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ABSTRACT
The spectral density matrix is a fundamental object of interest in time series analysis, and it encodes both
contemporary and dynamic linear relationships between component processes of the multivariate system.
In this article we develop novel inference procedures for the spectral density matrix in the high-dimensional
setting. Specifically, we introduce a new global testing procedure to test the nullity of the cross-spectral
density for a given set of frequencies and across pairs of component indices. For the first time, both Gaussian
approximation and parametric bootstrap methodologies are employed to conduct inference for a high-
dimensional parameter formulated in the frequency domain, and new technical tools are developed to
provide asymptotic guarantees of the size accuracy and power for global testing. We further propose a
multiple testing procedure for simultaneously testing the nullity of the cross-spectral density at a given
set of frequencies. The method is shown to control the false discovery rate. Both numerical simulations
and a real data illustration demonstrate the usefulness of the proposed testing methods. Supplementary
materials for this article are available online, including a standardized description of the materials available
for reproducing the work.
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1. Introduction

The spectral density matrix plays an important role in time
series analysis, as it completely characterizes the second order
properties of a multivariate stationary time series; moreover, it
is a crucial quantity in the modeling, inference, and prediction
of time series. It has been used in discriminant analysis for time
series (Taniguchi and Kakizawa 2000), identification and esti-
mation of generalized dynamic factor models (Forni et al. 2000),
and non-correlation/independence testing for two time series
(Eichler 2007; Shao 2009), to name a few examples. Estimation
and inference for the univariate spectral density and multivariate
low-dimensional spectral density matrix have a long history,
and classical methods based on the smoothed periodogram or
lag-window estimates have been well documented in classical
textbooks such as Hannan (1970), Priestley (1981), Brillinger
(2001), and Brockwell and Davis (2006). More recent contribu-
tions can be found in Shao and Wu (2007), Liu and Wu (2009),
and Wu and Zaffaroni (2018), among others.

With the advancement of science and technology, high-
dimensional time series have been increasingly collected
in many areas, such as neuroimaging studies, finance, and
climate science, as well as official statistics. This situation
motivates the development of new statistical methodology
and theory to accommodate the data’s high dimensionality.
For example, the classical smoothed periodogram estimate
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of the multivariate spectral density matrix can be improved
by a shrinkage approach; see Böhm and von Sachs (2008,
2009), Fiecas and Ombao (2011), and Fiecas and von Sachs
(2014), among others. The popular regularization approaches
used in covariance and precision matrix estimation, such as
graphical LASSO (Yuan and Lin 2007), thresholding (Bickel
and Levina 2008), and constrained L1 minimization (Cai, Liu,
and Luo 2011), have been extended to estimate either the high-
dimensional spectral density matrix or its inverse by Sun et al.
(2018), Fiecas et al. (2019), and Tugnait (2022). Related work
along this line also includes Zhang and Wu (2021), which
established convergence rates of regularized estimates of the
spectral density matrix and its inverse under a high-dimensional
locally stationary framework. Recently, Barigozzi and Farne
(2024) introduced a new estimator of the high-dimensional
spectral density matrix—under the assumptions of low rank
and sparse structure—via minimizing a quadratic loss under a
nuclear norm, together with a L1 norm constraint to control the
latent rank and residual sparsity pattern.

While the literature on estimating the high-dimensional
spectral density matrix or its inverse has been growing rapidly,
there seems to be relatively less work devoted to inference for
the spectral density matrix, which is our focus here. In this
article, we aim to develop new theory and methods for the
inference of the spectral density matrix of a high-dimensional
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weakly stationary time series. In particular, we propose a new
maximum-type test statistic to test for the joint hypothesis that
the cross-spectral density is zero for a given set of frequencies
and pairs of indices. We establish a Gaussian approximation
result for our maximum-type test statistic, and provide a
computationally feasible parametric bootstrap-based approach
to approximate its finite sample distribution. Building on the
newly established theory, we further develop a multiple testing
procedure to recover the support of the spectral density matrix
for a given set of frequencies.

Since the seminal work of Chernozhukov, Chetverikov,
and Kato (2013), the technique of Gaussian approxima-
tion has undergone rapid developments; see Chernozhukov,
Chetverikov, and Kato (2017, 2019), Chen (2018), Chen and
Kato (2019), Fang and Koike (2020), and Chernozhukov et al.
(2022), among others. A recent review of high-dimensional
data bootstrap and Gaussian approximation is provided by
Chernozhukov et al. (2023). The extension of Gaussian approx-
imation to high-dimensional time series was first developed by
Zhang and Wu (2017) and Zhang and Cheng (2018), but their
focus was mainly on inference for quantities such as means
and autocovariance matrices, which are formulated in the time
domain. By contrast, our parameter of interest is the cross-
spectral density measured over a set of frequencies, and our
technical treatment is rather different from that of Zhang and
Wu (2017) and Zhang and Cheng (2018). The closest works to
our article, from a technical perspective, are Chang, Jiang, and
Shao (2023) and Chang, Chen, and Wu (2024a).

Let {xt} be a p-dimensional weakly stationary time series.
Denote by F(ω) = {fi,j(ω)}p×p ∈ C

p×p the spectral density
matrix of {xt} at frequency ω ∈ [−π , π). Our main goal in
this article is to establish the Gaussian approximation to the
distribution of

T = sup
ω∈J

max
(i,j)∈I

∣∣∣∣√ n
ln

{f̂i,j(ω) − fi,j(ω)}
∣∣∣∣2

, (1)

where I ⊂ {1, . . . , p}2,J ⊂ [−π , π), and f̂i,j(ω) is some kernel-
based estimate of fi,j(ω) with bandwidth ln. Such a Gaussian
approximation result provides a technical tool for the inference
of the high-dimensional spectral density matrix. For each given
(i, j) ∈ I and ω ∈ J , |√n/ln{f̂i,j(ω)−fi,j(ω)}|2 usually converges
in distribution to the sum of squares of two correlated normal
random variables. Our setting is quite different from those con-
sidered in existing works, and this generates several technical
challenges for establishing the Gaussian approximation to the
distribution of T . See our detailed discussion in Remark 1(d) in
Section 2.2. In addition, we apply our Gaussian approximation
results to obtain false discovery rate (FDR) control in the multi-
ple testing procedure, which not only expands the application
of our Gaussian approximation results, but also extends the
validity of FDR control to the high-dimensional time series
setting.

As we mentioned earlier, the literature on the inference for the
high-dimensional spectral density matrix is scarce, and we are
only aware of two recent papers. Motivated by testing the mutual
independence of the component series in a p-dimensional
complex-valued Gaussian time series, Loubaton, Rosuel, and

Vallet (2023) investigated the asymptotic distribution for the
maximum of smoothing-based estimators of the coherence (the
standarized cross-spectral density), and showed that its null-
distribution converges to a Gumbel limiting distribution when
p/n = o(1), as well as some other conditions on the smoothing
span. Krampe and Paparoditis (2022) developed new statistical
inference procedures for coherences and partial coherences of
a p-dimensional real-valued time series. They addressed the
estimation of partial coherence using a debiased approach, and
developed a testing procedure for the null hypothesis that the
partial coherences do not exceed some user-specified threshold
value within a frequency band of interest. When p = o(nτ )

for some constant τ > 0, they showed that the limiting
distribution for the maximum of sample partial coherence
over frequencies is the classical Gumbel distribution (or its
variant).

In contrast to these two works, we focus on the Gaussian
approximation to the distribution of T defined as (1), which
can also be used to conduct inference for coherences (see Sec-
tion 2.1 for details). It is worth noting that the maximum-
type test statistics in both Loubaton, Rosuel, and Vallet (2023)
and Krampe and Paparoditis (2022) are taken over a set of
frequencies that are equally spaced, with the spacing having
larger order of magnitude than 2π/n (the spacing for con-
secutive Fourier frequencies). This construction appears to be
necessary in order for these authors to obtain a Gumbel limiting
distribution. Technically speaking, the derivation of the Gumbel
limiting distribution relies on the weak dependency among test
statistics across frequencies. Hence, in Loubaton, Rosuel, and
Vallet (2023) and Krampe and Paparoditis (2022), the spacing
between the frequencies cannot be too close. In addition, Louba-
ton, Rosuel, and Vallet (2023) required the time series to be
mean-zero stationary and complex-valued Gaussian time series
with mutually independent component time series under the
null. By contrast, we allow some dependence between different
components of time series under the null, and we consider real-
valued time series in this article. Our proposed method can also
be extended to complex-valued time series but is not pursued
here. Krampe and Paparoditis (2022) mainly focused on the
hypothesis testing and support recovery of the partial coherence
matrix of real-valued high-dimensional time series. From the
viewpoint of asymptotic approximation, it is a common belief
that the maximum-type statistics usually converge slowly to the
Gumbel distributions (Hall 1991), and the bootstrap is often
employed to provide a better finite sample approximation. By
contrast, our Gaussian approximation theory does not require
any dependence structure among the quantities |√n/ln{f̂i,j(ω)−
fi,j(ω)}|2 across frequencies, so we have no requirements on
the spacing of frequencies ω ∈ J as long as they are distinct
and fall into [−π , π). Notice that the limiting distribution of
T defined in (1) may not admit a closed form (or even does
not exist), but its finite sample distribution can nevertheless be
well-approximated by its parametric bootstrap counterpart. The
technical tools employed in these two papers and ours are very
different.

A primary application of our inference procedure for the
high-dimensional spectral density matrix is the division of large
time series databases into batches suitable for joint analysis.
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For example, a database of county-level time series can be
organized into batches by state, and it is of interest to know
if there is significant content in the cross-spectra of two batches;
if so, there may be merit in jointly modeling the batches, but
otherwise analysis can proceed upon smaller collections. A
second motivation for our work comes from the processing
and analysis of seasonal time series at statistical agencies such
as the U.S. Census Bureau (USCB). At USCB, many weekly,
monthly, and quarterly economic time series are published,
all of which exhibit seasonality of varying types and degrees.
The USCB performs seasonal adjustment of such time series in
order to remove seasonality; both the original and seasonally
adjusted data are published for public use. Seasonal adjustment
is a vast world-wide undertaking, with the statistical agencies of
all developed countries (as well as many private companies)
adjusting thousands or millions of time series every month
(or quarter). One important task in practice is to evaluate
the effectiveness of seasonal adjustment, that is, whether the
strong seasonality has been properly removed or whether there
is an issue of over-adjustment (McElroy 2021; McElroy and
Roy 2022). For example, seasonal adjustment methods that
are intended to remove seasonality sometimes—when applied
to a time series with weak seasonality—result in zero power
spectrum at a “seasonal frequency”, for example, fi,i(π/2) = 0
for a quarterly time series. This motivates a joint testing problem
over many time series, where we wish to identify which series
have zero power at the seasonal frequencies (i.e., have been
over-adjusted).

