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A standing challenge in data privacy is the trade-off between the level
of privacy and the efficiency of statistical inference. Here, we conduct an in-
depth study of this trade-off for parameter estimation in the β-model (Ann.
Appl. Probab. 21 (2011) 1400–1435) for edge differentially private network
data released via jittering (J. R. Stat. Soc. Ser. C. Appl. Stat. 66 (2017) 481–
500). Unlike most previous approaches based on maximum likelihood esti-
mation for this network model, we proceed via the method of moments. This
choice facilitates our exploration of a substantially broader range of privacy
levels—corresponding to stricter privacy—than has been to date. Over this
new range, we discover our proposed estimator for the parameters exhibits
an interesting phase transition, with both its convergence rate and asymptotic
variance following one of three different regimes of behavior depending on
the level of privacy. Because identification of the operable regime is difficult,
if not impossible in practice, we devise a novel adaptive bootstrap procedure
to construct uniform inference across different phases. In fact, leveraging this
bootstrap we are able to provide for simultaneous inference of all parame-
ters in the β-model (i.e., equal to the number of nodes), which, to our best
knowledge, is the first result of its kind. Numerical experiments confirm the
competitive and reliable finite sample performance of the proposed inference
methods, next to a comparable maximum likelihood method, as well as sig-
nificant advantages in terms of computational speed and memory.

1. Introduction. In this information age, data is one of the most important assets. With
ever-advancing machine learning technology, collecting, sharing and using data yield great
societal and economic benefits, while the abundance and granularity of personal data bring
new risks of potential exposure of sensitive personal or financial information which may
lead to adverse consequences. Therefore, continuous and conscientious effort has been made
to formulate concepts of sensitivity of the data and privacy guarantee in data usage, and
those concepts evolve along with the technological advancement. At present, one of most
commonly used formulations of data privacy is the so-called differential privacy (Dwork
(2006), Wasserman and Zhou (2010)). This paper is devoted to studying statistical estimation
in the context of edge differential privacy for network data.

In network data, individuals (e.g., persons or firms) are typically represented by nodes
and their interrelationships are represented by edges. Therefore, network data often contain
sensitive individual information. On the other hand, for analysis purposes the information
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of interest in the data should be sufficiently preserved. Hence, the primary concern for data
privacy is two-fold: (a) to release only a sanitized version of the original network data to
protect privacy, and (b) the sanitized data should preserve the information of interest such
that analysis based on the sanitized data is still effective.

To protect privacy, the conventional approach is to release some noised version of summary
statistics of interest. Normally, the summary statistics used are of (much) lower dimension
than the original data. In the context of network data, the chosen summary statistics can be
the node degree sequence (Karwa and Slavković (2016)) or subgraph counts (Blocki et al.
(2013)). To achieve differential privacy, only a noised version of the summary statistics is
released. The noised version of the statistics is generated based on some appropriate release
mechanism, which depends critically on the so-called sensitivity of the adopted statistics.
One of the most frequently used data release schemes is the Laplace mechanism of Dwork
et al. (2006); see also Section 2 of Wasserman and Zhou (2010), and Section 3 of Karwa and
Slavković (2016). Karwa and Slavković (2016) consider edge differential privacy for the β-
model (Chatterjee, Diaconis and Sly (2011)), where only the node degree sequence, which is a
sufficient statistic, is released with added noise generated from a discrete Laplace mechanism.
However, a noisy degree sequence may no longer be a legitimate degree sequence. Even
for a legitimate degree sequence, the maximum likelihood estimator (MLE) may not exist.
Karwa and Slavković (2016) propose a two-step procedure that entails “denoising” the noisy
sequence first and then estimating the parameters using the denoised data by MLE.

A radically different approach is to release a noisy version of an entire network. Karwa,
Krivitsky and Slavković (2017) offer what they call a generalized random response mecha-
nism for doing so and present empirical results of its use with maximum likelihood estimation
in exponential random graph models. The structure of this release mechanism is same as the
noisy network setting of Chang, Kolaczyk and Yao (2022), where the edge status of each pair
of nodes is known only up to some binary noise and method of moments was used to esti-
mate certain network summary statistics. As noted by Chang, Kolaczyk and Yao (2020), this
noisy network setting in turn is essentially analogous to the idea of jittering in the analysis
of classical Euclidean data, where each original data point is released with added noise. In
this paper, we study this jittering release mechanism for network data, and we do so in the
specific context of parameter estimation for the β-model. However, importantly, we note that
unlike approaches based on releasing noised versions of some specific and predetermined
summary statistics, jittering allows for the possibility of multiple statistics to be calculated
and/or quantities to be estimated from the same released network.

Specifically, we conduct an in-depth study on the statistical inference for the β-model
based on the edge π -differentially private data generated via jittering, where π > 0 reflects
the privacy level; the smaller π , the greater the level of privacy. Unlike most previous ap-
proaches to inference under this model, based on maximum likelihood estimation, we pro-
ceed via the method of moments. This choice facilitates our exploration of a substantially
broader range of privacy levels π than has been to date. Let p be the number of nodes in the
network. Our major contributions are as follows:

• First, we develop the asymptotic theory when p → ∞ and π → 0, and find that (i) in
order to achieve consistency of the newly proposed moment-based estimator, π should
decay to zero slower than p−1/3 log1/6 p, while (ii) both the convergence rate and the
asymptotic variance of our proposed estimator depend intimately on the interplay between
p and π . In particular, the asymptotic behavior of these quantities exhibits an interesting
phase transition phenomenon, as π decays to zero as a function of p, following one of three
different regimes of behavior: π � p−1/4, π � p−1/4 and p−1/4 � π � p−1/3 log1/6 p.

• Second, because identification of the operable regime is difficult if not impossible in prac-
tice, we devise a novel adaptive bootstrap procedure to construct uniform inference across
different phases.
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• Third, leveraging this bootstrap we are able to provide for simultaneous inference of all
parameters in the β-model (i.e., equal to the number of nodes). This, to our best knowledge,
is the first result of its kind, which requires a substantially different and more nuanced
technical investigation than those for finite-dimensional results.

• Lastly, numerical experiments confirm the competitive and reliable finite sample perfor-
mance of the proposed inference methods, next to a comparable maximum likelihood
method, as well as significant advantages in terms of computational speed and memory.

The dichotomy of “dense” versus “sparse” networks is an important one in network sci-
ence, as sparsity of edges is a property encountered widely in practice with real-world net-
works. In recent years, theoretical properties of sparse β-models have been successfully con-
sidered, extending the original developments for dense β-models (such as cited above). See,
for example, Mukherjee, Mukherjee and Sen (2018), Chen, Kato and Leng (2021), Stein and
Leng (2020) and Zhang et al. (2021), which in turn build on the earlier work of Rinaldo,
Petrović and Fienberg (2013). Fan, Zhang and Yan (2020) have addressed estimation in an
edge-weighted version of the sparse β-model (as well as in the dense case) under the differ-
ential privacy mechanism of Karwa and Slavković (2016). Here, in this paper, we conduct
the majority of our development in the dense case, after which we then extend our results to
the sparse case.

The rest of the paper is organized as follows. Section 2 introduces the concept of edge
π -differential privacy for networks, and the data release mechanism by jittering (Karwa,
Krivitsky and Slavković (2017)). Section 3 addresses inference for the β-model based on
edge differentially private data, introducing the method-of-moments estimator and character-
izing its asymptotic behavior. Section 4 develops the adaptive bootstrap inference that makes
inference feasible in practice (i.e., despite the phase transition), and presents the accompa-
nying results on simultaneous inference. Some numerical results are reported in Section 5.
Section 6 illustrates how to extend the proposed moment-based method and the associated
theory to sparse β-models. We relegate all the technical proofs to the Supplementary Material
(Chang et al. (2024)).

Notation. For any integer d ≥ 1, we write [d] = {1, . . . , d}, and denote by Id the d × d

identity matrix. We denote by I (·) the indicator function. For a vector h = (h1, . . . , hd)�,
we write |h|0 = ∑d

j=1 I (hj �= 0), |h|2 = (
∑d

j=1 h2
j )

1/2 and |h|∞ = maxj∈[d] |hj | for its L0-
norm, L2-norm and L∞-norm, respectively. For a countable set S , we use #S or |S| to denote
its cardinality. For two sequences of positive numbers {ap}p≥1 and {cp}p≥1, we write ap � cp

or cp � ap if lim supp→∞ ap/cp < ∞, and write ap � cp if and only if ap � cp and cp � ap

hold simultaneously. We also write ap 
 cp or cp � ap if lim supp→∞ ap/cp = 0.

