2n f̃ n{λ̃(θ); θ} is the conventional log-EL ratio in the literature. 
The asymptotic behaviour of 2n f̃ n{λ̃(θ); θ} depends on the magnitude of E{g(xi; θ)}. More specifical
ly, under some mild conditions, it holds that (i) 2n f̃ n{λ̃(θ); θ} is asymptotically χ2 distributed with de
gree of freedom r if |E{g(xi; θ)}|2 ≪ n−1/2, (ii) 2n f̃ n{λ̃(θ); θ} converges to a noncentral χ2 distribution 
if |E{g(xi; θ)}|2 ≍ n−1/2, and (iii) 2n f̃ n{λ̃(θ); θ} diverges to ∞ in probability if |E{g(xi; θ)}|2 ≫ n−1/2. 
See, for example, Proposition 1 and Theorem 1 of Chang et al. (2013) for such results with r = 1. In 
comparison to f̃ n(λ; θ) defined in (15), fn(λ; θ) involved in ℵn(θ) includes a penalty term imposed on 
the Lagrange multiplier λ. This makes the standard technique for analysing the conventional log-EL 
ratio inapplicable. To further establish the Bernstein–von Mises theorem for the posterior distribution 

π†(θ | Xn) defined as (7), we assume the following regularity conditions.

Condition 5 (a) There exists a constant c̅ ∈ (0, 1) such that

P

􏼚

sup
θ∈C1

max
j∈R(θ)c

|η̂j(θ)| ≤ c̅νρ′(0+)
􏼛

→ 1 
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as n→∞, where η̂j(θ) is specified in (14). (b) There exists κn > 0 satisfying 

max {ℓ1/2
n n−1/2( log r)1/2, ℓnβ3/2

n n1/(2γ)} ≪ κn ≪ ν such that

P

􏼔
􏽛

θ∈C2

􏽛

j∈Rn

{νρ′(0+) − κn < |En{gj(xi; θ)}| < νρ′(0+) + κn}
􏼕

→ 0 

as n→∞. (c) There exist universal constants K7, K8 > 0 such that

P

􏼚

inf
θ∈Θ

λmin([En{∇θgRn
(xi; θ)}]⊤,⊗2) ≥ K7

􏼛

→ 1 and

P

􏼔

sup
θ∈C3

λmax{􏽢VRn (θ)} ≤ K8

􏼕

→ 1 

as n→∞.

Condition 6 The prior density π0(·) is continuously differentiable with bounded first- 
order derivatives and π0(θ0) > 0.

Detailed discussion of Conditions 5 and 6 are given in Section B (online supplementary 
material). Let Π†n (·) be the measure which admits the posterior distribution π†( · | Xn). Denote 
by N μ,Σ(·) the Gaussian measure with mean μ and covariance matrix Σ. To establish the 

Bernstein–von Mises theorem for the posterior distribution π†(θ | Xn) as in Theorem 2, we need 
to assume (r, ℓn, ν) satisfy the following restrictions:

log r ≪ n(γ−2)/(3γ), ℓn ≪ min {n(γ−2)/(9γ)( log r)−1/9, n1/3( log r)−1, n(γ−2)/(2γ)( log r)−3/2},

and ℓnn−1/2( log r)1/2 ≪ ν ≪ min {ℓ−7/2
n n−1/γ, ( log r)−1}.

(16) 

Theorem 2 Let Pν(·) ∈ P be convex and assume ρ(t; ν) = ν−1Pν(t) has bounded second- 
order derivative with respect to t around 0, where P is defined in (4). 
Assume Conditions 1–6 hold with (r, ℓn, ν) satisfying (16). The posterior dis

tribution π†(θ | Xn) converges in total variation toward a Gaussian distribu

tion N (θ̂n, n−1􏽢H−1
Rn

) in probability, that is, DTV(Π†n , N
θ̂n ,n−1􏽢H−1

Rn

)→ 0 in 

probability as n→∞, where θ̂n is the PEL estimator in (3), and 􏽢HRn is defined 
in (12).