The rest of the article is organized as follows. Section 2
presents the spectral density matrix estimate, a general Gaus-
sian approximation procedure, and the related theory. Section 3
contains two applications, including global testing and support
recovery via a multiple testing procedure. Section 4 investi-
gates the finite sample performance of the proposed testing
procedures via numerical simulation, and Section 5 provides an
illustration based on county-level quarterly time series of new
hires. Section 6 concludes the article. All technical details are rel-
egated to the supplementary material. For practical convenience
we have developed—in the R package HDTSA (Chang et al.
2024c)—two R-functions SpecTest and SpecMulTest that
implement the global testing and the multiple testing procedures
in an automatic manner, respectively.

Notation. Denote by I(·) the indicator function. For any posi-
tive integer q ≥ 2, we write [q] = {1, . . . , q}, and let [q]2 = [q]×
[q] denote the Cartesian product of [q]. Let |F | be the cardinality
of a countable setF . For two positive real-valued sequences {an}
and {bn}, we write an � bn if lim supn→∞ an/bn ≤ c0 for
some positive constant c0, an � bn if an � bn and bn � an
hold simultaneously, and an 	 bn if lim supn→∞ an/bn = 0.
For a complex-valued number x, denote by |x| its modulus.
The operator ⊗ denotes the Kronecker product. For any real-
valued numbers x and y, we write |x|+ = max(0, x) and
x ∨ y = max(x, y). Denote by S

q−1 the q-dimensional unit
sphere. For a q-dimensional vector a, denote by aL the subvector
of a consisting of the components indexed by a given index
set L ⊂ [q]. For any q1 × q2 matrix M = (mi,j)q1×q2 , let
|M|∞ = maxi∈[q1],j∈[q2] |mi,j|. Let 1d and Id be, respectively, a
d-dimensional vector with all components being 1, and a d × d
identity matrix.

2. Some Technical Results

2.1. Preliminary

Let xt = (x1,t , . . . , xp,t)� be a p-dimensional weakly station-
ary time series with mean vector μ = E(xt) and autoco-
variance matrix �(k) ≡ {γi,j(k)}p×p = cov(xt+k, xt). When∑∞

k=−∞ |γi,j(k)| < ∞ for each i, j ∈ [p], we can define the
spectral density matrix F(ω) for ω ∈ [−π , π) as

F(ω) ≡ {fi,j(ω)}p×p = 1
2π

∞∑
k=−∞

�(k)e−ιkω ,

where ι = √−1. Given the observations Xn = {x1, . . . , xn}, we
can estimate F(ω) by

F̂(ω) ≡ {f̂i,j(ω)}p×p = 1
2π

ln∑
k=−ln

W
(

k
ln

)
�̂(k)e−ιkω , (2)

where W(·) is a symmetric kernel function, ln = o(n) is the
bandwidth, and

�̂(k) = 1
n

min(n,n−k)∑
t=max(1,−k+1)

(xt+k − x̄)(xt − x̄)� (3)

with x̄ = n−1 ∑n
t=1 xt . To reduce the bias involved in (2), for

some constant c ∈ (0, 1], we adopt the flat-top kernel suggested
by Politis (2011):

W(u) = I(|u| ≤ c) + |u| − 1
c − 1

I(c < |u| ≤ 1) . (4)

For given (i, j) ∈ [p]2 and i < j, define the coherence
spectrum at frequency ω by

cohi,j(ω) = fi,j(ω)

{fi,i(ω)fj,j(ω)}1/2 .

As mentioned in Priestley (1981), the coherence may be
interpreted as the correlation coefficient between the random
coefficients in the spectral representations of the components
in xi,t and xj,t at frequency ω. Thus, cohi,j(ω) = 0 for all
ω ∈ [−π , π) is equivalent to fi,j(ω) = 0 for all ω ∈ [−π , π),
which implies the two processes {xi,t} and {xj,t} are linearly
unrelated at all lags. Within the scope of linear time series
models, the joint modeling of {(xi,t , xj,t)} can be simplified
by modeling the linear serial dependence of {xi,t} and {xj,t}
separately, provided that maxω∈[−π ,π) |fi,j(ω)| = 0. For a p-
dimensional weakly stationary time series {xt}, it is thus of
great importance to recover the support of nonzero coherence,
that is,

Sf :=
{
(i, j) ∈ [p]2 \ {(1, 1), . . . , (p, p)} :

max
ω∈[−π ,π)

|fi,j(ω)| �= 0
}

. (5)

It is worth noting that the coherence also plays an important role
in characterizing the functional connectivity between neural
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regions within the brain based on functional magnetic reso-
nance imaging data; see Sun, Miller, and D’Esposito (2004) and
Bowyer (2016). Additionally, in terms of joint modeling in the
frequency domain, it is of interest to understand the behavior of
the cross-spectrum (or coherence) for a specific set of frequen-
cies. For example, for a quarterly time series, we are interested
in the coherence at the “seasonal frequency” π/2 and the “trend
frequency” 0; if joint modeling of low-frequency fluctuation is
of particular interest, we may want to focus on a pre-specified
frequency interval such as [−ω0, ω0], where ω0 is determined
by the user based on the characteristics of time series, such
as sample size and expected seasonal behavior (e.g., monthly
or quarterly). For the application of seasonal over-adjustment
mentioned in Section 1, we also wish to consider the joint testing
problem H0 : fi,i(ω0) = 0 for all i ∈ [p], and the recovery of
the support of indices that correspond to nonzero power auto-
spectrum at ω0, where ω0 ∈ {−π , −π/2, 0, π/2}.

To study the above-mentioned testing and support recovery
problems, we define

Tn(ω; I) = max
(i,j)∈I

∣∣∣∣√ n
ln

{f̂i,j(ω) − fi,j(ω)}
∣∣∣∣2

for a given index set I ⊂ [p]2 and ω ∈ [−π , π). Given a
subset J ⊂ [−π , π), we will first establish in Section 2.2 the
Gaussian approximation to the distribution of supω∈J Tn(ω; I).
In practical problems, we mainly focus on two kinds of configu-
rations for J , viz. (a) J = {ω1, . . . , ωK} is a set with K distinct
frequencies −π ≤ ω1 < ω2 < · · · < ωK < π , where K may
grow with the sample size n; (b) J = [ωL, ωU ] is an interval
with −π ≤ ωL < ωU ≤ π , where J = [ωL, π) if ωU = π .
Based on the established Gaussian approximation theory, we can
address the following inference problems of a high-dimensional
time series:

• (Global hypothesis testing). For given I and J , consider the
testing problem H0 : fi,j(ω) = 0 for any (i, j) ∈ I and
ω ∈ J versus H1 : H0 is not true. Here I and J can be
chosen according to the user’s interest. If we are interested
in simultaneously testing the zero power auto-spectrum at a
seasonal frequency ω0 ∈ {−π , −π/2, 0, π/2}, we can select
I = {(1, 1), . . . , (p, p)} and J = {ω0}. If testing for the
zero cross-spectrum at all frequencies is of interest, we can
set I = [p]2 \ {(1, 1), . . . , (p, p)} and J = [−π , π). See
Section 3.1 for details.

• (Support recovery). In the event that the global null is
rejected, we are interested in the support of nonzero
elements, that is, {(i, j) ∈ I : supω∈J |fi,j(ω)| �= 0}. For
example, to recover Sf defined as (5), we can consider
a multiple testing problem with (p2 − p)/2 marginal
hypotheses H0,i,j : maxω∈[−π ,π) |fi,j(ω)| = 0 versus H1,i,j :
maxω∈[−π ,π) |fi,j(ω)| �= 0, with (i, j) ∈ [p]2 and i < j.
For each given (i, j), we can obtain the p-value for the
marginal null hypothesis H0,i,j by our established Gaussian
approximation result for the distribution of supω∈J Tn(ω; I)

with selecting I = {(i, j)} and J = [−π , π). Based on
the (p2 − p)/2 obtained p-values, we can propose a FDR
control procedure to estimate Sf as in (5). See Section 3.2 for
details.

2.2. A General Gaussian Approximation Procedure

Write r = |I|, ñ = n − 2ln, �(k) ≡ {γi,j(k)}p×p and �̂(k) ≡
{γ̂i,j(k)}p×p. Define x̊t ≡ (x̊1,t , . . . , x̊p,t)� = xt − μ for any t ∈
[n]. Let χ(·) = {χ1(·), χ2(·)} be a given bijective mapping from
[r] to I such that for any (i, j) ∈ I , there exists a unique 	 ∈ [r]
satisfying (i, j) = χ(	). For each t ∈ [ñ] and 	 ∈ [r], we define a
(2ln + 1)-dimensional vector

c	,t = 1
2π

{x̊χ1(	),t x̊χ2(	),t+ln − γχ(	)(−ln), . . . ,

x̊χ1(	),t+2ln x̊χ2(	),t+ln − γχ(	)(ln)}� . (6)
Notice thatE(c	,t) = 0. Let ct = (c�

1,t , . . . , c�
r,t)

� with c	,t defined
in (6). Define

η̌
ext

(ω) ≡ {η̌ext
1 (ω), . . . , η̌ext

2r (ω)}�

= {Ir ⊗ A(ω)} 1√
n

ñ∑
t=1

ct , (7)

where

A(ω) = 1√
ln

(
cos(−lnω) · · · cos(lnω)

− sin(−lnω) · · · − sin(lnω)

)
×diag{W(−ln/ln), . . . ,W(ln/ln)} . (8)

Denote the long-run covariance of the sequence {ct}ñ
t=1 by

� = Var
(

1√
ñ

ñ∑
t=1

ct

)
. (9)

For any ω1, ω2 ∈ [−π , π), we define
�(ω1, ω2) = {Ir ⊗ A(ω1)}�{Ir ⊗ A�(ω2)} . (10)

Then cov{η̌ext
(ω1), η̌ext

(ω2)} = (ñ/n)�(ω1, ω2) for any
ω1, ω2 ∈ [−π , π) with η̌

ext
(ω) defined as (7). To investigate

the limiting distribution of supω∈J Tn(ω; I), we need the
following regularity conditions. The validity of these conditions
are discussed in Section A of the supplementary material.