2. Edge differential privacy.

2.1. Definition. We consider simple networks in the sense that there are no self-loops
and there exists at most one edge from one node to another for a directed network, and at
most one edge between two nodes for an undirected network. Such a network with p nodes
can be represented by an adjacency matrix X = (Xi,j )p×p , where Xi,i ≡ 0, and Xi,j = 1
indicating an edge from the ith node to the j th node, and 0 otherwise. For undirected net-
works, Xi,j = Xj,i . In this paper, we always assume that the p nodes are fixed and are labeled
as 1, . . . , p. Then a simple network can be represented entirely by its adjacency matrix. To
simplify statements, we often refer to an adjacency matrix X as a network.

Let X be the set consisting of the adjacency matrices of all the simple and directed (or
undirected) networks with p nodes. For any X = (Xi,j )p×p ∈ X and Y = (Yi,j )p×p ∈X , the
Hamming distance between X and Y is defined as

(2.1) δ(X,Y) = #
{
(i, j) ∈ I : Xi,j �= Yi,j

}
,
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where I = {(i, j) : 1 ≤ i �= j ≤ p} for directed networks, and I = {(i, j) : 1 ≤ i < j ≤ p}
for undirected networks. To protect privacy, the original network X is not released directly.
Instead, we release a sanitized version Z = (Zi,j )p×p ∈ X of the network, where Z is gen-
erated according to some conditional distribution Q(· | X). Here, Q is also called a release
mechanism (Wasserman and Zhou (2010)).

DEFINITION 1 (Edge differential privacy). For any π > 0, a release mechanism (i.e., a
conditional probability distribution) Q satisfies π -edge differential privacy if

(2.2) sup
X,Y∈X : δ(X,Y)=1

sup
Z∈X :Q(Z|X)>0

Q(Z | Y)

Q(Z | X)
≤ eπ .

The definition above equates privacy with the inability to distinguish two close networks.
The privacy parameter π controls the amount of randomness added to released data; the
smaller π is the more protection on privacy. Notice that (2.2) is much more stringent than
requiring |Q(Z | Y) − Q(Z | X)| to be small for any X,Y ∈X with δ(X,Y) = 1. In practice,
π is often chosen to be small. Then it follows from (2.2) that

sup
X,Y∈X : δ(X,Y)=1

sup
Z∈X :Q(Z|X)>0

|Q(Z | Y) − Q(Z | X)|
Q(Z | X)

≤ eπ − 1 ≈ π.

Note that multiple notions of privacy have been introduced for networks; see Jiang et al.
(2020) for a recent survey. In this paper, we focus on the notion of edge differential privacy
(e.g., Nissim, Raskhodnikova and Smith (2007)). At the same time, there is a connection
between differential privacy and hypothesis testing.

PROPOSITION 1 (Wasserman and Zhou (2010)). Let the released network Z ∼ Q(· | X)

and Q satisfy π -edge differential privacy for some π > 0. For any given i �= j , consider
hypotheses H0 : Xi,j = 1 versus H1 : Xi,j = 0. Then the power of any test at the significance
level γ and based on Z, Q and the distribution of X is bounded from above by γ eπ , provided
that Xi,j is independent of {Xk,� : (k, �) ∈ I and (k, �) �= (i, j)}.

Proposition 1 implies that if Z is released through Q, which satisfies π -edge differential
privacy and π is sufficiently small, it is virtually impossible to identify whether an edge exists
(i.e., Xi,j = 1) or not (i.e., Xi,j = 0) in the original network through statistical tests, as the
power of any test is bounded by its significance level multiplied by eπ . The independence
condition in Proposition 1 is satisfied by the Erdős–Rényi class of models for which all edges
are independent, including the β-model and the well-known stochastic block model. Propo-
sition 1 follows almost immediately from the Neyman–Pearson lemma for the optimality of
likelihood ratio tests for simple null and simple alternative hypotheses. It was first proved by
Wasserman and Zhou (2010) with independent observations. Since their proof can be adapted
to our setting in a straightforward manner, we omit the details.

For further discussion on differential privacy under more general settings, we refer to
Dwork et al. (2006) and Wasserman and Zhou (2010).

2.2. Edge privacy via jittering. Now we introduce the data release mechanism of Karwa,
Krivitsky and Slavković (2017), which is formally the same as the noisy network structure
adopted in Chang, Kolaczyk and Yao (2022). This approach releases a jittered version of the
entire network. The word “jittering” means that a small amount of noise is added to every
single data point (Hennig (2007)).

For I specified just after (2.1) above, we define a data release mechanism as follows:

(2.3) Zi,j = Xi,j I (εi,j = 0) + I (εi,j = 1)
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for each (i, j) ∈ I . In the above expression, {εi,j }(i,j)∈I are independent and identically dis-
tributed random variables only taking three possible values −1, 0 and 1 with

(2.4) P(εi,j = 1) = α, P(εi,j = 0) = 1 − α − β and P(εi,j = −1) = β,

where α,β ∈ [0,0.5]. For an undirected network, Zi,j = Zj,i for j > i. Then it follows from
(2.3) and (2.4) that

(2.5) P(Zi,j = 1 | Xi,j = 0) = α and P(Zi,j = 0 | Xi,j = 1) = β.

Furthermore, the proposition below follows from (2.2) and (2.5) immediately. See also Propo-
sition 1 of Karwa, Krivitsky and Slavković (2017).

PROPOSITION 2. The data release mechanism (2.3) satisfies π -edge differential privacy
with

π = log
{

max
(

α

1 − β
,

β

1 − α
,

1 − α

β
,

1 − β

α

)}
.

REMARK 1. Notice that

α

1 − β
= 1 − 1 − α − β

1 − β
,

β

1 − α
= 1 − 1 − α − β

1 − α
,

1 − α

β
= 1 + 1 − α − β

β
,

1 − β

α
= 1 + 1 − α − β

α
,

where 1 − α − β ≥ 0. Then the differential privacy parameter π given in Proposition 2 can
be reformulated as

π = log
{

1 + (1 − α − β)max
(
− 1

1 − β
,− 1

1 − α
,

1

β
,

1

α

)}

= log
{

1 + (1 − α − β)max
(

1

β
,

1

α

)}
= log

{
1 + 1 − α − β

min(α,β)

}
.

Recall α,β ∈ [0,0.5]. The maximum privacy is achieved by setting α = β = 0.5, as then
π = 0. By (2.3) and (2.4), Zi,j = I (εi,j = 1) then, that is, Z carries no information about X.
In order to achieve high privacy, we need to use large α and β . Due to α,β ∈ [0,0.5], when
π → 0, min(α,β) cannot converge to zero, which means there exists a constant ε ∈ (0,0.5)

such that min(α,β) > ε when π → 0. Hence, when π → 0, we have π � 1 − α − β . In
Section 3 below, we will develop statistical inference approaches for the original network X
based on the released data Z with π → 0.

3. Differentially private inference for the β-model. In this section, we introduce a new
method-of-moments estimator for the parameters of the network β-model and characterize
the asymptotic behavior of this estimator, through which we discover an interesting phase
transition.

3.1. The β-model. The so-called β-model (Chatterjee, Diaconis and Sly (2011)) for
undirected networks is characterized by p parameters θ = (θ1, . . . , θp)� ∈ R

p , which define
the probability function

(3.1) P(Xi,j = 1) = exp(θi + θj )

1 + exp(θi + θj )
, i �= j.
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The parameter θi in this model has a natural interpretation as it measures the propensity of
node i to have connections with other nodes. Namely, the larger θi is, the more likely node i

is connected to other nodes. The likelihood function for β-model is given by

f (X; θ) = ∏
i,j : i<j

exp{(θi + θj )Xi,j }
1 + exp(θi + θj )

∝ exp(U1θ1 + · · · + Upθp),

where Ui = ∑
j :j �=i Xi,j is the degree of the ith node. Hence, the degree sequence U =

(U1, . . . ,Up)� is a sufficient statistic.
Denote by θ̃(U) = {θ̃1(U), . . . , θ̃p(U)}� the MLE for θ based on U. For given degree se-

quence U, θ̃(U) must satisfy the following moment equations:

Ui = ∑
j : j �=i

exp{θ̃i (U) + θ̃j (U)}
1 + exp{θ̃i (U) + θ̃j (U)} , i ∈ [p].