Theorem 2 shows that π†(θ | Xn) has a Gaussian limiting distribution and it concentrates on a 
n−1/2-ball centred at the PEL estimator θ̂n of interest, which indicates that θ̂n can be approximated 
by the mean of the posterior distribution π†(θ | Xn). More specifically, as shown in Corollary 1, the 
approximation error is of order smaller than n−1/2.

Corollary 1 Under the conditions of Theorem 2, we have |Eθ∼π†(θ) − θ̂n|∞ = op(n−1/2), 

where θ̂n is the PEL estimator defined as (3), and Eθ∼π†(θ) is defined in (8).

Theorems 3 and 4 state the theoretical guarantees for Algorithms 1 and 2, respectively.

Theorem 3 For the density ϕ(· | ·) of the proposal distribution in Algorithm 1, we assume 
ϕ(ϑ | θ) is positive and continuous on (θ, ϑ) ∈ Θ × Θ. Conditional on Xn, for 
any θ0 ∈ Θ such that π†(θ0 | Xn) > 0 with π†( · | Xn) defined as (7), it holds 
that DTV(T k

θ0 , Π†n )→ 0 as k→∞, where T k
θ0 (·) is the measure which admits 

the distribution of the Markov chain determined by Algorithm 1 at kth step 
with initial point θ0. Furthermore, conditional on Xn, we have |K−1􏽐K

k=1 θk − 
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Eθ∼π†(θ)|∞ → 0 almost surely as K→∞, where {θk}k≥1 are generated via 
Algorithm 1 with the initial point θ0 satisfying π†(θ0 | Xn) > 0.

Theorem 4 For the density φ(· ; ·) of the proposal distribution and the function 
h : Rp 7! Rs in Algorithm 2, we assume φ(θ; ζ) is positive and continuous 
on (θ, ζ) ∈ Θ × Rs and supθ∈Θ |h(θ)|∞ ≤ K9 for some universal constant 
K9 > 0. Conditional on Xn, if 

􏽐∞
k=1 exp (−CNk) < ∞ for any C > 0, then 

|􏽢Eπ†,K(θ) − Eθ∼π†(θ)|∞ → 0 almost surely as K→∞, where 􏽢Eπ†,K(θ) is the 
MAMIS estimator defined as (9).

6 Discussion
In this paper, we explore BPEL and demonstrate its promising performance using MCMC sam
pling as a competitive alternative to optimization in addressing EL problems. This framework 
has the potential for further advancements in several areas. To maintain focus and avoid digres
sions, we have confined our study to fixed-dimensional model parameters and exponentially grow
ing moment conditions. However, there is significant interest in extending this approach to tackle 
variable and model selection using BPEL, which could accommodate high-dimensional sparse 
model parameters and potentially a continuum of moment conditions, as considered in Chaussé 
(2017). Incorporating specific priors in the context of concrete studies, particularly in high- 
dimensional problems, is another area of interest. Research in this direction presents additional 
challenges, especially in selecting appropriate priors, developing efficient sampling schemes, and 
conducting associated analyses.

In the broader context of Bayesian methodology, approximate Bayesian computation (ABC) 
and Bayesian synthetic likelihood (BSL) are two competitive methods for handling situations 
where the likelihood is difficult to evaluate or intractable. ABC and BSL have been extensively 
compared in the literature. We demonstrate that the rationale of ABC integrates well with our 
BPEL method, achieving both accuracy and computational efficiency. Our Algorithm 2, inspired 
by ABC, uses importance weights for samples drawn from an alternative distribution to address 
challenging sampling situations. Empirical evidence shows promising performance, particularly 
in difficult cases. BSL leverages the limiting distribution, such as the normal distribution, to handle 
intractable probability distributions, with the advantage of easy sampling from the normal distri
bution. We view our BPEL as a compelling alternative to BSL: EL uses a multinomial likelihood 
that incorporates model information without requiring a fully specified parametric model, making 
it a competitive option when the full likelihood is intractable.

Furthermore, we foresee the use of more sophisticated sampling schemes in conjunction with 
PEL as highly valuable for addressing complex problems with specific considerations. Examples 
include the Hamiltonian MCMC method examined in Chaudhuri et al. (2017) and the variational 
Bayesian approach explored in Yu and Bondell (2024). These avenues of research are part of our 
plans for future projects.
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