Condition 1. There exist some universal constants C1 > 0 and
C2 > 1 such that E{exp(C1|xj,t|2)} ≤ C2 for any t ∈ [n] and
j ∈ [p].
Condition 2. Let Fu−∞ and F+∞

u+k be the σ -fields generated,
respectively, by {xt}t≤u and {xt}t≥u+k. Define

αn(k) := sup
t

sup
(A,B)∈F t−∞×F+∞

t+k

|P(A ∩ B) − P(A)P(B)| .

There exist some universal constants C3 > 0 and C4 > 0 such
that αn(k) ≤ C3 exp(−C4k) for any positive k.

Condition 3. There exists a universal constant C5 > 0 such that
infω∈J d��(ω, ω)d ≥ C5 for any d ∈ ⋃r

j=1{d ∈ S
2r−1 : dSj ∈

S
1} with Sj = {2j − 1, 2j}.

Notice that in these conditions there are no explicit require-
ments on the cross-series dependence, and both weak and strong
cross-series dependence are allowed by our theory. In partic-
ular, the marginal covariance matrix can be banded or AR(1)-
type, representing weak cross-series dependence. Or it can be a
compound symmetric matrix, which implies strong cross-series
dependence. As a result, we can establish the following Gaussian
approximation result.
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Proposition 1. Assume r ≥ nκ for some sufficiently small
constant κ > 0, and let Conditions 1–3 hold. As n → ∞, the
following two assertions are valid.

(i) If J = {ω1, . . . , ωK} and log(Kr) 	 n1/9l−1
n log−8/3(ln),

with the bandwidth ln in (2) satisfying ln log8/3(ln) 	 n1/9 and
ln ≥ max{2, C log(Kr)} for some sufficiently large constant C >

0, then

sup
u≥0

∣∣∣∣P{
sup
ω∈J

Tn(ω; I) ≤ u
}

− P

{
max
j∈[Kr](s2

n,2j−1 + s2
n,2j) ≤ u

}∣∣∣∣
� ln log2/3(ln) log(Kr)

n1/9

for a (2Kr)-dimensional normally distributed random vector
sn,y = (sn,1, . . . , sn,2Kr)� ∼ N (0, H�H�), where H = {Ir ⊗
A�(ω1), . . . , Ir ⊗ A�(ωK)}� with A(ω) defined in (8), and � is
defined in (9).

(ii) If J = [ωL, ωU ] and log r 	 n1/9l−1
n log−8/3(ln), with

the bandwidth ln in (2) satisfying ln log8/3(ln) 	 n1/9 and ln ≥
max(2, C log r) for some sufficiently large constant C > 0, then

sup
u≥0

∣∣∣∣P{
sup
ω∈J

Tn(ω; I) ≤ u
}

−P

[
sup
ω∈J

max
j∈[r] {g2

n,2j−1(ω) + g2
n,2j(ω)} ≤ u

]∣∣∣∣
� ln log2/3(ln) log r

n1/9

for a (2r)-dimensional Gaussian process gn(ω) = {gn,1(ω), . . . ,
gn,2r(ω)}� with mean zero and covariance function �(ω1, ω2)
defined as (10).

Remark 1. (a) In Proposition 1 and other theoretical results
of this article, we focus on the high-dimensional scenario by
assuming r ≥ nκ for some sufficiently small constant κ >

0. Such an assumption is quite mild in the literature of high-
dimensional data analysis and it is not necessary for our theory,
which is just used to simplify the presentation. In our theoretical
proofs, we need to compare log n with log(Kr) or log r in many
places. Without such a restriction, the proof of Proposition 1 will
become much lengthier and some log(Kr) and log r terms in the
theoretical results should be replaced by log(nKr) and log(nr),
respectively. Our proposed Gaussian approximation procedure
also works for the scenario with fixed r.

(b) If the bandwidth ln � nδ for some constant 0 < δ <

1/9, then Proposition 1(i) holds provided that log(Kr) 	
min{nδ , n1/9−δ log−8/3(n)}, and Proposition 1(ii) holds pro-
vided that log r 	 min{nδ , n1/9−δ log−8/3(n)}.

(c) In practice, we can select the bandwidth ln by adapting
the simple rule suggested in Section 2.1 of Politis (2003).
More specifically, let ln = 2m̂, where m̂ is the smallest
positive integer such that p−2 ∑p

i=1
∑p

j=1 |ρ̂i,j(m̂ + k)| <

2
√

n−1 log n for k = 1, . . . , 5, and ρ̂(k) ≡ {ρ̂i,j(k)}p×p =
diag{�̂(0)}−1/2�̂(k)diag{�̂(0)}−1/2 with �̂(k) specified in (3).
Our numerical results in Section 4 verify its good finite-sample
performance.

(d) Since {xt} is an α-mixing sequence, we know {ct} is also
an α-mixing sequence. Denote by α̃n(k) the α-mixing coefficient
of the sequence {ct}. By Condition 2, it holds that α̃n(k) ≤

αn(|k − 2ln|+) ≤ C3 exp(−C4|k − 2ln|+). When ln diverges
with n, the α-mixing coefficients of the sequence {ct} vary with
n. For J = {ω1, . . . , ωK}, it is essential to establish the Gaussian
approximation for P(n−1/2 ∑n−2ln

t=1 Hct ∈ A), where A is a
2-sparsely convex set, and H involves the frequency domain
content. The most related works are Chang, Jiang, and Shao
(2023) and Chang, Chen, and Wu (2024a). By comparison,
Chang, Jiang, and Shao (2023) only considered the Gaussian
approximation for hyperrectangle sets, not for sparsely convex
sets, and the theoretical results for sparsely convex sets in Chang,
Chen, and Wu (2024a) did not allow the α-mixing coefficients
to vary with n. Therefore, the existing theoretical results cannot
be applied to establish Proposition 1(i) when ln diverges with n.
For J = [ωL, ωU ], we need to construct the Gaussian approxi-
mation for the distribution of the supremum of a stochastic pro-
cess. The most related work is Chernozhukov, Chetverikov, and
Kato (2014). With iid observations, they developed a new direct
approach to approximate the supremum of general empirical
processes by a sequence of supremums of Gaussian processes.
However, our setting focuses on dependent observations and
T is not the supremum of an empirical process. Hence, the
results of Chernozhukov, Chetverikov, and Kato (2014) cannot
be applied to our setting.

2.3. Parametric Bootstrap Procedure

To apply Proposition 1 to approximate the distribution of
supω∈J Tn(ω; I), we need to propose an estimate of the long-
run covariance � given in (9). Recall �̂(k) = {γ̂i,j(k)}p×p and
x̄ = (x̄1, . . . , x̄p)� = n−1 ∑n

t=1 xt . Let ˆ̊xt = ( ˆ̊x1,t , . . . , ˆ̊xp,t)� =
xt − x̄. For each 	 ∈ [r], define a vector

ĉ	,t = 1
2π

{ ˆ̊xχ1(	),t ˆ̊xχ2(	),t+ln − γ̂χ(	)(−ln), . . . ,

ˆ̊xχ1(	),t+2ln ˆ̊xχ2(	),t+ln − γ̂χ(	)(ln)
}� , (11)

which provides an approximation to c	,t defined in (6). Write
ĉt = (ĉ�

1,t , . . . , ĉ�
r,t)

�. Based on such defined ĉt , we propose a
kernel-type estimator suggested by Andrews (1991) for the long-
run covariance matrix � as follows:

�̂ =
ñ−1∑

q=−ñ+1

K
(

q
bn

)
�̂(q) , (12)

where �̂(q) = ñ−1 ∑min(ñ,ñ−q)

t=max(1,−q+1) ĉt+qĉ�
t , bn is the bandwidth,

and K(·) is a symmetric kernel function. When r is fixed,
Andrews (1991) systematically investigated the theoretical
properties of such an estimator for the long-run covari-
ance matrix, and showed that the Quadratic Spectral kernel
KQS(u) = 25/(12π2u2){sin(6πu/5)/(6πu/5) − cos(6πu/5)}
is the optimal kernel in the sense of minimizing the asymptotic
truncated mean square error. In our numerical work, we adopt
this Quadratic Spectral kernel with the data-driven selected
bandwidth suggested in Section 6 of Andrews (1991), that
is, bn = 1.3221(âñ)1/5, where â = {∑r(2ln+1)

s=1 4ρ̂2
s σ̂ 4

s (1 −
ρ̂s)−8}/{∑r(2ln+1)

s=1 σ̂ 4
s (1 − ρ̂s)−4} with ρ̂s and σ̂ 2

s being,
respectively, the estimated autoregressive coefficient and
innovation variance from fitting an AR(1) model to time series
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{ĉs,t}ñ
t=1, the sth component sequence of {ĉt}ñ

t=1, where ĉt =
{ĉ1,t , . . . , ĉr(2ln+1),t}�. Although Andrews’ method is developed
for low-dimensional data, both our theoretical and simulation
results show that this estimator works reasonably well when r
is large in relation to n. The performance of such kernel-type
estimator with different kernels and choices of bandwidth has
been studied in Chang, Jiang, and Shao (2023); their numerical
results show that this method is robust for different kernels and
bandwidths, and still works even in the high-dimensional case.

Condition 4. The symmetric kernel function K(·) is continu-
ously differentiable with bounded derivative on R satisfying (i)
K(0) = 1 and (ii) |K(x)| ≤ C6|x|−ϑ as |x| → ∞, for some
universal constants C6 > 0 and ϑ > 1.

Condition 4 is commonly used for nonparametric estima-
tion of the long-run covariance matrix; see Newey and West
(1987) and Andrews (1991). For kernel functions with bounded
support—such as the Parzen kernel and the Bartlett kernel—we
have ϑ = ∞ in Condition 4. As indicated in Andrews (1991),
to enforce that �̂ given in (12) be positive semi-definite we can
require the kernel function K(·) to satisfy

∫ ∞
−∞ K(x)e−ιxλ dx ≥

0 for any λ ∈ R with ι = √−1. The Quadratic Spectral, Bartlett,
and Parzen kernels all satisfy this requirement.

To construct the parametric bootstrap procedure, let
(ε1, . . . , εñ)

� ∼ N (0, 	) be independent of Xn = {x1, . . . , xn},
where 	 is a ñ × ñ matrix with (i, j)th element K{(i − j)/bn}.
Following the same arguments in Chang, Yao, and Zhou (2017),
conditionally on Xn, we have

1√
ñ

ñ∑
t=1

εt ĉt ∼ N (0, �̂)

with �̂ given in (12). Hence, conditionally on Xn,

η̂
ext

(ω) := {η̂ext
1 (ω), . . . , η̂ext

2r (ω)}�

= {Ir ⊗ A(ω)}
(

1√
ñ

ñ∑
t=1

εt ĉt

)
(13)

is a (2r)-dimensional Gaussian process with mean zero and
covariance function {Ir ⊗ A(ω1)}�̂{Ir ⊗ A�(ω2)}. Letting

ξJ := sup
ω∈J

max
	∈[r]

{|η̂ext
2	−1(ω)|2 + |η̂ext

2	 (ω)|2} , (14)

our next result shows that the distribution of supω∈J Tn(ω; I)

can be approximated by the distribution of ξJ conditional
on Xn.