Unfortunately, θ̃(U) may not exist; see Theorem 1 of Karwa and Slavković (2016) for nec-
essary and sufficient conditions for the existence of θ̃(U). When θ̃(U) exists, Chatterjee,
Diaconis and Sly (2011) show that

(3.2)
∣∣θ̃(U) − θ

∣∣∞ ≤ C∗

√
logp

p

with probability at least 1 − C∗p−2, where C∗ > 0 is a constant depending only on |θ |∞.
For any fixed integer s ≥ 1 and distinct �1, . . . , �s ∈ [p], Yan and Xu (2013) establish the
asymptotic normality of {θ̃�1(U), . . . , θ̃�s (U)}� as p → ∞, which can be used to construct
joint confidence regions for (θ�1, . . . , θ�s )

�. However, to our best knowledge, simultaneous
inference for all p parameters in the β-model remains unresolved in the literature.

Karwa and Slavković (2016) consider differentially private MLE for θ based on a noisy
version of the degree sequence. More specifically, the noisy degree sequence in their setting
is defined as U + V, where the components of V = (V1, . . . , Vp)� are drawn independently
from a discrete Laplace distribution with the probability mass function

P(V = v) = (1 − κ)κ |v|

1 + κ

for any integer v with κ = exp(−π/2). Karwa and Slavković (2016) propose a two-step pro-
cedure: (a) find the MLE U∗ for U based on U+V, and (b) estimate θ by θ̃(U∗). For any fixed
integer s ≥ 1 and distinct �1, . . . , �s ∈ [p], Theorem 4 of Karwa and Slavković (2016) shows
that {θ̃�1(U

∗), . . . , θ̃�s (U
∗)}� shares the same asymptotic normality as {θ̃�1(U), . . . , θ̃�s (U)}�

when π � (logp)−1/2. To appreciate this “free privacy” result, let us assume first that
|θ |∞ ≤ C for some universal constant C > 0. Then there exists a universal constant C̃ > 1
such that C̃−1p ≤ mini∈[p] Ui ≤ maxi∈[p] Ui ≤ C̃p holds almost surely as p → ∞. On the
other hand, when π � (logp)−1/2, Lemma C in the Supplementary Material of Karwa and
Slavković (2016) indicates that |U∗−U|∞ ≤ √

6p1/2 log1/2 p holds almost surely as p → ∞,
which implies that U∗ is dominated by U. Based on this result, Theorem 3 of Karwa and
Slavković (2016) shows that θ̃(U∗) exists and is unique and can be used to estimate θ with
uniform accuracy in all coordinates when π � (logp)−1/2. However, when π 
 (logp)−1/2,
the asymptotic behavior of θ̃(U∗) is unknown.

Our interest in this paper is on differentially private estimation based on released data
Z = (Zi,j )p×p generated by the more general jittering mechanism (2.3). Remark 1 in Sec-
tion 2.2 shows that Z is π -differentially private with π � 1 − α − β . To gain more appre-
ciation of the impact of the privacy level π on the efficiency of inference, we introduce a



714 J. CHANG ET AL.

new moment-based estimation for θ based on Z. We then establish the asymptotic theory
under the setting that p → ∞ and π may vary with respect to p. Of particular interest is
the findings when π → 0 together with p → ∞. It turns out the asymptotic distribution of
the new proposed estimator depends intimately on the interplay between π and p, exhibiting
interesting phase transition in the convergence rate and the asymptotic variance as π decays
to zero as a function of p. See Theorem 1 and Remark 3(a) in Section 3.3. To overcome the
complexity in inference due to the phase transition, a novel bootstrap method is proposed,
which provides a uniform inference regardless different phases. In addition, it also facilitates
the simultaneous inference for all the p components of θ as p → ∞.

3.2. A new moment-based estimator. Under the β-model (3.1), it holds that
P(Xi,j = 1)

P(Xi,j = 0)
= exp(θi + θj )

for any i �= j , which implies

(3.3)
P(Xi,� = 1)P(Xi,j = 0)P(X�,j = 1)

P(Xi,� = 0)P(Xi,j = 1)P(X�,j = 0)
= exp(2θ�), i �= j �= �.

Since only the sanitized network Z = (Zi,j )p×p , defined as in (2.3)–(2.5), is available, we
represent (3.3) in terms of the probabilities of Zi,j . For τ ∈ {0,1}, put

ϕτ (x) = (x − α)τ (1 − β − x)1−τ

with x ∈ {0,1}. Then for any i �= j ,

P(Xi,j = 0) = E{ϕ0(Zi,j )}
1 − α − β

and P(Xi,j = 1) = E{ϕ1(Zi,j )}
1 − α − β

.(3.4)

To simplify the notation, we write ϕτ (Zi,j ) as ϕ(i,j),τ for any i �= j and τ ∈ {0,1}. Since
{Zi,j : i < j} is a sequence of independent random variables and Zi,j = Zj,i for any i �= j , it
follows from (3.3) that

(3.5)
E{ϕ(i,�),1ϕ(i,j),0ϕ(�,j),1}
E{ϕ(i,�),0ϕ(i,j),1ϕ(�,j),0} = exp(2θ�), i �= j �= �.

For each � ∈ [p], let

μ�,1 = 1

|H�|
∑

(i,j)∈H�

E{ϕ(i,�),1ϕ(i,j),0ϕ(�,j),1},(3.6)

μ�,2 = 1

|H�|
∑

(i,j)∈H�

E{ϕ(i,�),0ϕ(i,j),1ϕ(�,j),0},(3.7)

where H� = {(i, j) : i, j �= � such that i < j}. By (3.5), we have

θ� = 1

2
log

(
μ�,1

μ�,2

)
.

Hence, a moment-based estimator for θ� can be defined as

(3.8) θ̂� = 1

2
log

(
μ̂�,1

μ̂�,2

)
,

where

μ̂�,1 = 1

|H�|
∑

(i,j)∈H�

ϕ(i,�),1ϕ(i,j),0ϕ(�,j),1,(3.9)

μ̂�,2 = 1

|H�|
∑

(i,j)∈H�

ϕ(i,�),0ϕ(i,j),1ϕ(�,j),0.(3.10)
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3.3. Asymptotic properties and phase transition. We always confine (α,β) ∈ M(γ ;C1)

with

M(γ ;C1) = {
(α,β) : C1 < α,β < 0.5,1 − α − β = γ

}
for some γ ∈ (0,1] and C1 ∈ (0,0.5). Our theoretical analysis allows γ to be a constant, or
to vary with respect to p. Of particular interest are the cases when γ → 0 (at different rates)
together with p → ∞. When (α,β) ∈ M(γ ;C1) for some fixed constants C1 ∈ (0,0.5), it
follows from Remark 1 in Section 2.2 that the privacy level π � γ .

3.3.1. Consistency. Proposition 3 below presents the consistency for the moment-based
estimator θ̂� defined in (3.8), which indicates that θ� can be estimated consistently under the
edge π -differential privacy with π → 0, as long as π � p−1/3 log1/6 p.

CONDITION 1. There exists a universal constant C3 > 0 such that |θ |∞ ≤ C3.

PROPOSITION 3. Let Condition 1 hold and (α,β) ∈ M(γ ;C1) for some fixed constant
C1 ∈ (0,0.5). If γ � p−1/3 log1/6 p, it then holds that

max
�∈[p] |θ̂� − θ�| = Op

(
log1/2 p

γ 3p

)
+ Op

(
log1/2 p

γp1/2

)
.

REMARK 2. (a) By Condition 1 and (3.4), we know

min
τ∈{0,1} min

i,j : i �=j
E{ϕ(i,j),τ } � γ � max

τ∈{0,1} max
i,j : i �=j

E{ϕ(i,j),τ },

which implies

min
k∈{1,2} min

�∈[p]μ�,k � γ 3 � max
k∈{1,2} max

�∈[p]μ�,k.

Lemma 1 in the Supplementary Material (Chang et al. (2024)) shows that

max
k∈{1,2} max

�∈[p] |μ̂�,k − μ�,k| = Op

(
log1/2 p

p

)
+ Op

(
γ 2 log1/2 p

p1/2

)
+ Op

(
γ logp

p

)
.

To make (μ̂�,1, μ̂�,2) be a valid estimate of (μ�,1,μ�,2), we need to require p−1 log1/2 p =
o(γ 3), γ 2p−1/2 log1/2 p = o(γ 3) and γp−1 logp = o(γ 3). Hence, we need the restriction
γ � p−1/3 log1/6 p. Notice that the privacy level π � γ . In order to ensure the consistency
of θ̂�, the edge differential privacy level π must satisfy condition π � p−1/3 log1/6 p.

(b) Recall εi,j involved in the data release mechanism (2.3) for Zi,j is a discrete random
variable that only takes three possible values −1, 0 and 1. When α = β = 0, εi,j ≡ 0 and
our moment-based estimator (3.8) is then constructed based on the original network X. By
setting γ = 1 in our proof of Proposition 3, we can establish the following convergence rate
for our moment-based estimator based on the original network X:

max
�∈[p] |θ̂� − θ�| = Op

(
log1/2 p

p1/2

)
,

which shares the same convergence rate of the MLE of Chatterjee, Diaconis and Sly (2011);
see (3.2) in Section 3.1.
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3.3.2. Asymptotic normality. Put N = (p−1)(p−2). Proposition 4 gives the asymptotic
expansion of θ̂� − θ�, which can be obtained from the proof of Theorem 1 in Section B of the
Supplementary Material (Chang et al. (2024)). For any i �= �, let

λi,� = 1

p − 2

∑
j : j �=�,i

[
1

μ�,1
E{ϕ(�,j),1}E{ϕ(i,j),0} + 1

μ�,2
E{ϕ(�,j),0}E{ϕ(i,j),1}

]
.(3.11)

PROPOSITION 4. For any i �= j , write Z̊i,j = Zi,j − E(Zi,j ). Let Condition 1 hold and
(α,β) ∈ M(γ ;C1) for some fixed constant C1 ∈ (0,0.5). If γ � p−1/3 log1/6 p, it then holds
that

θ̂� − θ� = T̃�,1 + T̃�,2 + R̃�,

where

T̃�,1 = − 1

N

∑
i,j : i �=j, i,j �=�

(
μ�,1 + μ�,2

2μ�,1μ�,2

)
Z̊i,�Z̊�,j Z̊i,j and T̃�,2 = 1

p − 1

∑
i: i �=�

λi,�Z̊i,�

satisfy T̃�,1 = Op(γ
−3p−1) and T̃�,2 = Op(γ

−1p−1/2), and the remainder term R̃� satisfies
R̃� = Op(γ

−6p−2) + Op(γ
−2p−1 logp).

The leading term in the asymptotic expansion of θ̂� − θ� will be different for different
scenarios of γ : T̃�,2, a partial sum of independent random variables, serves as the leading term
if γ � p−1/4, T̃�,1 + T̃�,2 is the leading term if γ � p−1/4, and T̃�,1, a generalized U -statistic,
is the leading term if p−1/4 � γ � p−1/3 log1/6 p. Such characteristic will lead to a phase
transition phenomenon in the limiting distribution of the proposed moment-based estimator.
To investigate the asymptotic property of T̃�,1, some exponential and moment inequalities for
U -statistics are needed; see de la Peña and Montgomery-Smith (1995) and Giné, Latała and
Zinn (2000). Put

b� = 1

p − 1

∑
i: i �=�

λ2
i,� Var(Zi,�),(3.12)

b̃� = 1

2N

(
μ�,1 + μ�,2

μ�,1μ�,2

)2 ∑
i,j : i �=j, i,j �=�

Var(Zi,�)Var(Z�,j )Var(Zi,j ).(3.13)

THEOREM 1. Let Condition 1 hold and (α,β) ∈ I ∈ M(γ ;C1) for some fixed constant
C1 ∈ (0,0.5). Let 1 ≤ �1 < · · · < �s ≤ p be any s given indices for some fixed integer s ≥ 1.
As p → ∞, the following three assertions hold:

(a) If γ � p−1/4, then

(p − 1)1/2 diag
(
b

−1/2
�1

, . . . , b
−1/2
�s

)
(θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� → N (0, Is)

in distribution.
(b) If p−1/4 � γ � p−1/3 log1/6 p, then

N1/2 diag
(
b̃

−1/2
�1

, . . . , b̃
−1/2
�s

)
(θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� → N (0, Is)

in distribution.
(c) If γ � p−1/4, then

N1/2 diag
[{

(p − 2)b�1 + b̃�1

}−1/2
, . . . ,

{
(p − 2)b�s + b̃�s

}−1/2]
× (θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� → N (0, Is)

in distribution.
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REMARK 3. (a) Theorem 1 presents the asymptotic normality of the proposed esti-
mator when p → ∞ and also, possibly π � γ → 0. It can be shown that b� � γ −2 and
b̃� � γ −6 under Condition 1. The limiting distribution depends on the relative rates of p

and γ intimately; yielding an interesting phase transition phenomenon in the convergence
rate. More precisely, when γ � p−1/4 (including the case γ is a fixed constant), we have
|θ̂� − θ�| = Op(p

−1/2γ −1). On the other hand, |θ̂� − θ�| = Op(p
−1/4) when γ � p−1/4, and

Op(p
−1γ −3) when p−1/4 � γ � p−1/3 log1/6 p.

(b) The asymptotic normality of the proposed moment-based estimator with the original
network X can be also established. By setting γ = 1 (i.e., α = β = 0) in our technical proof
of Theorem 1(a), we can show p1/2b

−1/2
� (θ̂� − θ�) →N (0,1) in distribution as p → ∞.

(c) Theorem 1 cannot be used to construct confidence intervals for θ� directly since we
would have to overcome two obstacles: (i) to identify the most appropriate phase in terms of
relative sizes between γ and p, and (ii) to estimate b� and b̃�, which determine the asymptotic
variances. For (ii), we give their estimates in the Appendix. Unfortunately, (i) is extremely
difficult if not impossible, as in practice we only have one γ and one p. Proposition 6 in
the Appendix shows that (ii) is only partially attainable as, for example, b� cannot be esti-
mated consistently when p−1/4 � γ � p−1/4 log1/4 p. In practice, we always need π → 0
for retaining the privacy. With π → 0, (i) can be overcome from a new perspective. More
specifically, let ν� = (p − 2)b� + b̃� for any � ∈ [p]. Note that b� � γ −2 and b̃� � γ −6 under
Condition 1, and γ � π when π → 0. Then (p − 2)b�/ν� → 1 when 1 � γ � p−1/4, and
b̃�/ν� → 1 when γ 
 p−1/4. Recall N = (p − 1)(p − 2). Hence, as γ � π → 0, the three
asymptotic assertions in Theorem 1 admit a uniform representation:

N1/2 diag
(
ν

−1/2
�1

, . . . , ν
−1/2
�s

)
(θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� → N (0, Is)

in distribution as p → ∞. However, even with the additional requirement π → 0, we still
cannot obtain a consistent estimate for ν� by the plug-in method with estimating b� and b̃�

separately for all γ � p−1/3 log1/6 p. A novel adaptive bootstrap procedure will be devel-
oped in Section 4, which provides a unified estimation procedure for ν� when γ � π → 0
across the three different phases. On the other hand, the inference with γ being a fixed con-
stant can be obtained based on Theorem 1 with the estimated b̂� specified in the Appendix.

4. Adaptive bootstrap inference. The goal of this section is primarily two-fold. First,
we construct a novel bootstrap confidence interval for θ�, which is automatically adaptive to
the three phases identified in Theorem 1. Second, we leverage the new bootstrap procedure
with Gaussian approximation to provide simultaneous inference for all p components of θ
as p → ∞. Additionally, we provide an algorithm for data-adaptive selection of a working
parameter in our approach. In the sequel, we always assume that the privacy level π → 0
together with the number of nodes p → ∞.

4.1. Bootstrap algorithm and simultaneous inference. As we have discussed in Re-
mark 3(c), it holds that

(4.1) N1/2 diag
(
ν

−1/2
�1

, . . . , ν
−1/2
�s

)
(θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� → N (0, Is)

in distribution as γ � π → 0 with p → ∞, where ν� = (p − 2)b� + b̃�. Now we reproduce
this structure in a bootstrap world based on the available network Z. The goal is to estimate
ν� adaptively regardless of the decay rate of γ .