Proposition 2. Assume Conditions 1–4 hold and r ≥ nκ for some
sufficiently small constant κ > 0. Let the bandwidth bn in (12)
satisfy bn � nρ for some constant ρ satisfying 0 < ρ < (ϑ −
1)/(3ϑ − 2) with ϑ specified in Condition 4. For ξJ defined in
(14), the following two assertions are true as n → ∞.

(i) If J = {ω1, . . . , ωK}, then

sup
u≥0

∣∣∣∣P{
sup
ω∈J

Tn(ω; I) ≤ u
}

− P(ξJ ≤ u |Xn)

∣∣∣∣ = op(1)

provided that log(Kr) 	 f1(ln, n; ϑ , ρ), with the bandwidth ln in
(2) satisfying the restriction max{2, C′ log(Kr)} ≤ ln 	 nf2(ϑ ,ρ)

for some sufficiently large constant C′ > 0, where f1(ln, n; ϑ , ρ)

and f2(ϑ , ρ) are defined by (21) and (22) in the Appendix,
respectively.

(ii) If J = [ωL, ωU ], then

sup
u≥0

∣∣∣∣P{
sup
ω∈J

Tn(ω; I) ≤ u
}

− P(ξJ ≤ u |Xn)

∣∣∣∣ = op(1)

provided that log r 	 f1(ln, n; ϑ , ρ), with the bandwidth ln in
(2) satisfying the restriction max(2, C′ log r) ≤ ln 	 nf2(ϑ ,ρ) for
some sufficiently large constant C′ > 0.

Remark 2. Proposition 2 requires the bandwidth ln involved in
(2) for the estimation of the high-dimensional spectral density
matrix F(ω) to satisfy the restriction ln 	 nf2(ϑ ,ρ). Such a
restriction together with bn � nρ is applied to guarantee
that the long-run covariance matrix estimate �̂ has a suitable
convergence rate to � under the loss | · |∞. If we select the
kernel function K(·) involved in (12) with bounded support
such as the Parzen kernel and the Bartlett kernel, then ϑ = ∞
in Condition 4, which implies ln should satisfy the restriction
ln 	 nf2(∞,ρ) with f2(∞, ρ) = min{ρ/3, (1 − 3ρ)/2}.
Furthermore, letting the bandwidth ln � nδ for some constant
0 < δ < f2(∞, ρ) and writing δ̃ = min{δ, (ρ − 3δ)/2, (1 −
3ρ − 2δ)/8}, then Proposition 2(i) holds provided that
log(Kr) 	 min{nδ̃ , n1/9−δ log−8/3(n)}, and Proposition 2(ii)
holds provided that log r 	 min{nδ̃ , n1/9−δ log−8/3(n)}.

3. Applications

In this section, we present two applications of our established
Gaussian approximation theory to inference for the high-
dimensional spectral density matrix, including the global
hypothesis testing in Section 3.1 and the multiple testing with
FDR control in Section 3.2.

3.1. Global Hypothesis Testing

Recall F(·) = {fi,j(·)}p×p. Given (I ,J ) such that I ⊂ [p]2 with
|I| = r and J ⊂ [−π , π), we consider the following hypothesis
testing problem:

H0 : fi,j(ω) = 0 for any (i, j) ∈ I and ω ∈ J versus
H1 : H0 is not true . (15)

We propose a test statistic for the hypothesis testing problem
(15) as follows:

Tn = sup
ω∈J

max
(i,j)∈I

∣∣∣∣√ n
ln

f̂i,j(ω)

∣∣∣∣2
. (16)

Notice that Tn = supω∈J Tn(ω; I) under the null hypothesis
H0. For given significance level α ∈ (0, 1), based on the theoret-
ical result of Proposition 2 we define the critical value

ĉvα := inf{u > 0 : P(ξJ ≤ u |Xn) ≥ 1 − α} .

Then we reject H0 specified in (15) at nominal level α if Tn >

ĉvα . Practically, we can always draw ξJ ,1, . . . , ξJ ,B indepen-
dently by (14) for some large integer B, and select the �Bα�th
largest value among them as the critical value ĉvα .
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Based on the selection of J , we define

MJ =
{

K , if J = {ω1, . . . , ωK} ,
n , if J = [ωL, ωU ] .

(17)

The next theorem states the theoretical guarantee of our pro-
posed global test.

Theorem 1. Assume Conditions 1–4 hold and r ≥ nκ for
some sufficiently small constant κ > 0. Let the bandwidth
bn in (12) satisfy bn � nρ for some constant ρ satisfying
0 < ρ < (ϑ − 1)/(3ϑ − 2) with ϑ specified in Condition 4,
and log(MJ r) 	 f1(ln, n; ϑ , ρ) with the bandwidth ln in (2)
satisfying max{2, C′ log(MJ r)} ≤ ln 	 nf2(ϑ ,ρ) for some suf-
ficiently large constant C′ > 0, where f1(ln, n; ϑ , ρ) and f2(ϑ , ρ)

are defined as (21) and (22) in the Appendix, respectively. As
n → ∞, the following two assertions are true.

(i) Under the null hypothesis H0, then P(Tn > ĉvα) → α.
(ii) Write λ(MJ , r, α) = {2 log(2MJ r)}1/2 +{2 log(4/α)}1/2

for given (MJ , r, α), and � = supω∈J max	∈[2r] σ 2
	 (ω) with

σ 2
	 (ω) being the 	th element in the main diagonal of �(ω, ω)

defined in (10). Under the alternative hypothesis H1, then
P(Tn > ĉvα) → 1 provided that supω∈J max(i,j)∈I |fi,j(ω)| ≥
2n−1/2l1/2

n �1/2λ(MJ , r, α)(1 + εn) for some positive εn satisfy-
ing εn → 0 and ε2

n�l−2
n log−2(ln) log−1(n)λ(MJ , r, α) → ∞.

Theorem 1(i) shows that the size of our proposed global test
can maintain the nominal level α asymptotically. Theorem 1(ii)
indicates that our proposed global test is consistent under cer-
tain local alternatives.

3.2. Multiple Testing with FDR Control

If the global null is rejected, it is important to recover the
pairs of indices that correspond to nonzero cross-spectrum (or
coherence). That is, we wish to estimate the support of Sf as
in (5). It turns out that support recovery can be formulated as a
simultaneous testing problem of (p2 − p)/2 hypotheses H0,i,j :
maxω∈[−π ,π) |fi,j(ω)| = 0 versus H1,i,j : maxω∈[−π ,π) |fi,j(ω)| �=
0, for (i, j) ∈ [p]2 and i < j. Below we will present a more general
version of the above multiple testing problem. This generality is
needed in our real data analysis, where the interest is to recover
the support set at the state level based on county-level time
series. See Section 5 for details.

Given {I(q),J (q)} with I(q) ⊂ [p]2 and J (q) ⊂ [−π , π), we
consider Q hypothesis testing problems:

H0,q : fi,j(ω) = 0 for any (i, j) ∈ I(q) and ω ∈ J (q) versus
H1,q : H0,q is not true

for q ∈ [Q]. Similar to (16), we propose the test statistic for H0,q
as follows:

T(q)
n = sup

ω∈J (q)

max
(i,j)∈I(q)

∣∣∣∣√ n
ln

f̂i,j(ω)

∣∣∣∣2
,

and reject H0,q when T(q)
n takes some large values. Let H0 =

{q ∈ [Q] : H0,q is true} and H1 = H \ H0 denote the sets of
true nulls and true alternatives, respectively. Write Q0 = |H0|.
For each q ∈ [Q], let rq = |I(q)| and χ (q)(·) = {χ(q)

1 (·), χ(q)

2 (·)}

be a given bijective mapping from [rq] to I(q) such that for any
(i, j) ∈ I(q), there exists a unique 	 ∈ [rq] satisfying (i, j) =
χ (q)(	). Analogously, we define a (2ln + 1)-dimensional vector

ĉ(q)

	,t = 1
2π

{ ˆ̊x
χ

(q)
1 (	),t

ˆ̊x
χ

(q)
2 (	),t+ln

− γ̂χ (q)(	)(−ln), . . . ,

ˆ̊x
χ

(q)
1 (	),t+2ln

ˆ̊x
χ

(q)
2 (	),t+ln

− γ̂χ (q)(	)(ln)
}�

for 	 ∈ [rq], where ˆ̊xt = ( ˆ̊x1,t , . . . , ˆ̊xp,t)� = xt − x̄. Let ĉ(q)
t =

{ĉ(q),�
1,t , . . . , ĉ(q),�

rq,t }� and

η̂
ext,(q)

(ω) := {
η̂

ext,(q)
1 (ω), . . . , η̂ext,(q)

2rq (ω)
}�

= {
Irq ⊗ A(ω)

} 1√
ñ

ñ∑
t=1

ε
(q)
t ĉ(q)

t ,

where {ε(q)

1 , . . . , ε(q)

ñ }� ∼ N (0, 	) and A(ω) is defined as
(8). Identical to η̂

ext
(ω) defined in (13), η̂

ext,(q)
(ω) is a (2rq)-

dimensional Gaussian process with mean zero and covariance
function {Ir ⊗ A(ω1)}�̂(q){Ir ⊗ A�(ω2)}, where �̂

(q) is defined
in the same manner of (12) but with replacing ĉt by ĉ(q)

t . Letting

ξ
(q)

J (q) := sup
ω∈J (q)

max
	∈[rq]

{|η̂ext,(q)

2	−1 (ω)|2 + |η̂ext,(q)

2	 (ω)|2} ,

we can show—identical to Proposition 2—that

max
q∈H0

sup
u≥0

∣∣P{
T(q)

n > u
} − P

{
ξ

(q)

J (q) > u |Xn
}∣∣ = op(1) . (18)

Denote by pv(q) = P{ξ (q)

J (q) ≥ T(q)
n |Xn} and V(q)

n = �−1{1 −
pv(q)} the p-value of H0,q and its normal quantile transforma-
tion, respectively. For the threshold value t such that H0,q is
rejected if V(q)

n ≥ t, denote the total number of false positives by
R0(t) = ∑

q∈H0 I{V(q)
n ≥ t}, and the total number of rejections

by R(t) = ∑
q∈H I{V(q)

n ≥ t}. The false discovery proportion
(FDP) and false discovery rate (FDR) are defined, respectively,
as

FDP(t) = R0(t)
1 ∨ R(t)

and FDR(t) = E{FDP(t)}.