Recall I = {(i, j) : 1 ≤ i < j ≤ p}. For a given constant δ ∈ (0,0.5), we draw bootstrap
samples Z† = (Z

†
i,j )p×p according to

(4.2) Z
†
i,j ≡ Z

†
j,i = Zi,j I (ηi,j = 0) + I (ηi,j = 1), (i, j) ∈ I,
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where {ηi,j }(i,j)∈I are independent and identically distributed random variables only taking
three possible values −1, 0 and 1 with

P(ηi,j = 0) = 1 − 2δ, P(ηi,j = 1) = δ and P(ηi,j = −1) = δ.

For i �= j and τ ∈ {0,1}, put

ϕ†
τ (x) = {

x − δ − α(1 − 2δ)
}τ {

1 − δ − β(1 − 2δ) − x
}1−τ

with x ∈ {0,1}. To simplify the notation, we write ϕ†
τ (Z

†
i,j ) as ϕ

†
(i,j),τ for any i �= j and

τ ∈ {0,1}. Note that

P(Xi,j = 0) = E{ϕ†
(i,j),0}

(1 − 2δ)(1 − α − β)
and P(Xi,j = 1) = E{ϕ†

(i,j),1}
(1 − 2δ)(1 − α − β)

.

For any given (i, j) such that i �= j , we know Z
†
i,j is independent of {Z†

ĩ,j̃
: |{ĩ, j̃} ∩ {i, j}| ≤

1}. Hence, it follows from (3.3) that

(4.3)
E{ϕ†

(i,�),1ϕ
†
(i,j),0ϕ

†
(�,j),1}

E{ϕ†
(i,�),0ϕ

†
(i,j),1ϕ

†
(�,j),0}

= exp(2θ�), i �= j �= �,

which is a bootstrap analogue of (3.5). Similarly, we define a bootstrap estimator for θ� as

(4.4) θ̂
†
� = 1

2
log

(
μ̂

†
�,1

μ̂
†
�,2

)
,

where

μ̂
†
�,1 = 1

|H�|
∑

(i,j)∈H�

ϕ
†
(i,�),1ϕ

†
(i,j),0ϕ

†
(�,j),1,

μ̂
†
�,2 = 1

|H�|
∑

(i,j)∈H�

ϕ
†
(i,�),0ϕ

†
(i,j),1ϕ

†
(�,j),0.

Such defined μ̂
†
�,1 and μ̂

†
�,2 are, respectively, the bootstrap analogues of μ̂�,1 and μ̂�,2 defined

as (3.9) and (3.10). For μ�,1, μ�,2 and λi,� defined as (3.6), (3.7) and (3.11), we define their
bootstrap analogues, respectively, as

μ
†
�,1 = 1

|H�|
∑

(i,j)∈H�

E
{
ϕ

†
(i,�),1ϕ

†
(i,j),0ϕ

†
(�,j),1

}
,

μ
†
�,2 = 1

|H�|
∑

(i,j)∈H�

E
{
ϕ

†
(i,�),0ϕ

†
(i,j),1ϕ

†
(�,j),0

}
,

λ
†
i,� = 1

p − 2

∑
j : j �=�,i

[
1

μ
†
�,1

E
{
ϕ

†
(�,j),1

}
E

{
ϕ

†
(i,j),0

} + 1

μ
†
�,2

E
{
ϕ

†
(�,j),0

}
E

{
ϕ

†
(i,j),1

}]
.

Then θ̂
†
� admits a similar asymptotic property as (4.1). To present it explicitly, we let

ν
†
� = (p − 2)b

†
� + b̃

†
�, � ∈ [p],(4.5)

where

b
†
� = 1

p − 1

∑
i: i �=�

λ
†,2
i,� Var

(
Z

†
i,�

)
,

b̃
†
� = 1

2N

(
μ

†
�,1 + μ

†
�,2

μ
†
�,1μ

†
�,2

)2 ∑
i,j : i �=j, i,j �=�

Var
(
Z

†
i,�

)
Var

(
Z

†
�,j

)
Var

(
Z

†
i,j

)
.
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THEOREM 2. Let the conditions of Theorem 1 hold, and δ ∈ (0, c] for some positive
constant c < 0.5. As p → ∞, if 1 � γ � p−1/3 log1/6 p, the following two assertions hold:

(a) Let 1 ≤ �1 < · · · < �s ≤ p be any s given indices for some fixed integer s ≥ 1. Then

N1/2 diag
(
ν

†,−1/2
�1

, . . . , ν
†,−1/2
�s

)(
θ̂

†
�1

− θ�1, . . . , θ̂
†
�s

− θ�s

)� → N (0, Is)

in distribution.
(b) max�∈[p] |ν†

� ν−1
� − 1| = O(δ), where ν� is specified in (4.1).

Theorem 2 indicates that ν
†
� /ν� → 1 for any 1 � γ � p−1/3 log1/6 p provided that we set

δ = o(1). For fixed s ≥ 1 and given 1 ≤ �1 < · · · < �s ≤ p, we can draw bootstrap samples Z†

as in (4.2) with some δ = o(1), and compute the bootstrap estimate (θ̂
†
�1

, . . . , θ̂
†
�s

)� defined in

(4.4) based on Z†. We repeat this procedure M times for some large integer M and compute

ν̂
†
�k

= N

M

M∑
m=1

{
θ̂

†,(m)
�k

− ¯̂
θ

†
�k

}2
, k ∈ [s],

with ¯̂
θ

†
�k

= M−1 ∑M
m=1 θ̂

†,(m)
�k

, where {θ̂†,(m)
�1

, . . . , θ̂
†,(m)
�s

}� is the associated bootstrap estimate
in the mth repetition. Then a confidence region for (θ�1, . . . , θ�s )

� can be constructed based
on the asymptotic approximation

N1/2 diag
(
ν̂

†,−1/2
�1

, . . . , ν̂
†,−1/2
�s

)
(θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� d≈ N (0, Is).

Importantly, we note that in both Theorems 1 and 2, s is a fixed integer when p → ∞.
Hence, the inference methods presented so far are not applicable to all p components of
θ simultaneously. However, a breakthrough can be had via the Gaussian approximation in
Theorem 3 below. To our best knowledge, this is the first method for simultaneous inference
for all the p components of θ in the β-model. Write θ̂ = (θ̂1, . . . , θ̂p)� where θ̂� is the pro-
posed moment-based estimator given in (3.8) based on the sanitized data Z. As shown in
Proposition 4, the leading term of θ̂ − θ cannot be formulated as a partial sum of indepen-
dent (or weakly dependent) random vectors, which is different from the standard framework
of Gaussian approximation (Chernozhukov, Chetverikov and Kato (2013), Chernozhukov,
Chetverikov and Kato (2017), Chang, Chen and Wu (2024)). Hence, the existing results of
Gaussian approximation cannot be applied directly to obtain Theorem 3, which requires sig-
nificant technical challenge to be overcome in our theoretical analysis.

THEOREM 3. Let Condition 1 hold and (α,β) ∈ M(γ ;C1) for some fixed constant C1 ∈
(0,0.5). As p → ∞, if 0 < δ 
 (p logp)−1 and 1 � γ � p−1/3 log1/2 p, then

sup
u∈Rp

∣∣P{
N1/2(

V†)−1/2
(̂θ − θ) ≤ u

} − P(ξ ≤ u)
∣∣ → 0,

where V† = diag(ν
†
1 , . . . , ν†

p), and ξ ∼N (0, Ip).

Let ξ = (ξ1, . . . , ξp)� ∼ N (0, Ip). For any J = {�1, . . . , �s} ⊂ [p], write

V†
J = diag

(
ν

†
�1

, . . . , ν
†
�s

)
, θ̂J = (θ̂�1, . . . , θ̂�s )

�,

θJ = (θ�1, . . . , θ�s )
�, ξJ = (ξ�1, . . . , ξ�s )

�.
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Following the same arguments in the proof of Proposition 1 in the supplementary material of
Chang et al. (2017), we can obtain from Theorem 3 that

sup
J

sup
u∈R

∣∣P{
N1/2∣∣(V†

J
)−1/2

(θ̂J − θJ )
∣∣∞ ≤ u

} − P
(|ξJ |∞ ≤ u

)∣∣ → 0

as p → ∞. Given α ∈ (0,1) and J ⊂ [p],

�J ,α :=
{

a ∈ R
|J | : N1/2∣∣(V†

J
)−1/2

(θ̂J − a)
∣∣∞ ≤ �−1

(
1 + α1/|J |

2

)}
(4.6)

is a 100 · α% confidence region for θJ , where �(·) is the cumulative distribution function of
the standard normal distribution. We refer to Section 4 of Chang et al. (2018) for applications
of this type of confidence region in simultaneous inference. If γ is a fixed constant, Theorem 3
still holds with replacing V† by (p − 2)diag(b̂1, . . . , b̂p) where b̂� is given in (A.3) in the
Appendix. If we set α = β = 0 in the jittering mechanism (2.3)–(2.5), then γ = 1 in this
case and the released data Z is identical to the original data X. Our simultaneous inference
procedure still also works in this case.

4.2. Adaptive selection of δ. The tuning parameter δ plays a key role in our simultaneous
inference procedure. We propose a data-driven method in Algorithm 1 to select δ. To illustrate
the basic idea, we denote by ν

†
� (δ) the associated ν

†
� defined in (4.5) with δ used in generating

the bootstrap samples Z† in (4.2). If {ν�}�∈J are known, the ideal selection for the tuning
parameter δ should be

δopt = arg min
δ>0

max
�∈J

∣∣ν†
� (δ) − ν�

∣∣.
Unfortunately, {ν�}�∈J are unknown in practice, as they depend on the unknown parameters
θ1, . . . , θp . A natural idea is to replace ν�’s by their estimates. Recall

θ̂� = 1

2
log

(
μ̂�,1

μ̂�,2

)
with

μ̂�,1 = 1

|H�|
∑

(i,j)∈H�

ϕ(i,�),1ϕ(i,j),0ϕ(�,j),1,

μ̂�,2 = 1

|H�|
∑

(i,j)∈H�

ϕ(i,�),0ϕ(i,j),1ϕ(�,j),0.

Due to the nonlinear function log(·) and the ratio between μ̂�,1 and μ̂�,2, θ̂� usually includes
some high-order bias term. More specifically,

θ̂� − θ� = μ̂�,1 − μ�,1

2μ�,1
− μ̂�,2 − μ�,2

2μ�,2
+ (μ̂�,2 − μ�,2)

2

4μ2
�,2

− (μ̂�,1 − μ�,1)
2

4μ2
�,1︸ ︷︷ ︸

high-order bias

+R̂�,

where R̂� is a negligible term in comparison to the high-order bias. Although the high-order
bias has little impact on the estimation of θ�, it may lead to a bad estimate of ν� if we just
plug-in θ̂1, . . . , θ̂p in the nonlinear function ν�, which depends on θ1, . . . , θp . Hence, when
we replace {ν�}�∈J in Algorithm 1, we use their associated estimates with bias-corrected
θ̂bc

1 , . . . , θ̂bc
p . Based on the optimal δ̂opt selected in Algorithm 1, we can replace the values

{ν†
� }�∈J in (4.6) by {ν̂†

� (δ̂opt)}�∈J specified in Algorithm 1 to construct a 100 · α% simulta-
neous confidence region for θJ in practice.



EDGE DIFFERENTIALLY PRIVATE ESTIMATION 721

Algorithm 1 Selecting tuning parameter δ

1: obtain {θ̂�}p�=1, {μ̂�,1}p�=1 and {μ̂�,2}p�=1 based on (3.8), (3.9) and (3.10), respectively.
2: calculate

ϕ̂(i,j,�),1 = (1 − α − β) exp(θ̂i + θ̂�)

1 + exp(θ̂i + θ̂�)

1 − α − β

1 + exp(θ̂i + θ̂j )

(1 − α − β) exp(θ̂� + θ̂j )

1 + exp(θ̂� + θ̂j )
,

ϕ̂(i,j,�),2 = 1 − α − β

1 + exp(θ̂i + θ̂�)

(1 − α − β) exp(θ̂i + θ̂j )

1 + exp(θ̂i + θ̂j )

1 − α − β

1 + exp(θ̂� + θ̂j )
.

3: repeat
4: leave out one (i, j) ∈ H� randomly and denote by H−

� the set including the rest elements in
H�.

5: calculate

μ̃�,1 = 1

|H−
� |

∑
(i,j)∈H−

�

ϕ̂(i,j,�),1 and μ̃�,2 = 1

|H−
� |

∑
(i,j)∈H−

�

ϕ̂(i,j,�),2,

which provide the estimates of μ�,1 and μ�,2, respectively.
6: calculate

bias� = 4−1μ̃−2
�,2(μ̂�,2 − μ̃�,2)

2 − 4−1μ̃−2
�,1(μ̂�,1 − μ̃�,1)

2.

7: until M replicates obtained, for a large integer M , and get bias(1)
� , . . . ,bias(M)

� .
8: approximate the high-order bias in θ̂� by

b̂ias� = 1

M

M∑
m=1

bias(m)
� ,

and obtain θ̂bc
� = θ̂� − b̂ias�, the bias-correction for θ̂�.

9: calculate

μ̃bc
�,1 = 1

|H�|
∑

(i,j)∈H�

ϕ̃(i,j,�),1 and μ̃bc
�,2 = 1

|H�|
∑

(i,j)∈H�

ϕ̃(i,j,�),2,

where ϕ̃(i,j,�),1 and ϕ̃(i,j,�),2 are defined in the same manner as ϕ̂(i,j,�),1 and ϕ̂(i,j,�),2, respectively,
with replacing {θ̂�}p�=1 by {θ̂bc

� }p�=1.

10: calculate ν̂bc
� = (p − 2)b̂bc

� + ˆ̃
bbc
� , where b̂bc

� and ˆ̃
bbc
� are defined in the same manner of b̂� and ˆ̃

b�

specified as (A.3) in the Appendix with replacing (μ̂�,1, μ̂�,2, {θ̂k}pk=1) by (μ̃bc
�,1, μ̃

bc
�,2, {θ̂bc

k }pk=1).
11: repeat
12: given δ > 0 and draw bootstrap samples Z† = (Z

†
i,j )p×p as in (4.2), calculate the bootstrap

estimate θ̂
†
� defined in (4.4) based on the bootstrap samples Z†.

13: until M replicates obtained, for a large integer M , and get θ̂
†,(1)
� , . . . , θ̂

†,(M)
� .

14: calculate

ν̂
†
� (δ) = p2

M

M∑
m=1

{
θ̂

†,(m)
� − ¯̂

θ
†
�

}2

with ¯̂
θ

†
� = M−1 ∑M

m=1 θ̂
†,(m)
� .

15: select

δ̂opt = arg min
δ>0

max
�∈J

∣∣ν̂†
� (δ) − ν̂bc

�

∣∣.
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5. Numerical study.

5.1. Simulation. In this section, we illustrate the finite sample properties of our proposed
method of estimation and inference for the unknown parameters in the β-model by simula-
tion. For p ∈ {1000,2000}, we draw θ1, . . . , θp independently from N (0,0.2), and then gen-
erate the adjacency matrix X according to the β-model (3.1). For a given original network X,
we set α = β ∈ {0,0.1,0.2,0.3} in the data release mechanism (2.3) and (2.4) to generate Z.
Note that Z = X when α = β = 0.

Based on the released data Z, we applied the moment-based method (3.8) to estimate
θ = (θ1, . . . , θp)�, and then calculated the estimation error L(θ̂) = p−1|θ̂ − θ |22. For com-
parison, we also considered to apply the MLE of Karwa and Slavković (2016) to the degree
sequence of the released data Z. Table 1 reports the averages, medians and standard devia-
tions of the estimation errors over 500 replications. The proposed moment-based estimation
performed competitively in relation to the MLE, though the MLE is slightly more accurate
overall. However, the MLE method is memory-demanding when p is large. For example,
with p = 1000 and α = β = 0.1, the step generating a graph with given degree sequence
(i.e., Algorithm 2 of Karwa and Slavković (2016)) occupied 3.91 GB memory. In contrast,
the newly proposed moment-based estimation only used 38.19 MB memory. Furthermore,
the MLE is excessively time-consuming computationally when p is large. See Table 1 for
the recorded average CPU times for each realization on an Intel(R) Xeon(R) Platinum 8160
processor (2.10 GHz). With p = 1000, the average required CPU time for computing the
MLE once is over 471 minutes with the original data X (i.e., α = β = 0) and is almost double
with the sanitized data Z (i.e., α,β > 0). It is practically infeasible to conduct the simulation
(with replications) for all scenarios with p = 2000, for which we only report the results with
α = β = 0 with the average CPU time 5095 minutes per estimation.