Given a prescribed level α ∈ (0, 1), the key objective for FDR
control is to find the smallest t̂ such that FDR(t̂) ≤ α. To do this,
we first consider FDP(t). Since the true null hypotheses set H0
is unknown, we need to estimate R0(t), that is, the numerator of
FDP(t). By (18), it holds that P{V(q)

n ≥ t} = 1 − �(t) + o(1)

for any q ∈ H0. An ideal estimate of FDP(t) is F̃DP(t) =
Q0{1 − �(t)}/{1 ∨ R(t)}. Since Q0 is unknown, F̃DP(t) is
infeasible in practice and we can only estimate FDP(t) via a more
conservative way:

F̂DP(t) = Q{1 − �(t)}
1 ∨ R(t)

.

For given α ∈ (0, 1), we choose

t̂ = inf
{

0 < t ≤ (2 log Q − 2 log log Q)1/2 : F̂DP(t) ≤ α
}

.
(19)
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If t̂ defined in (19) does not exist, let t̂ = (2 log Q)1/2. We reject
all H0,q’s with V(q)

n ≥ t̂.
To analyze the theoretical properties of our proposed mul-

tiple testing procedure, we need to measure the dependency
among the marginal test statistics {T(q)

n }q∈[Q]. Since the lim-
iting distribution of T(q)

n is not pivotal and does not admit
an explicit form (or even does not exist), characterization of
the dependency among {T(q)

n }q∈[Q] is nontrivial. To overcome
this difficulty, we consider a transformation of the test statistics
{T(q)

n }q∈[Q], that is, ζ (q) = �−1[Fq{T(q)
n }], where �(·) and Fq(·)

are, respectively, the cumulative distribution functions of the
standard normal distribution N (0, 1), and T(q)

n . Due to ζ (q) ∼
N (0, 1) for each q ∈ [Q], following Chang et al. (2024b), we can
measure the dependency between T(q)

n and T(q′)
n by the correla-

tion between ζ (q) and ζ (q′). It is obvious that the independence
between T(q)

n and T(q′)
n is equivalent to Corr{ζ (q), ζ (q′)} = 0. For

some constant γ > 0 and any q ∈ [Q], define the set

Sq(γ ) = {
q′ ∈ [Q] : q′ �= q, |Corr{ζ (q), ζ (q′)}| ≥ log−2−γ (Q)

}
.

For given q ∈ [Q], the other Q − 1 test statistics {T(q′)
n }q′∈[Q]\{q}

can be considered in two scenarios: (i) if q′ ∈ Sq(γ ), the test
statistic T(q′)

n has relatively strong dependence with T(q)
n , and (ii)

if q′ /∈ Sq(γ ), the test statistic T(q′)
n has quite weak dependence

with T(q)
n . To construct the theoretical guarantee of the proposed

multiple testing procedure, it is common practice to analyze
these two scenarios separately with different technical tools. See
also Liu (2013) and Chang, Shao, and Zhou (2016). For each
q ∈ [Q], similar to (17), we define

MJ (q) =
⎧⎨⎩Kq , if J (q) = {ω(q)

1 , . . . , ω(q)

Kq
} ,

n , if J (q) = [ω(q)

L , ω(q)

U ] .
(20)

Write Mmax = maxq∈H0 MJ (q) , rmax = maxq∈H0 rq and rmin =
minq∈H0 rq. Theorem 2 provides the theoretical guarantee of our
proposed multiple testing procedure.

Theorem 2. Assume Conditions 1–4 hold, rmin ≥ nκ for some
sufficiently small constant κ > 0, and max1≤q�=q′≤Q |Corr
{ζ (q), ζ (q′)}| ≤ rζ for some constant rζ ∈ (0, 1); also assume
that maxq∈[Q] |Sq(γ )| = o(Qν) for some constants γ > 0 and
0 < ν < (1 − rζ )/(1 + rζ ). Let the bandwidth bn in (12) satisfy
bn � nρ for some constant ρ satisfying 0 < ρ < (ϑ − 1)/(3ϑ −
2) with ϑ specified in Condition 4. If Q 	 nf3(ϑ ,ρ) for f3(ϑ , ρ)

defined as (23) in the Appendix, then lim supn,Q→∞ FDR(t̂) ≤
αQ0/Q and limn,Q→∞ P{FDP(t̂) ≤ αQ0/Q + ε} = 1 for any
ε > 0, provided that log(Mmaxrmax) 	 f4(ln, n, Q; ϑ , ρ) with
the bandwidth ln in (2) satisfying max{2, C′ log(Mmaxrmax)} ≤
ln 	 f5(n, Q; ϑ , ρ) for some sufficiently large constant C′ > 0,
where f4(ln, n, Q; ϑ , ρ) and f5(n, Q; ϑ , ρ) are defined as (24) and
(25) in the Appendix, respectively.

4. Numerical Simulations

In this section, we investigate the finite sample performance of
our proposed methods. The number of parametric bootstrap

replications used to determine the critical value ĉvα in the
global testing problem and the p-values in the multiple testing
problem is selected as B = 1000. We set the sample size to be
n ∈ {300, 600}, and the dimension to be p ∈ {50, 100, 200},
which covers low-, moderate- and high-dimensional scenarios.
All reported simulation results in this section are based on 1000
replications.

4.1. Global Hypothesis Testing

Let I = {(i, j) ∈ [p]2 : i > j} with r = |I| = p(p − 1)/2. Three
types of J are considered, viz. (i) quarterly seasonal frequencies
(K = 4) such that J = J (4) = {−π , −π/2, 0, π/2}; (ii)
monthly seasonal frequencies (K = 12) such that J = J (12) =
{−π , −5π/6, . . . , 5π/6}; (iii) Fourier frequencies (K = n) such
that J = J (n) = {−π , −(n − 2)π/n, −(n − 4)π/n, . . . , (n −
2)π/n}. Notice that the effective dimension of the parameter we
are testing is p(p − 1)|J |/2, which ranges from 4900 (i.e., when
p = 50 and J = J (4)) to 11940000 (corresponding to the case
p = 200 and J = J (n) with n = 600). For the flat-top kernel
(4) involved in (2) for the estimate of the spectral density matrix,
we set the constant c ∈ {0.5, 0.8}. The associated bandwidths ln
and bn are determined as stated in Section 2. To examine the
empirical size, we consider the following models:

Model 1. Cross-sectionally uncorrelated but dependent
sequence: xj,t = |yj−p/10,t| if j ∈ {p/10 + 1, . . . , p/5}
and xj,t = yj,t otherwise, where yt = (y1,t , . . . , yp,t)� iid∼
N (0, a2Ip) with a ∈ {0.2, 0.4, 0.6}.

Model 2. VAR(1) model: xt = −axt−1+εt with εt
iid∼ N {0, (1−

a2)Ip} and a ∈ {0.05, 0.1, 0.2}.

Model 3. VMA(1) model: xt = εt − aεt−1 with εt
iid∼ N (0, Ip)

and a ∈ {0.15, 0.2, 0.25}.
Model 4. VARMA(2,2) model: xt = �1xt−1 + �2xt−2 +

εt + 	1εt−1 + 	2εt−2, where εt = (ε1,t , . . . , εp,t)�

with εj,t
iid∼ t5, �1 = diag(0.61�

p/2, 0.41�
p/2), �2 =

0.15Ip, 	1 = −a · diag(0.51�
p/2, 0.251�

p/2) with
a ∈ {0.2, 0.25, 0.3}, and 	2 = −0.05Ip.

Due to the lack of competing methods, we only focus on
the examination of the performance of our test. As seen
from Table 1, our proposed test has relatively accurate sizes
when the dimension p is low for Models 1–4. When the
sample size n is fixed, the empirical sizes tend to decrease as
the dimension p increases, which shows the impact on the
parametric bootstrap-based approximation from the dimension
p. When the dimension p is fixed, the empirical sizes are
closer to the nominal level as the sample size increases
from n = 300 to n = 600. For most settings, the size
is below the nominal level and our test is conservative. In
settings where our test is over-sized, the amount of over-
rejection appears quite mild. So overall the Type-I error is well
controlled.

Based on the above size results, we can see that the two
choices for c (i.e., c = 0.5, 0.8) deliver very similar results, and
also our test seems insensitive to K, since setting K = 4, 12, n
does not have much impact on the rejection rates.
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Table 1. Empirical sizes of the proposed global tests for Models 1–4 at the 5% nominal level based on 1000 repetitions.

Model 1 Model 2 Model 3 Model 4

n p c a K = 4 K = 12 K = n a K = 4 K = 12 K = n a K = 4 K = 12 K = n a K = 4 K = 12 K = n

300 50 0.5 0.20 2.8 2.8 2.8 0.05 3.5 3.6 3.6 0.15 3.9 3.9 4.0 0.20 4.3 4.8 4.2
0.40 2.9 2.9 2.7 0.10 4.1 4.1 3.9 0.20 3.8 3.8 3.7 0.25 4.6 5.1 5.0
0.60 3.0 3.0 2.9 0.20 4.7 4.5 4.2 0.25 3.5 3.8 4.0 0.30 5.5 5.9 5.6

0.8 0.20 2.9 2.9 2.9 0.05 3.3 3.8 3.3 0.15 4.0 3.9 3.8 0.20 4.9 4.7 4.3
0.40 2.7 2.8 3.0 0.10 3.8 3.9 4.0 0.20 3.9 3.8 3.8 0.25 4.8 4.8 5.0
0.60 2.7 3.0 2.9 0.20 4.5 4.7 4.5 0.25 3.6 3.4 3.7 0.30 5.7 5.5 6.0

100 0.5 0.20 1.7 1.6 1.5 0.05 1.8 2.1 1.9 0.15 2.8 2.8 2.9 0.20 1.9 1.9 1.7
0.40 1.9 1.8 1.9 0.10 2.7 3.0 3.2 0.20 2.9 2.9 3.1 0.25 2.3 2.4 1.9
0.60 1.7 1.9 1.9 0.20 3.9 3.2 3.8 0.25 2.6 2.7 2.8 0.30 2.3 2.7 2.8