We note that Algorithm 2 of Karwa and Slavković (2016) might be made more efficient if
it is modified to directly estimate the node degree sequence without actually producing the
intermediate graph, the latter step which requires MCMC. Additionally, such an approach
might also help with convergence issues. In particular, and as an important caveat to the
above results, we note that in order to achieve MLE estimates for 500 trials in our simulations
it was necessary to discard a nontrivial fraction of trials for which the MCMC algorithm
failed to converge. Specifically, when α = β = 0.1, 0.2 and 0.3, the proportion of trials that

TABLE 1
Estimation errors of the proposed moment-based estimation and the maximum likelihood estimation for θ in the
β-model (3.1). Also reported are the average CPU times (in minutes) for completing the estimation once for each

of the two methods

Proposed method Maximum likelihood estimation

Summary
p statistics α = β = 0 α = β = 0.1 α = β = 0.2 α = β = 0.3 α = β = 0 α = β = 0.1 α = β = 0.2 α = β = 0.3

1000 Average 0.0041 0.0065 0.0117 0.0274 0.0062 0.0057 0.0107 0.0239
Median 0.0041 0.0065 0.0117 0.0274 0.0041 0.0057 0.0107 0.0239
Standard
deviation

0.0002 0.0003 0.0006 0.0012 0.0085 0.0002 0.0005 0.0015

Time (min) 1.0340 1.0439 0.9191 0.8540 471.6290 850.2369 754.2811 780.9615

2000 Average 0.0020 0.0032 0.0058 0.0133 0.0058 NA NA NA
Median 0.0020 0.0032 0.0058 0.0133 0.0043 NA NA NA
Standard
deviation

0.0001 0.0001 0.0002 0.0004 0.0019 NA NA NA

Time (min) 4.2333 4.8707 3.7540 3.7256 5095.0520 NA NA NA
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TABLE 2
Empirical frequencies of the constructed simultaneous confidence regions for θ covering the truth in the β-model

(3.1)

p Level α = β = 0 α = β = 0.1 α = β = 0.2 α = β = 0.3

1000 90% 0.876 0.868 0.910 0.888
95% 0.932 0.928 0.958 0.948
99% 0.984 0.982 0.982 0.992

2000 90% 0.900 0.876 0.898 0.896
95% 0.950 0.956 0.946 0.952
99% 0.988 0.990 0.996 0.992

needed to be discarded were, respectively, 3%, 10% and 21%. That is, MLE convergence was
increasingly problematic with increasing noise level, and hence with increasing privacy. No
trials were discarded for our proposed moment-based approach.

Based on our moment-based estimator θ̂ , we also constructed the simultaneous confidence
regions (4.6) for all the p components θ1, . . . , θp . To determine the tuning parameter δ, we
applied the data-driven Algorithm 1 with M = 500. Table 2 lists the relative frequencies, in
500 replications for each settings, of the occurrence of the event that the constructed confi-
dence region contains the true value of θ . At each of the three nominal levels, those relative
frequencies are always close to the corresponding nominal level.

5.2. Real data analysis. Facebook, a social networking site launched in February 2004,
now overwhelms numerous aspects of everyday life, and has become an immensely popular
societal obsession. The Facebook friendships define a network of undirected edges that con-
nect individual users. In this section, we analyze a small Facebook friendship network data
set available at http://wwwlovre.appspot.com/support.jsp. The network consists of 334 nodes
and 2218 edges.

We fit the β-model to this network. As an illustration on the impact of the “jittering,” we
identify the nodes with the associated parameters equal to 0 based on both the original net-
work and some sanitized versions. More specifically, we first consider the multiple hypothesis
tests:

H0,� : θ� = 0 versus H1,� : θ� �= 0

for 1 ≤ � ≤ 334. The moment-based estimate θ̂ = (θ̂1, . . . , θ̂334)
� based on the original data

X is calculated according to (3.8). Theorem 1 indicates that the p-value for the �th test is
given by 2{1 − �(

√
333b̂

−1/2
� |θ̂�|)} with b̂� defined as (A.3) in the Appendix. Note that θ̂�1

and θ̂�2 are asymptotically independent for any �1 �= �2. The BH procedure (Benjamini and
Hochberg (1995)) at the rate 1% for the 334 multiple tests identifies the 10 nodal parameters
(θ2, θ21, θ33, θ51, θ78, θ186, θ202, θ211, θ263, θ272) being not significantly different from 0. Put
J = {2,21,33,51,78,186,202,211,263,272}. We consider now the testing problem for the
single hypothesis setting

H0 : θJ = 0 versus H1 : θJ �= 0(5.1)

based on both the original network X and its sanitized versions Z via jittering mechanism
(2.3) with α = β = 0.1,0.2 and 0.3. Let ζ 1, . . . , ζ 1000 be independently generated from
N (0, I10). By Theorem 3, the p-value of the test for (5.1) based on Z is approximately

1

1000

1000∑
m=1

I
{|ζm|∞ ≥ √

333 × 332
∣∣V̂−1/2

J θ̂
(Z)

J
∣∣∞}

,

http://wwwlovre.appspot.com/support.jsp
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where θ̂
(Z)

J is the estimate of θJ based on Z by the moment-based method (3.8), and V̂J

is the estimate of the asymptotic covariance of
√

333 × 332{θ̂ (Z)

J − θJ }. When α = β = 0,
Z = X, the p-value for testing (5.1) based on X is then 0.1019. As the test based on Z depends
on a particular realization when α = β = 0.1,0.2 and 0.3, we repeat the test 500 times for
each setting. The average p-values of those 500 tests (based on Z) with α = β = 0.1,0.2
and 0.3 are, respectively, 0.1276, 0.1522 and 0.1874, which are reasonably close to the p-
value based on X. The standard errors of the 500 p-values are 0.0795, 0.1281 and 0.1408,
respectively, for α = β = 0.1,0.2 and 0.3.

This small illustration suggests that, with increasing edge noise (and hence increasing pri-
vacy) the resulting p-value is increasingly overestimated with increasing standard error. Both
trends are to be expected—since with increasing edge-noise the signal will be weakened—
and merit future study.

6. Extension to the sparse β-model. Under Condition 1 imposed on the β-model (3.1),
we have

min
i,j : i<j

P(Xi,j = 1) ≥ exp(−c)

1 + exp(−c)
� 1

for some positive constant c, which implies the expected number of edges of the network
should be of order at least p2, and thus the network will be dense. In this last section, we
illustrate how our results may be extended to the case of sparse networks, through several
additional results. A full generalization of our results for the dense case, inclusive of the
bootstrap-based inferential procedure, is beyond the present scope.

To model the sparse networks, Chen, Kato and Leng (2021) consider the sparse β-model
defined as

P(Xi,j = 1) = exp(ξ + θ̌i + θ̌j )

1 + exp(ξ + θ̌i + θ̌j )
,(6.1)

where ξ ∈ R and θ̌ = (θ̌1, . . . , θ̌p)� ∈ R
p
+ are both unknown parameters with |θ̌ |0 
 p and

min�∈[p] θ̌� = 0. Denote by S the support of θ̌ , that is, S = {� ∈ [p] : θ̌� �= 0}. Write |S| = s.
Given some constants ω1 ∈ [0,2) and ω2 ∈ [0,1) such that 0 ≤ ω1 − ω2 < 1, Chen, Kato and
Leng (2021) consider the reparametrization

ξ = −ω1 logp + ξ+ and θ̌� = ω2 logp + θ̌+
� for all � ∈ S,

where |ξ+| = o(logp) and max�∈S |θ̌+
� | = o(logp). Let

(6.2) θ� = ξ

2
+ θ̌�, � ∈ [p].

The sparse β-model (6.1) can be reformulated as the standard β-model (3.1) with

|θ |∞
⎧⎨⎩∼

∣∣∣∣ω1

2
− ω2

∣∣∣∣ logp if ω1 �= 2ω2,

= o(logp) if ω1 = 2ω2.

Applying the estimation procedure given in Section 3.2 to the sanitized network Z =
(Zi,j )p×p defined as in (2.3)–(2.5), we can also obtain the moment-based estimator θ̂� defined
as (3.8) for the unknown parameter θ� given in (6.2). For the positive stochastic sequence {ap}
and the positive sequence {cp}, we write ap = Õp(cp) if ap = Op(p

εcp) for some sufficiently
small fixed constant ε > 0. Proposition 5 gives the convergence rate of max�∈[p] |θ̂� − θ�| un-
der the sparse β-model.
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PROPOSITION 5. Let (α,β) ∈ M(γ,C1) for some fixed constant C1 ∈ (0,0.5). Write
χp = exp(−|ξ+| ∨ max�∈S |θ̌+

� |). If 0 ≤ ω2 ≤ ω1 < 1/2, then

max
�∈[p] |θ̂� − θ�| = Õp

(
log1/2 p

γp1/2−ω1

)
+ Õp

(
s log1/2 p

γp3/2−ω1−ω2

)
+ Õp

(
log1/2 p

γ 3p1−2ω1

)
provided that γ � χ−8

p (sp−3/2+ω1+ω2 log1/2 p + p−1/3+2ω1/3 log1/6 p).