0.8 0.20 1.8 1.7 1.6 0.05 1.9 1.9 1.9 0.15 2.7 2.8 2.8 0.20 1.9 2.2 1.9
0.40 1.7 1.9 2.1 0.10 3.4 3.2 3.4 0.20 2.7 2.7 3.1 0.25 2.0 2.4 2.3
0.60 1.6 2.1 2.2 0.20 3.5 3.7 3.6 0.25 3.0 3.0 2.5 0.30 2.9 2.7 2.8

200 0.5 0.20 1.3 1.4 1.4 0.05 1.5 1.9 1.5 0.15 2.0 1.9 1.8 0.20 1.3 1.3 1.2
0.40 1.1 1.2 1.4 0.10 2.1 1.9 2.0 0.20 1.9 1.8 2.1 0.25 1.5 1.2 1.5
0.60 1.4 1.1 1.2 0.20 2.3 2.4 2.3 0.25 1.8 1.6 1.8 0.30 1.6 1.6 1.6

0.8 0.20 1.3 1.5 1.5 0.05 1.5 1.7 1.6 0.15 1.8 1.7 1.8 0.20 1.1 1.2 1.5
0.40 1.4 1.4 1.5 0.10 2.1 2.0 1.9 0.20 2.2 1.8 1.9 0.25 1.4 1.4 1.5
0.60 1.3 1.1 1.2 0.20 2.7 2.3 2.5 0.25 1.8 2.0 1.9 0.30 1.5 1.6 1.6

600 50 0.5 0.20 2.7 3.0 3.0 0.05 3.8 3.7 4.1 0.15 4.3 4.3 4.4 0.20 5.9 5.5 5.5
0.40 2.9 3.1 2.9 0.10 4.4 4.6 4.2 0.20 4.4 4.6 4.6 0.25 6.6 6.2 6.2
0.60 2.9 3.1 3.0 0.20 4.6 5.3 5.2 0.25 3.8 4.2 4.5 0.30 7.1 7.2 7.2

0.8 0.20 3.0 3.1 2.9 0.05 3.5 3.8 3.6 0.15 4.4 4.5 4.4 0.20 5.6 5.8 5.6
0.40 3.1 2.9 3.1 0.10 4.3 4.4 4.3 0.20 4.3 4.7 4.5 0.25 6.2 6.3 6.6
0.60 2.7 3.2 2.9 0.20 5.1 4.9 5.2 0.25 4.3 3.9 4.4 0.30 7.2 7.0 6.8

100 0.5 0.20 2.8 2.6 2.6 0.05 3.0 2.9 3.0 0.15 4.7 4.9 4.3 0.20 3.1 3.1 3.3
0.40 2.9 2.8 2.6 0.10 4.8 4.3 4.4 0.20 4.7 4.6 4.5 0.25 3.9 4.2 3.8
0.60 2.6 2.5 2.7 0.20 5.5 5.7 5.5 0.25 4.5 4.4 4.2 0.30 4.6 4.7 5.1

0.8 0.20 2.9 2.7 2.8 0.05 3.2 2.9 3.3 0.15 4.7 4.5 4.5 0.20 3.4 3.5 3.2
0.40 2.8 2.7 3.0 0.10 4.4 4.3 4.5 0.20 4.5 4.6 4.6 0.25 3.8 3.9 3.9
0.60 2.6 2.6 2.5 0.20 5.5 5.7 5.6 0.25 4.8 4.0 4.2 0.30 5.0 4.8 4.8

200 0.5 0.20 2.8 2.7 2.5 0.05 2.9 2.9 3.1 0.15 3.7 4.2 3.6 0.20 2.2 1.9 2.1
0.40 2.4 2.8 2.5 0.10 3.8 3.7 3.6 0.20 3.3 4.0 3.7 0.25 2.5 2.0 2.2
0.60 2.4 2.6 2.7 0.20 4.9 4.6 4.5 0.25 3.9 3.6 3.0 0.30 2.9 2.8 2.7

0.8 0.20 2.7 2.4 2.8 0.05 3.0 2.6 3.0 0.15 3.8 3.5 4.2 0.20 1.9 1.8 1.9
0.40 2.5 2.8 3.1 0.10 3.7 3.6 3.9 0.20 3.6 3.5 4.1 0.25 2.4 2.3 2.7
0.60 2.7 2.9 3.2 0.20 4.6 4.6 4.2 0.25 3.4 3.5 3.8 0.30 2.9 2.7 2.8

NOTE: All numbers reported are multiplied by 100.

To study the empirical power of the proposed method, we
consider the following models:

Model 5. xt = �εt , where εt
iid∼ N (0, Ip) and � = (ψk,l)p×p

for ψk,l = 0.4I(k = l) + aI(|k − l| = 1) with a ∈
{0.05, 0.1, 0.15}.

Model 6. xt = �xt−1 + εt , where εt
iid∼ N {0, (1 − 0.12)Ip} and

� = (ψk,l)p×p for ψk,l = −0.1I(k = l) + aI(|k − l| =
1) with a ∈ {0.15, 0.2, 0.25}.

Model 7. xt = εt − �εt−1, where εt
iid∼ N (0, Ip) and � =

(ψk,l)p×p for ψk,l = 0.2I(k = l)+ aI(|k − l| = 1) with
a ∈ {0.15, 0.2, 0.25}.

Model 8. xt = �1xt−1+�2xt−2+εt+	1εt−1+	2εt−2, where
εt = (ε1,t , . . . , εp,t)� with εj,t

iid∼ t5, �1 = (φ1,k,l)p×p
with diag(�1) = (0.61�

p/2, 0.41�
p/2)

� and φ1,k,l =
aI(k − l = 1) for k �= l and a ∈ {0.15, 0.2, 0.25},
�2 = 0.15Ip, 	1 = −0.25 · diag(0.51�

p/2, 0.251�
p/2),

and 	2 = −0.05Ip.

Table 2 shows that the power also appears insensitive to the
choices of c and K. As the distance from the null hypothesis
increases (e.g., a increases), the empirical power of our proposed

test grows rapidly to 1. Moreover, enlarging the sample size
n helps to increase the empirical power. Overall, the power
performance of our proposed test is consistent with our theory
under the alternative.

4.2. Multiple Testing

We divide the p × p matrix F(ω) into a 10 × 10 block submatrix,
that is, F(ω) = {Fi,j(ω)}i,j∈[10], where each Fi,j(ω) is a submatrix
of size (0.1p) × (0.1p). The groups of {Jk}K

k=1 are set as follows:
(i) when K = 4, let Jk = {−π + (k − 1)π/2} be a set
with single element for each k ∈ [4]; (ii) when K = 12, let
Jk = {−π + (k − 1)π/6} be a set with single element for each
k ∈ [12]; (iii) when K = n, let Jk = {−π + 2(k − 1)π/n}
be a set with single element for each k ∈ [n]. For each
given (i, j) ∈ [10]2 with i ≤ j, we consider K marginal
hypothesis testing problems H0,i,j,k : Fi,j(ω) = 0 for any
ω ∈ Jk versus H1,i,j,k : H0,i,j,k is not true, for k ∈ [K].
Hence, the total number of the marginal hypothesis testing
is Q = 55K. Due to the fact that F(ω) = (2π)−1�2 and
(2π)−1(Ip + �2 − 2� cos ω), respectively, in Models 5 and
7, then Q0 = |H0| = 36K in these two model settings. For
Model 6, since xt = ∑∞

j=0 � jεt−j with εt
iid∼ N {0, (1−0.12)Ip},
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Table 2. Empirical powers of the proposed global tests for Models 5–8 at the 5% nominal level based on 1000 repetitions.

Model 5 Model 6 Model 7 Model 8

n p c a K = 4 K = 12 K = n a K = 4 K = 12 K = n a K = 4 K = 12 K = n a K = 4 K = 12 K = n

300 50 0.5 0.05 88.3 87.3 87.9 0.15 99.6 99.5 99.4 0.15 94.4 94.3 99.4 0.15 74.9 73.2 73.6
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 96.6 95.7 96.1
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 98.1 97.9 98.3

0.8 0.05 87.7 88.1 80.6 0.15 99.4 99.3 99.5 0.15 93.9 94.1 94.1 0.15 74.4 72.9 74.0
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 96.0 95.9 95.9
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 97.8 98.2 98.2

100 0.5 0.05 80.9 81.0 81.1 0.15 99.4 99.3 99.6 0.15 91.9 91.9 91.9 0.15 64.8 63.4 63.7
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 96.0 95.5 95.6
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 97.0 97.2 97.4

0.8 0.05 80.2 80.1 80.6 0.15 99.2 99.3 99.4 0.15 92.1 91.9 91.9 0.15 64.2 63.7 65.0
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 96.0 95.8 96.1
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 96.9 97.0 97.0

200 0.5 0.05 74.1 74.4 75.1 0.15 99.1 98.9 99.0 0.15 86.3 86.5 85.9 0.15 46.2 45.3 46.6
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 91.3 91.6 91.5
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 96.2 95.8 95.3

0.8 0.05 73.8 73.8 74.6 0.15 99.1 98.8 99.0 0.15 86.6 86.1 86.3 0.15 45.5 46.1 46.4
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 91.7 91.7 92.2
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 95.8 95.9 96.4

600 50 0.5 0.05 100 99.9 100 0.15 100 100 100 0.15 100 100 100 0.15 99.3 99.3 99.5
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 99.8 99.8 99.8
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 100 100 100

0.8 0.05 100 100 100 0.15 100 100 100 0.15 100 100 100 0.15 99.3 99.6 99.4
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 99.7 99.8 99.8
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 100 100 100

100 0.5 0.05 100 100 100 0.15 100 100 100 0.15 100 100 100 0.15 98.5 98.4 98.1
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 99.4 99.5 99.5
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 99.8 99.7 99.9

0.8 0.05 100 100 100 0.15 100 100 100 0.15 100 100 100 0.15 98.4 98.6 98.3
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 99.6 99.4 99.5
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 99.7 99.9 99.9

200 0.5 0.05 100 100 100 0.15 100 100 100 0.15 100 100 100 0.15 97.3 97.1 97.2
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 99.6 99.5 99.5
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 98.6 98.5 98.7

0.8 0.05 100 100 100 0.15 100 100 100 0.15 100 100 100 0.15 97.2 97.3 97.2
0.10 100 100 100 0.20 100 100 100 0.20 100 100 100 0.20 99.4 99.5 99.4
0.15 100 100 100 0.25 100 100 100 0.25 100 100 100 0.25 98.7 98.7 98.8

NOTE: All numbers reported are multiplied by 100.

by Example 11.8.1 in Brockwell and Davis (2006), we have
F(ω) = 0.495π−1(Ip − �e−ιω)−1{(Ip − �eιω)−1}� =
0.495π−1(

∑∞
j=0 � je−ιjω)(

∑∞
k=0 �keιkω)�. For Model 8, letting

�(x) = Ip − �1x − �2x2 and 	(x) = Ip + 	1x + 	2x2,
again by Example 11.8.1 in Brockwell and Davis (2006) we have
F(ω) = (2π)−1σ 2

ε �−1(e−ιω)	(e−ιω)	�(eιω){�−1(eιω)}�,
where σ 2

ε denotes the variance of εj,t . Note that � and �1
are banded matrices. We know all the sub-nulls in Models 6
and 8 are false and thus Q0 = 0. Hence, we only consider the
performance of our multiple testing procedure in Model 5 with
a ∈ {0.05, 0.1, 0.15} and Model 7 with a ∈ {0.2, 0.4, 0.6}. As with
the global testing procedure, we also use the flat-top kernel and
the Quadratic Spectral kernel, respectively, in (2) and (12) with
the associated bandwidths ln and bn determined in the same
manner as those in Section 4.1.

Theorem 2 implies that when n and Q grow to infinity, the
FDR should be controlled at the level of αQ0/Q with high
probability, which equals 3.27% in our settings with α = 5%.
In the vth simulation replication, we can obtain t̂v defined as
(19). For each q ∈ [Q], denote by V(q)

n,v the normal quantile
transformation of the p-value for H0,q in the vth simulation
replication. See its definition below (18). Besides the empirical
FDR, we also consider the empirical power of the proposed

multiple testing procedure defined as

1
1000

1000∑
v=1

1
Q − Q0

∑
q∈H1

I{V(q)
n,v > t̂v} .

As shown in Table 3, the empirical FDR becomes closer to
the limit rate 3.27% as n increases, and the proposed multi-
ple testing procedure tends to be more conservative when p
becomes larger. On the other hand, the corresponding empirical
powers grow quickly as n increases, regardless of the smaller
empirical FDR. The results also show that different choices of
c have little influence on the empirical FDR and power in the
models being examined. The choice of K has little impact on the
empirical FDR but appears to have some impact on the power.
In particular, when K changes from 4 to 12, there is a notable
increase in the empirical powers, while the increase becomes
insignificant when comparing K = 12 with K = n.

5. Real Data Analysis

5.1. Batching County-Level Hires Data

As an illustration of the techniques of this article, we study data
on new hires at a national level, obtained from the Quarterly
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Table 3. Empirical FDRs and powers of the proposed multiple testing procedure based on 1000 repetitions.

Model 5 Model 7

K = 4 K = 12 K = n K = 4 K = 12 K = n

n p a c = 0.5 c = 0.8 c = 0.5 c = 0.8 c = 0.5 c = 0.8 a c = 0.5 c = 0.8 c = 0.5 c = 0.8 c = 0.5 c = 0.8

Empirical FDRs 300 50 0.05 1.8 1.8 2.0 1.8 1.9 1.9 0.20 1.7 1.8 1.9 2.0 1.9 2.1
0.10 2.1 2.1 2.3 2.2 2.2 2.2 0.40 1.8 1.8 2.0 2.1 2.2 2.1
0.15 2.1 2.1 2.2 2.2 2.2 2.2 0.60 1.9 2.0 2.0 2.2 2.2 2.1

100 0.05 1.5 1.4 1.3 1.4 1.3 1.3 0.20 1.4 1.4 1.5 1.5 1.5 1.6
0.10 1.7 1.7 1.6 1.7 1.7 1.6 0.40 1.4 1.6 1.6 1.6 1.6 1.6
0.15 1.8 1.8 1.7 1.8 1.7 1.7 0.60 1.7 1.6 1.7 1.8 1.7 1.8

200 0.05 1.2 1.0 1.1 1.0 1.1 1.2 0.20 1.0 0.9 1.0 1.0 1.2 0.9
0.10 1.6 1.4 1.4 1.3 1.5 1.4 0.40 1.3 1.2 1.3 1.3 1.3 1.2
0.15 1.4 1.4 1.4 1.3 1.3 1.4 0.60 1.2 1.3 1.4 1.4 1.3 1.4

600 50 0.05 2.3 2.6 2.4 2.4 2.5 2.4 0.20 2.7 2.7 2.8 2.7 2.7 2.7
0.10 2.8 2.6 2.6 2.6 2.6 2.6 0.40 2.6 2.7 2.8 2.9 2.9 2.8
0.15 2.9 2.7 2.8 2.8 2.8 2.7 0.60 2.7 2.7 2.8 2.8 2.7 2.9

100 0.05 2.5 2.4 2.3 2.3 2.5 2.4 0.20 2.2 2.4 2.4 2.4 2.5 2.3
0.10 2.4 2.4 2.4 2.5 2.6 2.3 0.40 2.4 2.3 2.4 2.4 2.4 2.3
0.15 2.5 2.4 2.3 2.3 2.4 2.5 0.60 2.4 2.5 2.6 2.6 2.6 2.7

200 0.05 2.0 2.1 2.1 2.2 2.1 2.0 0.20 1.8 2.0 2.0 1.9 2.0 2.1
0.10 2.1 2.1 2.2 2.1 2.0 2.1 0.40 1.9 1.9 1.9 1.9 1.8 1.9
0.15 2.0 2.0 2.1 2.2 2.2 2.0 0.60 2.2 2.2 2.1 2.1 2.2 2.1

Empirical powers 300 50 0.05 32.4 32.3 42.8 43.1 42.7 42.8 0.20 32.9 32.9 38.7 38.5 38.4 38.4
0.10 95.5 95.6 96.7 96.8 96.8 96.8 0.40 50.9 51.0 69.8 69.7 72.2 72.0
0.15 99.6 99.7 99.8 99.9 99.8 99.8 0.60 62.6 62.7 81.2 81.2 83.0 83.1

100 0.05 21.8 21.8 38.2 38.2 38.1 38.0 0.20 30.5 30.4 36.2 36.3 35.7 36.2
0.10 91.5 91.5 93.3 93.5 93.4 93.3 0.40 49.2 49.1 66.2 66.3 69.0 68.9
0.15 99.1 99.1 99.5 99.5 99.6 99.5 0.60 58.3 58.1 77.9 78.0 79.4 79.4

200 0.05 11.0 10.8 33.1 33.0 33.5 33.2 0.20 28.2 28.2 33.3 33.4 34.1 33.5
0.10 86.0 86.2 88.5 88.7 88.6 88.4 0.40 46.8 46.8 61.7 61.7 62.0 62.2
0.15 97.8 97.9 98.8 98.7 98.6 98.7 0.60 53.5 53.5 73.9 73.8 74.2 73.9

600 50 0.05 83.0 82.8 85.4 85.4 85.1 85.3 0.20 48.6 48.6 64.0 64.1 66.0 66.4
0.10 100 100 100 100 100 100 0.40 60.3 60.4 83.2 83.2 84.1 84.0
0.15 100 100 100 100 100 100 0.60 94.0 94.0 97.5 97.5 98.0 98.1

100 0.05 75.5 75.3 78.8 78.8 79.8 79.3 0.20 46.2 46.1 59.4 59.5 60.4 60.2
0.10 100 100 100 100 100 100 0.40 56.7 56.7 80.6 80.5 81.2 81.4
0.15 100 100 100 100 100 100 0.60 88.5 88.5 94.9 94.8 95.4 95.1

200 0.05 67.6 67.7 71.6 71.7 71.8 71.8 0.20 43.4 43.5 54.9 55.0 56.1 56.3
0.10 99.3 99.5 99.8 99.8 99.8 99.9 0.40 53.8 53.8 78.3 78.3 79.6 79.5
0.15 100 100 100 100 100 100 0.60 83.2 83.0 91.9 91.8 93.0 92.5

NOTE: All numbers reported are multiplied by 100.

Workforce Indicators (QWI) of the Longitudinal Employer-
Household Dynamics program at the U.S. Census Bureau
(Abowd et al. 2009).1 The quarterly data is available for all
counties, and we wish to obtain a classification of the database
whereby we associate clusters of time series pertaining to
various states, such that they are suitable for joint analysis.
The national QWI hires data covers a variable number of
years, with some states providing time series going back to
1990 (e.g., Washington), and others (e.g., Massachusetts) only
commencing at 2010. For each of 51 states (excluding D.C.
but including Puerto Rico) there is a new hires time series
for each county. Additional description of the data, along with
its relevancy to labor economics, can be found in Hyatt and
McElroy (2019).

Given QWI county-level data on new hires, we want to know
whether we may analyze the data state-by-state, or whether
there is additional time series information to be gleaned by
examining relationships across states. For any two states i and

1Data (Hires All:Counts) was extracted from https:// ledextract.ces.census.gov/
qwi/all on October 5, 2022; all counties in each state were selected, with All
NAICS and All Ownership (Firm Characteristics), No Worker Characteristics,
and all available quarters.

j, with 1 ≤ i �= j ≤ 51, let Bi and Bj denote batches of
time series indices corresponding to the counties within a state.
Between each pair (i, j), we test whether the cross-spectrum
between Bi and Bj is not identically zero, with rejection of the
null hypothesis indicating there may be merit in considering
both batches in a joint time series model. We restrict ourselves to
examining the cross-spectrum between distinct batches of series
Bi and Bj, which is in contrast to the simulation of Section 4.2,
where one can also test Bi with itself. This latter procedure would
investigate each state, inquiring whether the county-level time
series of that state should be jointly modeled; instead we focus
on whether the county-level time series of two distinct states
should be jointly modeled. Since the time series are quarterly,
we assess the cross-spectrum at the seasonal frequencies, viz.
J = {−π , −π/2, 0, π/2}. We apply the global test by taking a
supremum over the four seasonal frequencies; we also consider
multiple testing with FDR control.