REMARK 4. Under the assumption |ξ+| ∨ max�∈S |θ̌+
� | = o(logp), we know χ−1

p =
exp{o(logp)}. As shown in Section F of the Supplementary Material (Chang et al. (2024)),
there exists some universal positive constant c such that

max
�∈[p] |θ̂� − θ�| = χ−c

p ·
{
Op

(
log1/2 p

γp1/2−ω1

)
+ Op

(
s log1/2 p

γp3/2−ω1−ω2

)
+ Op

(
log1/2 p

γ 3p1−2ω1

)}
provided that γ � χ−8

p (sp−3/2+ω1+ω2 log1/2 p + p−1/3+2ω1/3 log1/6 p). If the network X is

dense with ω1 = 0, |ξ+| ≤ C and max�∈S |θ̌+
� | ≤ C for some universal positive constant C, it

follows from Proposition 5 that

max
�∈[p] |θ̂� − θ�| = Op

(
log1/2 p

γp1/2

)
+ Op

(
log1/2 p

γ 3p

)
provided that γ � p−1/3 log1/6 p, which is identical to the result in Proposition 3.

By (6.2) and s 
 p in the sparse β-model, we can estimate ξ and θ̌� as follows:

(6.3) ξ̂ = 2

p

∑
�∈[p]

θ̂� and ˆ̌
θ� = θ̂� − ξ̂

2
.

Due to | ˆ̌θ� − θ̌�| ≤ |θ̂� − θ�| + |ξ̂ − ξ |/2 and

|ξ̂ − ξ | =
∣∣∣∣ 2

p

∑
�∈[p]

(θ̂� − θ� + θ̌�)

∣∣∣∣ ≤ 2 max
�∈[p] |θ̂� − θ�| + O

(
s logp

p

)
,

by Proposition 5, we have the following theorem.

THEOREM 4. Let (α,β) ∈ M(γ,C1) for some fixed constant C1 ∈ (0,0.5). Write χp =
exp(−|ξ+| ∨ max�∈S |θ̌+

� |). If 0 ≤ ω2 ≤ ω1 < 1/2, then

|ξ̂ − ξ | = Õp

(
log1/2 p

γp1/2−ω1

)
+ Õp

(
s log1/2 p

γp3/2−ω1−ω2

)

+ Õp

(
log1/2 p

γ 3p1−2ω1

)
+ O

(
s logp

p

)
= max

�∈[p] |
ˆ̌
θ� − θ̌�|

provided that γ � χ−8
p (sp−3/2+ω1+ω2 log1/2 p + p−1/3+2ω1/3 log1/6 p).

REMARK 5. For known (ω1,ω2) and S , Theorem 1 of Chen, Kato and Leng (2021) spec-
ifies the convergence rates of the MLE for ξ+ and {θ̌+

� }�∈S based on the true network X rather

than the sanitized network Z (i.e., α = β = 0 in our setting). Denote by ξ̃+ and ˜̌
θ+
� , respec-

tively, the MLE of ξ+ and θ̌+
� proposed in Chen, Kato and Leng (2021). To simplify our com-

parison, we assume |ξ+| ∨ max�∈S |θ̌+
� | = O(1). Under the restriction s = O{p(1−ω2)/2−c}

for some sufficiently small constant c > 0, Theorem 1(ii) of Chen, Kato and Leng (2021)
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implies |ξ̃+ − ξ+| = Op(p
−1+ω1/2) and | ˜̌θ+

� − θ̌+
� | = Op{p−1/2+(ω1−ω2)/2} for any � ∈ S .

With known (ω1,ω2), we can obtain the following estimators for ξ+ and θ̌+
� based on ξ̂ and

ˆ̌
θ� given in (6.3):

ξ̂+ = ξ̂ + ω1 logp and ˆ̌
θ+
� = ˆ̌

θ� − ω2 logp.

Recall γ = 1 − α − β . By Theorem 4 with γ = 1 and s = O{p(1−ω2)/2−c} for some
sufficiently small constant c > 0, it holds that |ξ̂+ − ξ+| = Õp(p

−1/2+ω1 log1/2 p) and

max�∈[p] | ˆ̌θ+
� − θ̌+

� | = Õp(p
−1/2+ω1 log1/2 p), which are slower than the convergence rates of

the MLE considered in Chen, Kato and Leng (2021). Their method cannot be implemented
directly with unknown (ω1,ω2) while our moment-based method can still work.

APPENDIX

A brief discussion of the fundamental issue of estimating asymptotic variances in The-
orem 1 is provided here. If we know the decay rate of γ falls into which region, we may
consider to construct the confidence region of (θ�1, . . . , θ�s )

� based on Theorem 1 with the
plug-in method. To do this, we need to estimate b�k

’s and b̃�k
’s first. By (3.11), we can esti-

mate λi,� by

(A.1) λ̂i,� = 1

p − 2

∑
j : j �=�,i

{
1

μ̂�,1
ϕ(�,j),1ϕ(i,j),0 + 1

μ̂�,2
ϕ(�,j),0ϕ(i,j),1

}
with μ̂�,1 and μ̂�,2 specified in (3.9) and (3.10), respectively. By the definition of Zi,j , we
have

Var(Zi,j ) = α + (1 − β) exp(θi + θj )

1 + exp(θi + θj )
· 1 − α + β exp(θi + θj )

1 + exp(θi + θj )

for any i �= j . We can estimate Var(Zi,j ) by

(A.2) V̂ar(Zi,j ) = α + (1 − β) exp(θ̂i + θ̂j )

1 + exp(θ̂i + θ̂j )
· 1 − α + β exp(θ̂i + θ̂j )

1 + exp(θ̂i + θ̂j )
.

Based on (A.1) and (A.2), we can estimate b� and b̃�, respectively, by

b̂� = 1

p − 1

∑
i: i �=�

λ̂2
i,�V̂ar(Zi,�),

ˆ̃
b� = 1

2N

(
μ̂�,1 + μ̂�,2

μ̂�,1μ̂�,2

)2 ∑
i,j : i �=j, i,j �=�

V̂ar(Zi,�)V̂ar(Z�,j )V̂ar(Zi,j ).

(A.3)

The convergence rates of such estimates are presented in Proposition 6. The proof of Propo-
sition 6 is given in Section C of the Supplementary Material (Chang et al. (2024)).

PROPOSITION 6. Let Condition 1 hold and (α,β) ∈ M(γ ;C1) for some fixed constant
C1 ∈ (0,0.5). If γ � p−1/3 log1/6 p, for any given � ∈ [p], it holds that∣∣∣∣ b̂�

b�

− 1
∣∣∣∣ = Op

(
logp

γ 4p

)
+ Op

(
log1/2 p

γ 2p1/2

)
,

∣∣∣∣ ˆ̃
b�

b̃�

− 1
∣∣∣∣ = Op

(
log1/2 p

γ 3p

)
+ Op

(
log1/2 p

γp1/2

)
.
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For any fixed integer s ≥ 1, Theorem 1 and Proposition 6 imply that

p1/2 diag
(
b̂

−1/2
�1

, . . . , b̂
−1/2
�s

)
(θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� → N (0, Is)

in distribution as p → ∞ if γ � p−1/4 log1/4 p, and

p diag
( ˆ̃
b

−1/2
�1

, . . . ,
ˆ̃
b

−1/2
�s

)
(θ̂�1 − θ�1, . . . , θ̂�s − θ�s )

� → N (0, Is)

in distribution as p → ∞ if p−1/3 log1/6 p 
 γ 
 p−1/4. Unfortunately, such plug-in
method does not work in the scenario p−1/4 � γ � p−1/4 log1/4 p since b̂� is no longer a
valid estimate for b�. On the other hand, it is difficult to judge in practice which regime
the decay rate of γ falls into with finite samples. Hence, the plug-in method is powerless
practically.
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