Many of the series exhibit strong trend and seasonal effects,
and it is important to ensure that the data is stationary; there-
fore, we apply either regular differencing or seasonal differ-
encing. Although these operations may over-difference certain
series, our theory has no requirement that the spectral density

https://ledextract.ces.census.gov/qwi/all
https://ledextract.ces.census.gov/qwi/all
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Figure 1. Heatmap of p-values for 51 state pairs, testing whether the cross-spectrum of each pair is zero at seasonal frequencies J = {−π , −π/2, 0, π/2}. A white box
indicates a pair for which no test is computed; a star marks pairs that are not significant using FDR control, where α = 5%. Each series has been differenced.

be nonzero, so there is no impediment to analysis with this
approach. In addition to this data pre-processing, it is necessary
to find common sample sizes for each pair of batches Bi and Bj
since the start dates differ greatly. In fact, if we were to consider
all p = 3218 county-level time series in one huge batch, the
maximal common sample size is n = 25, which is clearly too tiny
for such a huge p. Instead, for each of the

(51
2
) = 1275 possible

pairings (Bi, Bj), we determine the common sample available,
and the dimension of the resulting paired dataset is p = |Bi∪Bj|.
The sample size n in each case is defined to be the most recent
contiguous block of times where both batches are fully observed
(no missing values); by excluding the sparsely measured coun-
ties of Kalawao, HI, and McPherson, NE, we ensure there is a
common sample for every pairing. Our methodology requires
that ñ = n − 2ln (with ln selected by the data-driven method
discussed in Remark 1(c)) is positive; we impose n > 2ln + 1
and n − d > 7 (where d = 1 for regular differencing and d = 4
for seasonal differencing), the latter condition ensuring that the
data-driven ln can be calculated, which ensures ñ ≥ 2. For
284 state pairs (or 22.3%) where regular differencing is used the
common sample does not meet these requirements, and these
cases are skipped over; for the case of seasonal differencing, only
1 state pair violates the requirements.

Our final output is summarized with two heat maps, dis-
played in Figures 1 and 2, for the cases of regular differencing
and seasonal differencing, respectively. Low p-values have a
darker color, and most of the pairs end up rejecting the null
hypothesis; we have marked with a star those pairs that do not
reject the null hypothesis when using the FDR control method
with α = 5%. The diagonal, as well as any state pairs with
insufficient common sample, is marked white, indicating that no
test is conducted in such cases. For the regular differencing there
are 338 pairs with no association, and 295 pairs of no association

for the seasonal differencing; hence, there are 653 pairs under
regular differencing for which a joint analysis may be useful, and
979 such pairs under seasonal differencing.

5.2. Detecting Seasonal Over-Adjustment in Texas Hires

As a second application of our methods, we focus on the county
hires data for Texas, and wish to detect over-adjustment in any
of the seasonal adjustments. First we seasonally adjust the data
using the automatic methods of the X-13ARIMA-SEATS soft-
ware (U.S. Census Bureau 2020), excluding Loving county (due
to many missing values); note that there is no official seasonal
adjustment for these series, and we use default settings in the
software so as to eliminate the impact of human intervention
in the analysis. We then analyze the p = 253 county-level
seasonally adjusted time series, testing H0 : fi,i(ω) = 0 for
all i ∈ [p] with J = {−π , −π/2, π/2}, that is, the seasonal
frequencies (excluding the trend frequency).

We consider two approaches to the testing: first, we can
examine the entire batch of Texan county data by setting I =
[p], thereby obtaining a single test statistic that measures the
over-adjustment problem’s prevalence for all series. This yields
a p-value of 0.203, indicating that at a 5% level there is a failure
to reject the null hypothesis of over-adjustment, that is, there is
over-adjustment. Second, we can conduct a univariate test for
each of the p series, and use the FDR control to manage the
multiple testing results. In this case (setting the nominal level
at 5%) the support recovery yields 49 counties where the null
hypothesis is not rejected; these can then be scrutinized by a
human analyst.

This example showcases how the practical problem of sea-
sonally adjusting thousands or millions of time series can be
managed with limited computational and human resources: the
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Figure 2. Heatmap of p-values for 51 state pairs, testing whether the cross-spectrum of each pair is zero at seasonal frequencies J = {−π , −π/2, 0, π/2}. A white box
indicates a pair for which no test is computed; a star marks pairs that are not significant using FDR control, where α = 5%. Each series has been seasonally differenced.

automatic methodology of the X-13ARIMA-SEATS software
can be applied with default settings, and the output can be
quickly assessed for defective adjustments—using FDR control
and support recovery, the (hopefully small) subset of problem-
atic seasonal adjustments can then be examined by a seasonal
adjustment expert. However, we have not here addressed the
more subtle problem of seasonal under-adjustment (where the
spectral density of a seasonally adjusted time series still has a
local peak at some of the seasonal frequencies), which we leave
for future research.

6. Discussion

Motivated by the increasing availability of high-dimensional
time series, we develop new inference methodology and theory
for the spectral density matrix in the high-dimensional set-
ting, which has not yet been fully explored in the literature.
We overcome both methodological and theoretical challenges
that high dimensionality induces by extending the celebrated
Gaussian approximation and multiplier bootstrap to the testing
of a high-dimensional parameter formulated in the frequency
domain, which seems to be the first such effort in the literature.
In particular, we develop a maximum-type test statistic and
computationally feasible parametric bootstrap approximation to
test the nullity of coherence at a pre-specified set of frequencies
for given component pairs. The theoretical justification is estab-
lished under a setting that allows weak temporal dependence,
flexible contemporary dependence across p components, and
exponential rate growth for the dimension. In addition, we
develop a multiple testing procedure to recover the support set
for the nullity of coherence at a given set of frequencies. A
rigorous theory for the FDR control is also provided. Finally,

we illustrate the size and power of the proposed tests through
simulations and real data analysis.

Given I ⊂ [p]2 and J ⊂ [−π , π), we can also establish the
Gaussian approximation theory for

T s = sup
ω∈J

max
(i,j)∈I

∣∣∣∣√ n
ln

f̂i,j(ω) − fi,j(ω)

{f̂i,i(ω)f̂j,j(ω)}1/2

∣∣∣∣2
.

Recall r = |I| and ñ = n − 2ln. For the bijective mapping
χ(·) = {χ1(·), χ2(·)} specified in Section 2.2, write W(ω) =
diag{f̂ −1/2

χ1(1),χ1(1)(ω)f̂ −1/2
χ2(1),χ2(1)(ω), . . ., f̂ −1/2

χ1(r),χ1(r)(ω)f̂ −1/2
χ2(r),χ2(r)(ω)}.

Letting

ξ s
J = sup

ω∈J
max
	∈[r]{|η̂

ext,s
2	−1(ω)|2 + |η̂ext,s

2	 (ω)|2}

with {η̂ext,s
1 (ω), . . . , η̂ext,s

2r (ω)}� = {W(ω) ⊗ A(ω)}(ñ−1/2∑ñ
t=1 εt ĉt) for A(ω) defined in (8), ĉt = (ĉ�

1,t , . . . , ĉ�
r,t)

� with ĉ	,t
defined in (11), and (ε1, . . . , εñ)

� ∼ N (0, 	) with 	 defined in
Section 2.2, we can show

sup
u≥0

|P(T s ≤ u) − P(ξ s
J ≤ u |Xn)| = op(1) .

Then we can also use the studentized test statistics

Ts
n = sup

ω∈J
max
(i,j)∈I

∣∣∣∣√ n
ln

f̂i,j(ω)

{f̂i,i(ω)f̂j,j(ω)}1/2

∣∣∣∣2
,

T(q),s
n = sup

ω∈J (q)

max
(i,j)∈I(q)

∣∣∣∣√ n
ln

f̂i,j(ω)

{f̂i,i(ω)f̂j,j(ω)}1/2

∣∣∣∣2

in Sections 3.1 and 3.2, respectively, for the associated inference
problems. Although Ts

n and T(q),s
n can correct for heterogeneity,

their numerical performance is not robust when the sample size
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n is small due to the fact that the estimation of the denominator
in Ts

n and T(q),s
n may not be accurate enough. Such phenomenon

has been empirically observed in Chang et al. (2018). When the
sample size n is small, we suggest to use nonstudentized statistics
Tn and T(q)

n , respectively, for the inference problems considered
in Sections 3.1 and 3.2. We can also use the Gaussian approxima-
tion technique to construct the simultaneous inference for the
coherence matrix. See Section G in the supplementary material
for details.

To conclude, we mention several topics that are worth future
investigation. First, there are two tuning parameters involved
in our procedure, that is, ln and bn, the choices of which can
have an impact on the finite sample performance. Some the-
oretical investigation that can lead to a data-driven formula
in the high-dimensional setting would be desirable. Andrews’
rule for the choice of bn is used here, but there is no good
theoretical justification for it at this moment, and there might
be better formulas in practice. Second, as the precision matrix
plays an important role for high-dimensional independent and
identically distributed data, the partial coherence matrix is the
analogue in the spectral domain and its inference in the high-
dimensional setting would be of great importance; see Krampe
and Paparoditis (2022) for a recent effort. Third, one of the
limitations of the spectral density matrix is that it can only char-
acterize second-order properties. Recently, Barunik and Kley
(2019) proposed quantile coherency to characterize the cross-
series nonlinear dependence in the frequency domain, as an
extension of quantile spectrum for univariate time series devel-
oped in Hagemann (2013) and Kley et al. (2016). It would be
interesting to extend our results to detect nonlinear dependence
in the frequency domain for high-dimensional time series. We
leave these topics for future research.

Appendix

For given (ϑ , ρ) such that ϑ > 1 and 0 < ρ < (ϑ − 1)/(3ϑ − 2), let

f1(ln, n; ϑ , ρ) := min
{

nρ/2

l3/2
n

,
n(1−2ρ)/5

l2/5
n

,
n(ϑ+2ρ−3ρϑ−1)/(8ϑ−4)

l1/4
n

,

n(2ϑ+3ρ−4ρϑ−2)/(12ϑ−6)

l1/6
n

, (21)

n1/9

ln log8/3(ln)

}
,

f2(ϑ , ρ) := min
(

ρ

3
,

ϑ + 2ρ − 3ρϑ − 1
2ϑ − 1

)
, (22)

f3(ϑ , ρ) := min
(

ρ

6
,

1 − 2ρ

12
,

ϑ + 2ρ − 3ρϑ − 1
12ϑ − 6

)
, (23)

f4(ln, n, Q; ϑ , ρ) := min
{

n1/9

ln log2/3(ln)Q2 ,
n(ϑ+2ρ−3ρϑ−1)/(8ϑ−4)

l1/4
n Q3/2

,

n(1−2ρ)/5

l2/5
n Q12/5

, (24)

n(2ϑ+3ρ−4ρϑ−2)/(12ϑ−6)

l1/6
n Q

,
nρ/2

l3/2
n Q3

,

n1/9

ln log8/3(ln)
,

nρ/3

Q2

}
,

f5(n, Q; ϑ , ρ) := min
{

n(ϑ+2ρ−3ρϑ−1)/(2ϑ−1)

Q6 ,
nρ/3

Q2

}
. (25)

Supplementary Materials

The supplementary material contains detailed discussion for Conditions 1–
3, all technical proofs of the main results, and the procedure for the statisti-
cal inference of high-dimensional coherence matrix.
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